
A Natural Language Approach to Automated Cryptanalysis
of Two-time Pads

Joshua Mason
Johns Hopkins University

josh@cs.jhu.edu

Kathryn Watkins
Johns Hopkins University

kwatkins@jhu.edu

Jason Eisner
Johns Hopkins University

jason@cs.jhu.edu

Adam Stubblefield
Johns Hopkins University

astubble@cs.jhu.edu

ABSTRACT
While keystream reuse in stream ciphers and one-time pads
has been a well known problem for several decades, the risk
to real systems has been underappreciated. Previous tech-
niques have relied on being able to accurately guess words
and phrases that appear in one of the plaintext messages,
making it far easier to claim that “an attacker would never
be able to do that.” In this paper, we show how an adver-
sary can automatically recover messages encrypted under
the same keystream if only the type of each message is known
(e.g. an HTML page in English). Our method, which is re-
lated to HMMs, recovers the most probable plaintext of this
type by using a statistical language model and a dynamic
programming algorithm. It produces up to 99% accuracy on
realistic data and can process ciphertexts at 200ms per byte
on a $2,000 PC. To further demonstrate the practical effec-
tiveness of the method, we show that our tool can recover
documents encrypted by Microsoft Word 2002 [22].

Categories and Subject Descriptors
E.3 [Data]: Data Encryption

General Terms
Security

Keywords
Keystream reuse, one-time pad, stream cipher

1 Introduction
Since their discovery by Gilbert Vernam in 1917 [20], stream
ciphers have been a popular method of encryption. In a
stream cipher, the plaintext, p, is exclusive-ored (xored)
with a keystream, k, to produce the ciphertext, p ⊕ k = c.
A special case arises when the keystream is truly random:
the cipher is known as a one-time pad, proved unbreakable
by Shannon [18].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’06,October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

It is well known that the security of stream ciphers rests
on never reusing the keystream k [9]. For if k is reused to en-
crypt two different plaintexts, p and q, then the ciphertexts
p⊕k and q⊕k can be xored together to recover p⊕ q. The
goal of this paper is to complete this attack by recovering p
and q from p⊕ q. We call this the “two-time pad problem.”

In this paper we present an automated method for re-
covering p and q given only the “type” of each file. More
specifically, we assume that p and q are drawn from some
known probability distributions. For example, p might be
a Word document and q might be a HTML web page. The
probability distributions can be built from a large corpus of
examples of each type (e.g. by mining the Web for docu-
ments or web pages). Given the probability distributions,
we then transform the problem of recovering p and q into a
“decoding” problem that can be solved using some modified
techniques from the natural language processing community.
Our results show that the technique is extremely effective
on realistic datasets (more than 99% accuracy on some file
types) while remaining efficient (200ms per recovered byte).

Our attack on two-time pads has practical consequences.
Proofs that keystream reuse leaks information hasn’t stopped
system designers from reusing keystreams. A small sam-
pling of the systems so affected include Microsoft Office [22],
802.11 WEP [3], WinZip [11], PPTP [17], and Soviet diplo-
matic, military, and intelligence communications intercepted [2,
21]. We do not expect that this problem will disappear
any time soon: indeed, since NIST has endorsed the CTR
mode for AES [7], effectively turning a block cipher into
a stream cipher, future systems that might otherwise have
used CBC with a constant IV may instead reuse keystreams.
The WinZip vulnerability is already of this type.

To demonstrate this practicality more concretely, we show
that our tool can be used to recover documents encrypted
by Microsoft Word 2002. The vulnerability we focus on
was known before this work [22], but could not be exploited
effectively.

1.1 Prior Work
Perhaps the most famous attempt to recover plaintexts that
have been encrypted with the same keystream is the Na-
tional Security Agency’s VENONA project [21]. The NSA’s
forerunner, the Army’s Signal Intelligence Service, noticed
that some encrypted Soviet telegraph traffic appeared to
reuse keystream material. The program to reconstruct the
messages’ plaintext began in 1943 and did not end until
1980. Over 3,000 messages were at least partially recovered.
The project was partially declassified in 1995, and many of
the decryptions were released to the public [2]. However, the
ciphertexts and cryptanalytic methods remain classified.

There is a “classical” method of recovering p and q from
p⊕q when p and q are known to be English text. First guess
a word likely to appear in the messages, say the. Then, at-
tempt to xor the with each length-3 substring of p ⊕ q.
Wherever the result is something that “looks like” English
text, chances are that one of the messages has the in that
position and the other message has the result of the xor. By
repeating this process many times, the cryptanalyst builds
up portions of plaintext. This method was somewhat for-
malized by Rubin in 1978 [15].

In 1996, Dawson and Nielsen [5] created a program that
uses a series of heuristic rules to automatically attempt
this style of decryption. They simplified matters by as-
suming that the plaintexts used only 27 characters of the
256-character ASCII set: the 26 English uppercase letters
and the space. Given p ⊕ q, this assumption allowed them
to unambiguously recover non-coinciding spaces in p and q,
since in ASCII, an uppercase letter xored with a space can
not be equal to any two uppercase letters xored together.
They further assumed that two characters that xored to 0
were both equal to space, the most common character. To
decode the words between the recovered spaces, they em-
ployed lists of common words of various lengths (and a few
“tricks”). They chose to test their system by running it
on subsets of the same training data from which they had
compiled their common-word lists (a preprocessed version
of the first 600,000 characters of the English Bible). They
continued adding new tricks and rules until they reached the
results shown in Figure 1. It is important to note that the
rules they added were specifically designed to get good results
on the examples they were using for testing (hence are not
guaranteed to work as well on other examples).

