Efficient Semiring-Weighted Earley Parsing

Andreas Opedal, Ran Zmigrod, Tim Vieira, Ryan Cotterell and Jason Eisner

We present a **fast** version of Earley's algorithm in the form of a unified **deduction system** that can be executed with good asymptotic complexity. We obtain further **speedups** by allowing the grammar to be presented in the form of a **weighted finite-state automaton**, which allows similar productions to share computation. We carefully generalize our methods to handle **semiring-weighted grammars**; providing a method to compute **prefix weights** for non-commutative semirings and showing how the same time and space complexity can be achieved for weighted parsing as for unweighted parsing (Eisner, 2023).

Why do we like Earley's algorithm?

Parses in O(N³) time for general grammars, in O(N²) time for unambiguous grammars and in O(N) time for bounded-state grammars
Incremental left-to-right sentence processing
Can be extended to compute next-word probabilities (Stolcke, 1995)
Cognitive modeling (Hale, 2001)
Constrained generation of LLMs (Shin et al., 2021; Roy et al., 2022; Fang et al., 2023)

Preliminaries for weighted parsing

 Each production rule is given a weight from the set of values of some

A faster Earley deduction system

	Earley	EarleyFast
Domains	$i,j,k\in\{0,\ldots,N\}$ $A,B\in\mathcal{N}\cup$	$\cup \{S'\} a \in \Sigma ho, \mu, u \in (\mathcal{N} \cup \Sigma)^*$
Items	$[i,j,A \to \mu \bullet \nu] [j,k,a] A \to \rho$	$ \begin{array}{ll} [i,j,A \rightarrow \mu \bullet \nu] & [j,k,a] & A \rightarrow \rho \\ [i,j,A \rightarrow \bullet \star] & [i,j,A \rightarrow \star \bullet] \end{array} $
Axioms	$A \to \rho, \forall (A \to \rho) \in \mathcal{R} \\ [k-1, k, x_k], \forall k \in \{1, \dots, N\}$	$A \to \rho, \forall (A \to \rho) \in \mathcal{R}$ $[k-1, k, x_k], \forall k \in \{1, \dots, N\}$

• The weight of a derivation tree is

$$w(T) \stackrel{\text{\tiny def}}{=} \bigotimes w(A \to \rho) \ (A \to \rho) \in T$$

• A weighted recognizer returns

$$\mathbf{Z}_{\mathbf{x}} \stackrel{\text{\tiny def}}{=} w \left(S \stackrel{*}{\Rightarrow} \mathbf{x} \right) \stackrel{\text{\tiny def}}{=} \bigoplus_{T \in \mathcal{T}_{\mathbf{x}}} w(T)$$

A parser returns all derivation trees of x
Prefix weights:

$$w\left(S \stackrel{*}{\Rightarrow}_{L} \mathbf{y}\right) \stackrel{\text{\tiny def}}{=} \bigoplus_{\mathbf{z} \in \Sigma^{*}} w\left(S \stackrel{*}{\Rightarrow} \mathbf{y} \mathbf{z}\right)$$

Semiring-weighted deductive parsing

- 1-1 correspondence between proof trees and derivation trees
 From \$\mathcal{O}(N^3 |\mathcal{G}||\mathcal{P}|)\$ to \$\mathcal{O}(N^3 |\mathcal{G}|)\$
- From $\mathcal{O}(N^3|\mathcal{G}||\mathcal{R}|)$ to $\mathcal{O}(N^3|\mathcal{G}|)$

EarleyFSA

- The incomplete inside weight of an item
 V = [i, j, A → µ ν] is the total weight of all its proofs
- Computed by
 ⊕-summing over the antecedent weights in all one-step proofs

- Encode weighted CFG as weighted FSA \widehat{NP}_{sq} PP Production rules with 2 $\mathbf{5}$ similar right-hand sides \widehat{NP}_{sg} $Pron_{sg}$ Adj can be partially N_{sg} Det merged (prefix and N_{pl} suffix sharing) \widehat{NP}_{pl} • $\mathcal{O}(N^3|\mathcal{M}|)$, with $|\mathcal{M}| \leq |\mathcal{G}|$ $\mathbf{6}$ PP
- The future inside weight of V is the total weight of all ways to prove $[i, j, A \rightarrow \mu \nu \bullet]$ from V
- Requires computing free sums:

0

- $Z_A \stackrel{\text{def}}{=} \bigoplus_{T \in \mathcal{T}^A} \bigotimes_{B \to \rho \in T} w(B \to \rho)$
- The prefix outside weight of V is the total weight of all ways to prove the goal item from $[i, j, A \rightarrow \mu \nu \bullet]$