We were able to re-attempt Dawson and Nielsen’s experi-
ments on the King James Bible1 using the new methodology
described in this paper without any special tuning or tricks.
Dawson and Nielsen even included portions of all three test
passages they used, so our comparison is almost completely
apples-to-apples. Our results are compared with theirs in
Figure 1.

2 Our Method
Instead of layering on heuristic after heuristic to recover spe-
cific types of plaintext, we instead take a more principled
and general approach. Let x be the known xor of the two
ciphertexts. A feasible solution to the two-time pad prob-
lem is a string pair (p, q) such that p ⊕ q = x. We assume
that p and q were independently drawn from known proba-
bility distributions Pr1 and Pr2, respectively. We then seek
the most probable of the feasible solutions: the (p, q) that
maximizes Pr1(p) · Pr2(q).

To define Pr1 and Pr2 in advance, we adopt a parametric
model of distributions over plaintexts—known as a language
model—and estimate its parameters from known plaintexts
in each domain. For example, if p is known to be an English
webpage, we use a distribution Pr1 that has previously been
fit against a corpus (naturally occurring collection) of En-
glish webpages. The parametric form we adopt for Pr1 and
Pr2 is such that an exact solution to our search problem is
tractable.

This kind of approach is widely used in the speech and nat-
ural language processing community, where recovering the

1We used the Project Gutenberg edition which matches the
excerpts from [5], available at www.gutenberg.org/dirs/
etext90/kjv10.txt

most probable plaintext p given a speech signal x is actually
known as “decoding.”2 We borrow some well-known tech-
niques from that community: smoothed n-gram language
models, along with dynamic programming (the “Viterbi de-
coding” algorithm) to find the highest-probability path through
a hidden Markov model [14].

2.1 Smoothedn-gram Language Models
If the plaintext string p = (p1, p2, . . . p`) is known to have
length `, we wish Pr1 to specify a probability distribution
over strings of length `. In our experiments, we simply use
an n-gram character language model (taking n = 7), which
means defining

Pr1(p) =
Ỳ
i=1

Pr1(pi | pi
.−n+1, . . . pi−2, pi−1) (1)

where i .− n denotes max(i − n, 0). In other words, the
character pi is assumed to have been chosen at random,
where the random choice may be influenced arbitrarily by
the previous n − 1 characters (or i − 1 characters if i <
n), but is otherwise independent of previous history. This
independence assumption is equivalent to saying that the
string p is generated from an (n−1)st order Markov process.

Equation (1) is called an n-gram model because the nu-
merical factors in the product are derived, as we will see,
from statistics on substrings of length n. One obtains these
statistics from a training corpus of relevant texts. Obvi-
ously, in practice (and in our experiments) one must select
this corpus without knowing the plaintexts p and q.3 How-
ever, one may have side information about the type of plain-
text (“genre”). One can create a separate model for each
type of plaintext that one wishes to recover (e.g. English
corporate email, Russian military orders, Klingon poetry in
Microsoft Word format). For example, our HTML language
model was derived from a training corpus that we built by
searching Google on common English words and crawling
the search results.

2That problem also requires knowing the distribution Pr(x |
p), which characterizes how text strings tend to be rendered
as speech. Fortunately, in our situation, the comparable
probability Pr(x | p, q) is simply 1, since the observed x is
a deterministic function (namely xor) of p, q. Our method
could easily be generalized for imperfect (noisy) eavesdrop-
ping by modeling this probability differently.
3It would be quite possible in future work, however, to
choose or build language models based on information about
p and q that our methods themselves extract from x. A
simple approach would try several choices of (Pr1, Pr2) and
use the pair that maximizes the probability of observing x.
More sophisticated and rigorous approaches based on [1, 6]
would use the imperfect decodings of p and q to reestimate
the parameters of their respective language models, starting
with a generic language model and optionally iterating until
convergence. Informally, the insight here is that the initial
decodings of p and q, particularly in portions of high confi-
dence, carry useful information about (1) the genres of p and
q (e.g., English email), (2) the particular topics covered in p
and q (e.g., oil futures), and (3) the particular n-grams that
tend to recur in p and q specifically. For example, for (2), one
could use a search-engine query to retrieve a small corpus
of documents that appear similar to the first-pass decod-
ings of p and q, and use them to help build “story-specific”
language models Pr1 and Pr2 [10] that better predict the n-
grams of documents on these topics and hence can retrieve
more accurate versions of p and q on a second pass.

(a) Correct pair recovered Incorrect pair recovered Not decrypted
[5] This work [5] This work [5] This work

P0 ⊕ P1 62.7% 100.0% 17.8% 0% 20.5% 0%
P1 ⊕ P2 61.5% 99.99% 17.6% 0.01% 20.9% 0%
P2 ⊕ P0 62.6% 99.96% 17.9% 0.04% 19.5% 0%

(b) Correct when keystream Incorrect when keystream Not decrypted
used three times used three times

[5] This work [5] This work [5] This work

P0 75.2% 100.0% 12.3% 0% 12.5% 0%
P1 76.3% 100.0% 11.4% 0% 12.3% 0%
P2 75.4% 100.0% 11.8% 0% 12.8% 0%

Figure 1: These tables show a comparison between previous work [5] and this work. All results presented for previous

work are directly from [5]. Both systems were trained on the exact same dataset (the first 600,000 characters of the

King James Version of the Bible, specially formatted as in [5] — all punctuation other than spaces were removed

and all letters converted to upper case) and were tested on the same three plaintexts (those used in [5], which were

included in the training set). Unlike the prior work, our system was tuned automatically on the training set, and not

tuned at all for the test set. (a) The first table shows the results of recovering the plaintexts from the listed xor

combinations. The reported percentages show the recovery status for the pair of characters in each plaintext position,

without necessarily being in the correct plaintext. For example, the recovered P0 could contain parts of P0 and parts of P1.

(b) The second table shows the results when the same keystream is used to encrypt all three files, and P0 ⊕ P1 and

P1 ⊕ P2 are fed as inputs to the recovery program simultaneously. Here the percentages show whether a character was

correctly recovered in the correct file.

It is tempting to define Pr1(s | h, o, b, n, o, b) as the frac-
tion of occurrences of hobnob in the Pr1 training corpus that
were followed by s: namely c(hobnobs)/c(hobnob?), where
c(. . .) denotes count in the training corpus and ? is a wild-
card. Unfortunately, even for a large training corpus, such a
fraction is often zero (an underestimate!) or undefined. Even
positive fractions are unreliable if the denominator is small.
One should use standard “smoothing” techniques from nat-
ural language processing to obtain more robust estimates
from corpora of finite size.

Specifically, we chose parametric Witten-Bell backoff smooth-
ing, which is about the state of the art for n-gram models
[4]. This method estimates the 7-gram probability by inter-
polating between the naive count ratio above and a recur-
sively smoothed estimate of the 6-gram probability Pr1(s |
o, b, n, o, b). The latter, known as a “backed-off” estimate, is
less vulnerable to low counts because shorter contexts such
as obnob pick up more (albeit less relevant) instances. The
interpolation coefficient favors the backed-off estimate if ob-
served 7-grams of the form hobnob? have a low count on
average, indicating that the longer context hobnob is insuf-
ficiently observed.

Notice that the first factor in equation (1) is simply Pr(p1),
which considers no contextual information at all. This is ap-
propriate if p is an arbitrary packet that might come from
the middle of a message. If we know that p starts at the
beginning of a message, we prepend a special character bom
to it, so that p1 = bom. Since p2, . . . pn are all conditioned
on p1 (among other things), their choice will reflect this
beginning-of-message context. Similarly, if we know that p
ends at the end of a message, we append a special charac-
ter eom, which will help us correctly reconstruct the final
characters of an unknown plaintext p. Of course, for these
steps to be useful, the messages in the training corpus must
also contain bom and eom characters. Our experiments only
used the bom character.

2.2 Finite-State Language Models
Having estimated our probabilities, we can regard the 7-
gram language model Pr1 defined by equation (1) as a very
large edge-labeled directed graph, G1, which is illustrated
in Figure 2d, Figure 2a. Each vertex or “state” of G1 repre-
sents a context—not necessarily observed in training data—
such as the 6-gram not se.

Sampling a string of length ` from Pr1 corresponds to a
random walk on G1. When the random walk reaches some
state, such as hobnob, it next randomly follows an outgo-
ing edge; for instance, it chooses the edge labeled s with
independent probability Pr1(s | h, o, b, n, o, b). Following
this edge generates the character s and arrives at a new
6-gram context state obnobs. Note that the h has been
safely forgotten since, by assumption, the choice of the next
edge depends only on the 6 most recently generated char-
acters. Our random walk is defined to start at the empty,
0-gram context, representing ignorance; it proceeds imme-
diately through 1-gram, 2-gram, . . . contexts until it enters
the 6-gram contexts and continues to move among those.

The probability of sampling a particular string p by this
process, Pr1(p), is the probability of the (unique) path la-
beled with p. (A path’s label is defined as the concatenation
of its edges’ labels, and its probability is defined as the prod-
uct of its edges’ probabilities.)

In effect, we have defined Pr1 using a probabilistic finite-
state automaton.4 In fact, our attack would work for any
language models Pr1, Pr2 defined in this way, not just n-
gram language models. In the general finite-state case, dif-
ferent states could remember different amounts of context—
or non-local context such as a “region” in a document. For
example, n-gram probabilities might be significantly differ-

4Except that G1 does not have final states; we simply stop
after generating ` characters, where ` is given. This is re-
lated to our treatment of bom and eom.

obnobr

obnobs

obnobt

hobnob
s

t

b
b

b

(a)
r

16 17

(b,c)
(c,b)

(d,e)
(e,d)

(r,s)

(t,u)

 . . .

(s,r)

(u,t)

 . . .

nconcr

nconcs

nconct

inconc
s

t

c
c

c

(b)
r

(c)

(b,c)

(b,c)

(b,c)

obnobs
nconcr

17

nconcu
obnobt

17

obnobr
nconcs

17

inconc
hobnob

16 (s,r)

(r,s)

(t,u)

(d)

Figure 2: Fragments of the graphs built lazily by our algorithm. (a) shows G1, which defines Pr1. If we are ever

in the state hobnob (a matter that is yet to be determined), then the next character is most likely to be b, s, space,

or punctuation—as reflected in arc probabilities not shown—though it could be anything. (b) similarly shows G2.

inconc is most likely to be followed by e, i, l, o, r, or u. (c) shows X, a straight-line automaton that encodes the

observed stream x = pxorq. The figure shows the unlikely case where x = (. . . , 1, 1, 1, 1, 1, 1, 1, . . .): thus all arcs in X are

labeled with (pi, qi) such that pi ⊕ qi = xi = 1. All paths have length |x|. (d) shows Gx. This produces exactly the same

pair sequences of length |x| as X does, but the arc probabilities now reflect the product of the two language models,

requiring more and richer states. (16, hobnob, inconc) is a reachable state in our example since hobnob ⊕ inconc = 111111.

Of the 256 arcs (p17, q17) leaving this state, the only reasonably probable one is s, r, since both factors of its probability

Pr1(s | hobnob) ·Pr2(r | inconc) are reasonably large. Note, however, that our algorithm might choose a less probable arc

(from this state or from a competing state also at time 16) in order to find the globally best path of Gx that it seeks.

ent in a message header vs. the rest of the message, or an
HTML table vs. the rest of the HTML document. Beyond
remembering the previous n − 1 characters of context, a
state can remember whether the previous context includes
a <table> tag that has not yet been closed with </table>.
Useful non-local properties of the context can be manually
hard-coded into the FSA, or learned automatically from a
corpus [1].

2.3 Cross Product of Language Models
We now move closer to our goal by consructing the joint
distribution Pr(p, q). Recall our assumption that p and q are
sampled independently from the genre-specific probability
distributions Pr1 and Pr2. It follows that Pr(p, q) = Pr1(p) ·
Pr2(q). Replacing Pr1(p) by its definition (1) and Pr2(q) by
its similar definition, and rearranging the factors, it follows
that

Pr(p, q) =
Ỳ
i=1

Pr(pi, qi | pi
.−n+1, . . . pi−2, pi−1,

qi
.−n+1, . . . qi−2, qi−1) (2)

where

Pr(pi, qi | pi
.−n+1, . . . , pi−1, qi

.−n+1, . . . , qi−1)

= Pr1(pi | pi
.−n+1, . . . , pi−1)

·Pr2(qi | qi
.−n+1, . . . , qi−1) (3)

We can regard equation (2) as defining an even larger
graph, G (similar to Figure 2d), which may be constructed
as the cross product of G1 = (V1, E1) and G2 = (V2, E2).
That is, G = (V1 × V2, E), where E contains the labeled

edge (u1, u2)
(char1,char2) : prob1·prob2−−−−−−−−−−−−−−→ (v1, v2) iff E1 contains

u1
char1 : prob1−−−−−−→v1 and E2 contains u2

char2 : prob2−−−−−−→v2. The weight
prob1 · prob2 of this edge is justified by (3). Again, we never
explicitly construct this enormous graph, which has more
than 25614 edges (for our situation of n = 7 and a character
set of size 256).

This construction of G is similar to the usual construction
for intersecting finite-state automata [8], the difference being
that we obtain a (weighted) automaton over character pairs
would still apply even if, as suggested at the end of the
previous section, we used finite-state language models other
than n-gram models. It is known as the “same-length cross
product construction.”

2.4 Constructing and Searching The Space of
Feasible Solutions

Given x of length `, the feasible solutions (p, q) correspond
to the paths through G that are compatible with x. A path
e1e2 . . . e` is compatible with x if for each 1 ≤ i ≤ `, the
edge ei is labeled with some (pi, qi) such that pi ⊕ qi = xi.
As a special case, if pi and/or qi is known to be the special
character bom or eom, then pi⊕qi is unconstrained (indeed
undefined).

We now construct a new weighted graph, Gx, that rep-
resents just the feasible paths through G. All these paths
have length `, so Gx will be acyclic. We will then find the
most probable path in Gx and read off its label (p, q).

The construction is simple. Gx, shown in Figure 2d, con-
tains precisely all edges of the form

(i− 1, (pi
.−n+1 . . . , pi−1), (qi

.−n+1 . . . , qi−1))

(pi,qi) : prob−−−−−−→ (i, (pi
.−n+2 . . . , pi), (qi

.−n+2 . . . , qi)) (4)

such that pj ⊕ qj = xj for each j ∈ [i .− n + 1, i] and prob =
Pr1(pi | pi

.−n+1, . . . pi−2, pi−1)·Pr2(qi | qi
.−n+1, . . . qi−2, qi−1).

Gx may also be obtained in finite-state terms as follows.
We represent x as a graph X (Figure 2c) with vertices 0,
1, . . . `. From vertex i − 1 to vertex i, we draw 256 edges,5

labeled with the 256 (pi, qi) pairs that are compatible with
xi, namely (0, 0 ⊕ xi), . . . (255, 255 ⊕ xi). We then com-
pute Gx = (Vx, Ex) by intersecting X with the language-
pair model G as one would intersect finite-state automata.
This is like the cross-product construction of the previous
section, except that here, the edge set Ex contains (i −
1, u)

(char1,char2) : 1·prob−−−−−−−−−−−−−−→(i, v) iff the edge set of X contains

(i− 1)
(char1,char2) : 1−−−−−−→ i and E contains u

(char1,char2) : prob−−−−−−→ v.
Using dynamic programming, it is now possible in O(`)

time to obtain our decoding by finding the best length-` path
of Gx from the initial state (0,(),()). Simply run a single-
source shortest-path algorithm to find the shortest path to
any state of the form (`, . . .), taking the length of each edge
to be the negative logarithm of its probability, so that min-
imizing the sum of lengths is equivalent to maximizing the
product of probabilities.6 It is not even necessary to use the
full Dijkstra’s algorithm with a priority queue, since Gx is
acyclic. Simply iterate over the vertices of Gx in increas-
ing order of i, and compute the shortest path to each ver-
tex (i, . . .) by considering its incoming arcs from vertices
(i − 1, . . .) and the shortest paths to those vertices. This is
known as the Viterbi algorithm; it is guaranteed to find the
optimal path.

The trouble is the size of Gx. On the upside, because
xj constrains the pair (pj , qj) in equation (4), there are at
most ` ·2566 states and ` ·2567 edges in Gx (not ` ·25612 and
` · 25614). Unfortunately, this is still an astronomical num-
ber. It can be reduced somewhat if Pr1 or Pr2 places hard
restrictions on characters or character sequences in p and q,
so that some edges have probability 0 and can be omitted.
As a simple example, perhaps it is known that each (pj , qj)
must be a pair of printable (or even alphanumeric) charac-
ters for which pj ⊕ qj = xj . However, additional techniques
are usually needed.

Our principal technique at present is to prune Gx dras-
tically, sacrificing the optimality guarantee of the Viterbi
algorithm. In practice, as soon as we construct the states
(i, . . .) at time i, we determine the shortest path from the
initial state to each, just as above. But we then keep only
the 100 best of these time-i states according to this metric
(less greedy than keeping only the 1 best!), so that we need
to construct at most 100 · 256 states at time i + 1. These
are then evaluated and pruned again, and the decoding pro-

5Each edge has weight 1 for purposes of weighted intersec-
tion or weighted cross-product. This is directly related to
footnote 2.
6Using logarithms also prevents underflow.

ceeds. More sophisticated multi-pass or A* techniques are
also possible, although we have not implemented them.7

2.5 Multiple Reuse
If a keystream k is used more than twice, the method works
even better. Assume we now have three plaintexts to re-
cover, p, q, and r, and are given p⊕ q and p⊕ r (note that
q ⊕ r adds no further information). A state of G or Gx

now includes a triple of language model states, and an edge
probability is a product of 3 language model probabilities.

The Viterbi algorithm can be used as before to find the
best path through this graph given a pair of outputs (those
corresponding to p⊕ q and p⊕ r). Of course, this technique
can be extended beyond three plaintexts in a similar fashion.

3 Implementation
Our implementation of the probabilistic plaintext recovery
can be separated cleanly into two distinct phases. First,
language models are built for each of the types of plaintext
that will be recovered. This process only needs to occur once
per type of plaintext since the resulting model can be reused
whenever a new plaintext of that type needs to be recovered.
The second phase is the actual plaintext recovery.

All our model building and cracking experiments were
run on a commodity Dell server (Dual Xeon 3.0 GHz, 8GB
RAM) that cost under $2,000. The server runs a Linux ker-
nel that supports the Xeon’s 64-bit extensions to the x86
instruction set. The JVM used is BEA’s freely available
JRockit since Sun’s JVM does not currently support 64-bit
memory spaces on x86.

3.1 Building the Language Models
To build the models, we used an open source natural lan-
guage processing (NLP) package called LingPipe [4].8 Ling-
Pipe is a Java package that provides an API for many com-
mon NLP tasks such as clustering, spelling correction, and
part-of-speech tagging. We only used it to build a character
based n-gram model based on a large corpus of documents
(see section 4 for details of the corpora used in our experi-
ments). Internally, LingPipe stores the model as a trie with
greater length n-grams nearer the leaves. We had LingPipe
“compile” the model down to a simple lookup table based
representation of the trie. Each row of the table, which
corresponds to a single n-gram, takes 18 bytes except for
the rows which correspond to leaf nodes (maximal length n-
grams) which take only 10 bytes. If an n-gram is never seen
in the training data, it will not appear in the table: instead
the longest substring of the n-gram that does appear in the
table will be used. The extra 8 bytes in these nodes specifies
how to compute the probability in this “backed-off” case.
All probabilities in both LingPipe and our Viterbi implen-
tation are computed and stored in log-space to avoid issues
with integer underflow. All of the language models used in
this paper have n = 7. The language models take several

7If we used our metric to prioritize exploration of Gx instead
of pruning it, we would obtain A* algorithms (known in
the speech and language processing community as “stack
decoders”). In the same A* vein, the metric’s accuracy can
be improved by considering right context as well as left: one
can add an estimate of the shortest path from (i, . . .) through
the remaining ciphertext to the final state. Such estimates
can be batch-computed quickly by decoding x from end-to-
beginning using smaller, m-gram language models (m < n).
8Available at: http://www.alias-i.com/lingpipe

hours to build and the non-compiled trie representation can
use many gigabytes of memory for large corpora. For exam-
ple, our biggest compiled model is 872 MB and took over 8
hours to generate. It contains the results of looking at more
than 7 billion training characters from 300,000 HTML files.

Language modeling has a rich literature, and there are
many options that could be useful in particular scenarios,
especially for non-natural-language or unknown-genre plain-
texts. For example, if we had used less training data, we
would have been able to take far more context into account
without exceeding the available RAM. LingPipe can build
practical 32-gram character language models when the train-
ing data is limited to 10 million words [4]. An intermediate
strategy would be to include long contexts (e.g., 31-grams)
in the language model only when they are very frequent, oth-
erwise backing off to shorter contexts (e.g., 6-grams). There
also exist modeling techniques for considering discontiguous
or long-distance contexts; for adapting to input properties
(cf. Lempel-Ziv); and for training effectively on heteroge-
neous corpora that consist of several (labeled or unlabeled)
genres.

3.2 Recovering the Plaintext
The optimized Viterbi search represents the bulk of our im-
plementation. Ideally, we would first generate the full au-
tomaton from the LingPipe language model tables. Unfortu-
nately, this creates a state explosion since each state in one
model can be paired with every state in the other model. In-
stead, we generate states on the fly from the tables as they
are needed. This is not quite as expensive as it seems.

Because of the way that our automaton is constructed,
each state transition represents adding a single character
to each of the n-grams in the current state. The number of
single characters that can be added to an n-gram (given x) is
usually relatively small. If we assume the underlying plain-
text can be modeled using only non-binary characters, there
are only 128 possible choices. In our experiments, the actual
number of observed 1-grams when modeling HTML, e-mail,
or other plain-text protocols hovers around the number of
printable characters. This means each combination state
only has approximately 96 transitions.

Unfortunately, the number of possible states still grows
exponentially in the length of the plaintexts being recov-
ered. To deal with this, we use the “beam search” heuristic
optimization: low probability partial paths are pruned early
so as to limit the number of states that we must keep in
memory. This path pruning means that the search is no
longer guaranteed to end up with the best path (it might
have been pruned), but the technique seemed to work in
practice in our experiments. The pruning is implemented as
a binary tree of the current states sorted by the probability
of the path; the tree is pruned after each output byte is con-
sidered. Processing each byte in our implementation takes
approximately 200ms.

After the newly created tree is sorted and pruned, the sur-
viving nodes’ state numbers along with their parents’ state
numbers are written to disk. The program writes a file con-
taining this information for each byte in the input file. At
the end of the Viterbi search the program reassembles the
final Viterbi crack path by parsing these files. The result is
the pair of plaintext messages that represent the best path
through the graph.

4 Results
In this section we present the results of a variety of ex-
periments we performed using our implementation. We ex-
amined three different types of files: unstructured English
text files (emails, with headers), English text files with text-
based structure (HTML documents), and English text files
with binary structure (Microsoft Word documents). We ex-
amine the effect of such factors as the amount of training
data available, the number of times that a keystream was
reused, and whether having the plaintexts be of different
types affects the reconstruction. We always assumed that
both plaintexts started with bom, and we took ` to be the
length of the xor stream, determined by the shorter of the
plaintexts. We did not use eom.

4.1 Data Collection and Testing Methodology
All of the data that we used in our experiments is publicly
available. Our HTML dataset was the easiest to gather. We
searched Google for common English words and used wget
to crawl the results. Our largest HTML training corpus
consists of 300,000 different files (over 7 billion characters).

Emails were slightly harder to come by — we didn’t find
anyone willing to allow us to experiment on their inboxes.
Fortunately, the Federal Energy Regulatory Commission (FERC)
has made available the emails sent by the senior managers
of Enron. These emails were collected during FERC’s in-
vestigation into Enron’s business practices.9 The emails do
not include attachments and some of the emails have been
redacted or removed due to requests from the employees in-
volved. However, it is, to our knowledge, the best email
corpus publicly available. Our largest email training corpus
consists of 500,000 emails (more than 4 billion characters).

To collect Microsoft Word documents we again turned to
Google, this time filtering so that only .doc files would be
returned. The largest Word training corpus we use is 90,000
files (more than 450 million characters). We only train on
the first 5,000 bytes of each file as Word files are typically
larger than HTML documents or email messages; this is,
however, more than sufficient to get past the Word header
information.

In all cases we randomly reserved some of the files we col-
lected for experimentation or evaluation. All of the results
in this section are reported on documents that were not used
in the training of the model or design of the method.

4.2 Basic Results
We begin by examining how our reconstruction works on
each type of plaintext we consider (i.e. HTML, email, Word).
We randomly selected 100 files of each type and xored
pairs of the same type together to create 50 different xored
streams for each type. This corresponds to a likely real-
world case: when a system or protocol that exhibits keystream
reuse is generally used with a single type of file. We tried to
recover the plaintexts from each of these streams under mod-
els built using training corpuses of varying size. The results
are shown in Figure 3. It is first worth noting that increas-
ing the training corpus size has a relatively small effect on
the results. It turns out that at the corpus sizes we consider,
the most important factor is the “variety” of documents in
the corpus. When we were initially experimenting, we failed
to randomize our choices of which documents from our full
corpus would be included in each training set. This led the

9The 400MB zip file is available from http://www.cs.cmu.
edu/~enron/.

excellent results on test files that happened to be related to
those that were trained on and terrible results on all other
files. Randomizing the selection of the training set fixed this
problem in the HTML and Word training sets. The email
corpus consists of messages from only around 150 users. This
provides a low degree of diversity and so the email models
seem to more easily become “unbalanced.” The 200K email
corpus appears to do much better than the other email cor-
puses on many tests (leading to its high median recovery
percentage); however, unlike the other email models it can
recover only 50% of characters in some files.

The HTML results are by far the best, with more than
99% of characters correctly being decoded. The Word re-
sults are the worst at 44%, likely due to Word files having
less predictable structure and more possible byte values than
the other two data sets. The email results fall in the middle,
with 82% of the characters correctly recovered on average.
We examine why the email reconstruction is worse than the
HTML reconstruction in the following sections and show
some techniques that can be used to improve it.

4.3 The Switching Streams
The email results seem to be far worse than those for HTML.
This is only true because of the particular way we decided
to measure success. If we instead said that a reconstruction
succeeded on a particular byte when the two bytes that are
returned are correct, regardless of whether they are in the
correct file, the results would change dramatically as shown
in Figure 4. This disparity is due to an artifact of the way we
recover the plaintexts. Our n-gram models only look at the
last few characters that are recovered. Usually this allows
for the streams to be reconstructed sequentially — the next
character recovered in each plaintext is likely to complete
a word already begun in that plaintext. However, assume
that the reconstruction fails to recover correct bytes for a
short stretch. When it gets back on track, it has no idea to
which stream the following correct bytes belong. Therefore,
it will sometimes choose incorrectly and correct bytes will be
added to the incorrect file until another such switch occurs.
We now consider two methods by which this problem can
be ameliorated.

4.4 Improving the Results
Our first attempt at improving the results simply assumes
that the keystream was reused more than once. Here the
model should prevent switching as each plaintext is now
matched with two other plaintexts, i.e. two of the plaintexts
can no longer switched because their xor differences with
the third will no longer be valid. This technique is quite
effective as shown in Figure 5.

There are times when an attacker may be unwilling to
wait for multiple keystream reuses; perhaps they are very
rare events. However, if the two plaintexts are of two differ-
ent types, as could be the case in encrypted protocols that
transport multiple types of documents (e.g. WEP), a sim-
ilar effect occurs. After a period of errors, the model can
recover correctly since the distributions of the two plain-
texts are different and thus the probabilities of the switched
stream paths will be lower than the probabilities of the true
path. The results of recovering HTML documents xored
with email messages is shown in Figure 6.

10K, file 10K, pair 500K, file 500K, pair

0
20

40
60

80
10

0

Training corpus size, type of correctness

P
er

ce
nt

 c
or

re
ct

Figure 4: This graph illustrates the major problem that

is encountered during the reconstruction. After a short

string of errors occurs and the reconstruction recovers,

it’s no longer clear to which recovered plaintext the cor-

rect characters should be added. This creates recon-

structions where parts of each original plaintext occur

between short errors. Here we show the difference be-

tween computing correctness based on whether a charac-

ter was assigned the correct file vs. simply whether each

pair of recovered characters was correct. All plots are of

100 randomly chosen email messages xored in pairs.

10K 100K 200K 300K 400K 500K

0
20

40
60

80
10

0

E−mails

Training corpus size in files

P
er

ce
nt

 c
or

re
ct

Figure 5: This graph shows the difference between hav-

ing a keystream reused once, yielding p ⊕ q, and having

it reused twice, giving p ⊕ q and p ⊕ r. Each scenario was

evaluated using 50 randomly chosen instances from the

email corpus.

10K 100K 200K 300K

0
20

40
60

80
10

0

HTML

Training corpus size in files

P
er

ce
nt

 c
or

re
ct

10K 100K 200K 300K 400K 500K
0

20
40

60
80

10
0

E−mail

Training corpus size in files

P
er

ce
nt

 c
or

re
ct

30K 40K 50K 60K 70K 80K 90K

0
20

40
60

80
10

0

Word Documents

Training corpus size in files

P
er

ce
nt

 c
or

re
ct

Figure 3: These graphs show the basic results when cracking two files of the same type xored together at different

training corpus sizes. Fifty pairs of files were cracked at each training corpus size. The models should not be directly

compared to one another: different types of files have different lengths and so influence the model differently. Plotting

based on the number of characters read for each model would also be deceptive as it would not indicate the differing

number of start bytes following bom (which we find to be important given our heavy pruning). See section 4.1 for

information on the number of bytes in the models.

HTML/HTML HTML/E−mail E−mail/E−mail

0
20

40
60

80
10

0

Types of files

P
er

ce
nt

 c
or

re
ct

Figure 6: Here the results show the effect of using

reusing a keystream on two different types of document.

Fifty streams were recovered first for two xored HTML

files, then for an HTML file xored with an email message,

and finally with two email messages xored together.

5 Attacking Word 2002
This section shows how our technique can be used to at-
tack a real system: Microsoft Word 2002 RC4 encryption as
shown vulnerable in [22]. Microsoft Word 2002 allows users
to encrypt their documents with a password. The user can
select from one of many cipher suites and simply enter his
password, encrypting the document using the chosen cipher.
Among the choices for cipher suite is a popular stream ci-
pher, RC4. RC4 [16] takes a key, k, and uses it to generate
a keystream,RC4(k), that is then xored with the plaintext.

When Microsoft Word encrypts a document with RC4,
the document is assigned a randomly generated initialization
vector, IV . The initialization vector is then concatenated
with the user’s encryption password and cryptographically
hashed forming the key array for RC4:

k = H(IV ||password)

The problem arises when the document is edited and saved.
The initialization vector is not regenerated after editing.
This means the original document and the edited document
both use the same keying material. Depending which edit-
ing changes are made, an attacker possessing both the origi-
nal encrypted document, p⊕RC4(k) and its edited version,
p′ ⊕ RC4(k) , can use our method to gain portions of the
original plaintexts.

Not all changes to the document allow recovery, however.
For example, if only a single character is changed in p, p⊕p′

will be almost completely zeros. While this is interesting and
useful information to an attacker, it is not a full recovery.
Fortunately, most edits do not affect only a few bytes of the
file: inserting a single character near the beginning of the
document is sufficient as all of the other characters will be
offset.

Aside from adding characters, there are several features
that a user can change that may or may not yield portions

November 13, 2002#ATA/ATAPI Host Adapters Standard
(ATF;#h Pa

::
cke

:
t)#This is no internal working document of

T13, a Technical Committee of Accredited Standards Com-
mittee INCITS. The T13 Technical Committee may modify the
contents. This document is made available

:::
and

:::
has

:::
not

::::
been

:::::::
approved.

::::
The

:::::::
contents

::::
may

::
be

::::
mod

:::
ified

::
by

:::
the

::::
T13

:::::::
Technical

technical committees, and their associated task groups to re-
produce this document for the purposes of

November 13, 2002#ATA/ATAPI Host Adapters Standard
(ATA # Adapter)#This is an internal working document of
T13, a Technical Committee of Accredited Standards Com-
mittee INCITS. The T13 Technical Committee may modify
the contents. This document is made available for review and
comment only.#Permission is granted to members of INCITS,
its technical committees, and their associated task groups to
reproduce this document for the purposes of

Figure 7: At top, the cracked file resulting from adding

a character to an encrypted Word document. Charac-

ters that are underlined were recovered incorrectly while

characters that are
:::::
wavy

:::::::::::
underlined were recovered into

the wrong file (see section 4.3). Hash characters (#) rep-

resent unprintable ASCII values (i.e. formatting). Un-

derneath, the original corresponding plaintext is shown.

of the plaintext. For instance, making a character at the
top of a Word document bold yields no results. Adding
a footnote, though, follows a similar pattern as adding a
character. If a footnote is added at the top of a document,
a large portion of the original document can be obtained.
However, a footnote at the end of a document is the same as
appending a character to the end of a document. The track
changes feature follows the same pattern, but yields slightly
more information should the editor append a character to
the end of a document. Deleting and re-adding a paragraph
with the exact same formatting as well as double spacing an
entire document yields no useful results.

In order to test our method we used Google to search for
a Word document with two available revisions. This models
a real set of changes that could occur between two saved
versions of a document. We were not able to find such
a pair that was encrypted, so we used Word 2002 to en-
crypt the pair ourselves so that the IV was reused. We then
applied our tool using the Word corpus build from 90,000
other Word documents. The recovery was 54% accurate
(84% pairwise accurace), which agreed with the experiments
from section 4.2. A portion of the recovered text is shown
in figure 7.

6 Related Work
Markov models (hidden or otherwise) have been previously
used for several purposes in security and cryptography such
as improving dictionary attacks [13], mounting side chan-
nel attacks on protocols [19], recoving keystrokes based on
the way they sound [23] and solving simple substitution ci-
phers [12], among others.

7 Conclusions
We have shown that keystream reuse is a real problem—
allows a practical attack—when the data being encrypted
comes from a known, non-uniform distribution. Our attack
is general and can be easily applied to new types of files as
the need arises. We have achieved over 99% accurate re-
covery in some instances, and shown how to improve our
results for other types of files under specific conditions such

as a keystream being reused multiple times. Finally, foot-
notes 3 and 7 outlined opportunities for future improvements
in accuracy and speed.

The technique does not directly apply for plaintexts that
have a near uniform distribution, such as files that have been
compressed. In theory, a language modeling attack could
still be used in this cases—one simply searches for p, q, such
that p⊕q = x and Pr1(decompress(p))·Pr2(decompress(q))
is maximized. However, dynamic programming can no longer
be used to render this brute-force attack tractable.

Acknowledgments
This material is based in part upon work supported by the
National Science Foundation under Grant No. 0347822 to
the third author. We thank Yoshi Kohno, David Molnar,
Kevin Fu, Fabian Monrose, and Charles Wright for their
helpful comments on this work.

7.1 References
[1] L. E. Baum. An inequality and associated

maximization technique in statistical estimation of
probabilistic functions of a Markov process.
Inequalities, 3, 1972.

[2] R. L. Benson and M. Warner. Venona: Soviet
Espionage and the American Response 1939-1957.
Central Intelligence Agency, Washington, D.C., 1996.

[3] N. Borisov, I. Goldberg, and D. Wagner. Intercepting
mobile communications: The insecurity of 802.11. In
MOBICOM 2001, 2001.

[4] B. Carpenter. Scaling high-order character language
models to gigabytes. In Association for Computational
Linguistics Workshop on Software, Ann Arbor, MI,
2005.

[5] E. Dawson and L. Nielsen. Automated cryptanalysis
of xor plaintext strings. Cryptologia, 20(2):165–181,
April 1996.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. J. Royal Statist. Soc. Ser. B, 39(1):1–38,
1977. With discussion.

[7] M. Dworkin. Recommendation for block cipher modes
of operation. NIST Special Publication 800-38A, 2001.

[8] J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Languages and Computation.
Addison-Wesley, Reading, MA, 1979.

[9] D. Kahn. The Codebreakers. Scribner, New York, NY,
1996.

[10] S. Khudanpur and W. Kim. Contemporaneous text as
side information in statistical language modeling.
Computer Speech and Language, 18(2):143–162, 2004.

[11] T. Kohno. Attacking and repairing the winzip
encryption scheme. In 11th ACM Conference on
Computer and Communications Security, pages 72–81,
Oct 2004.

[12] D. Lee. Substitution deciphering based on hmms with
applications to compressed document processing.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(12):1661–1666, Dec 2002.

[13] A. Narayanan and V. Shmatikov. Fast dictionary
attacks on human-memorable passwords using
time-space tradeoff. In 12th ACM Conference on
Computer and Communications Security, pages
364–372, Washington, D.C., Nov 2005.

[14] L. R. Rabiner. A tutorial on Hidden Markov Models
and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, Feb 1989.

[15] F. Rubin. Computer methods for decrypting random
stream ciphers. Cryptologia, 2(3):215–231, July 1978.

[16] B. Schneier. Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley &
Sons, Inc., New York, NY, USA, 1993.

[17] B. Schneier, Mudge, and D. Wagner. Cryptanalysis of
microsoft’s pptp authentication extensions
(ms-chapv2). In CQRE ’99, 1999.

[18] C. E. Shannon. A mathematical theory of
communication. Bell System Technical Journal,
27:379—423, July 1948.

[19] D. X. Song, D. Wagner, and X. Tian. Timing analysis
of keystrokes and timing attacks on ssh. In 10th
USENIX Security Symposium, Aug 2001.

[20] G. Vernam. Secret signaling system. U.S. Patent
1310719, July 1919.

[21] P. Wright. Spy Catcher. Viking, New York, NY, 1987.
[22] H. Wu. The misuse of rc4 in microsoft word and excel.

Cryptology ePrint Archive, Report 2005/007, 2005.
http://eprint.iacr.org/.

[23] L. Zhuang, F. Zhou, and J. D. Tygar. Keyboard
acoustic emanations revisited. In 12th ACM
Conference on Computer and Communications
Security, pages 373–382, Washington, D.C., Nov 2005.

