Novel Inference, Training and Decoding Methods over Translation Forests

Zhifei Li

Center for Language and Speech Processing
Computer Science Department
Johns Hopkins University

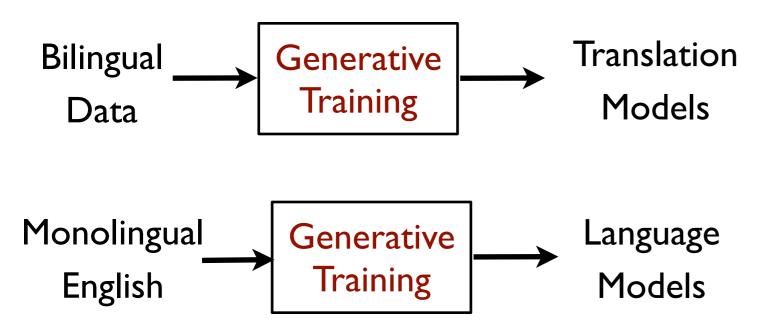
Advisor: Sanjeev Khudanpur

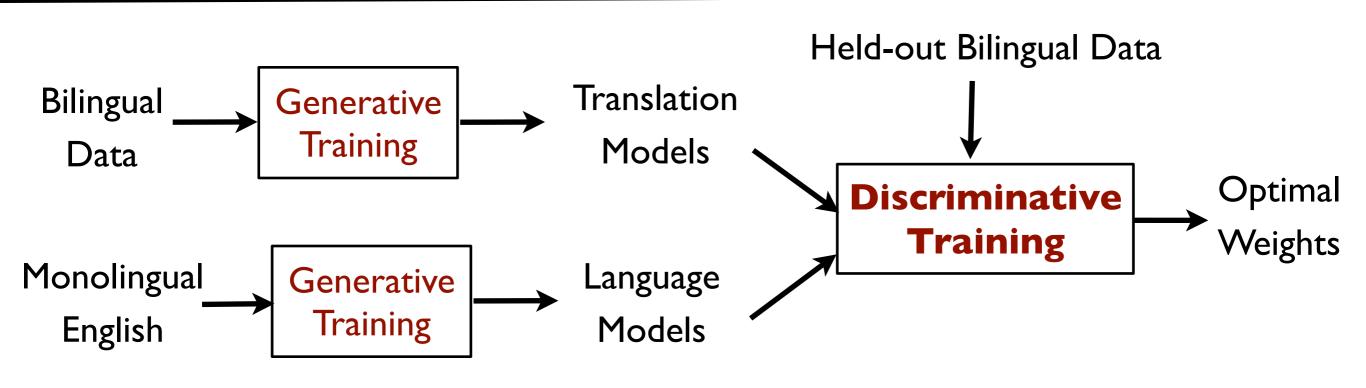
Co-advisor: Jason Eisner

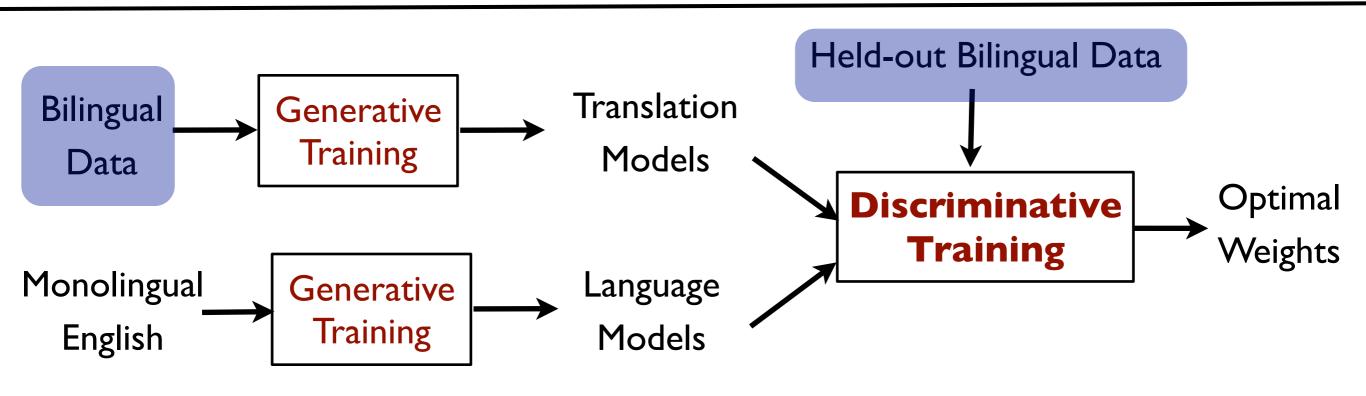
Bilingual

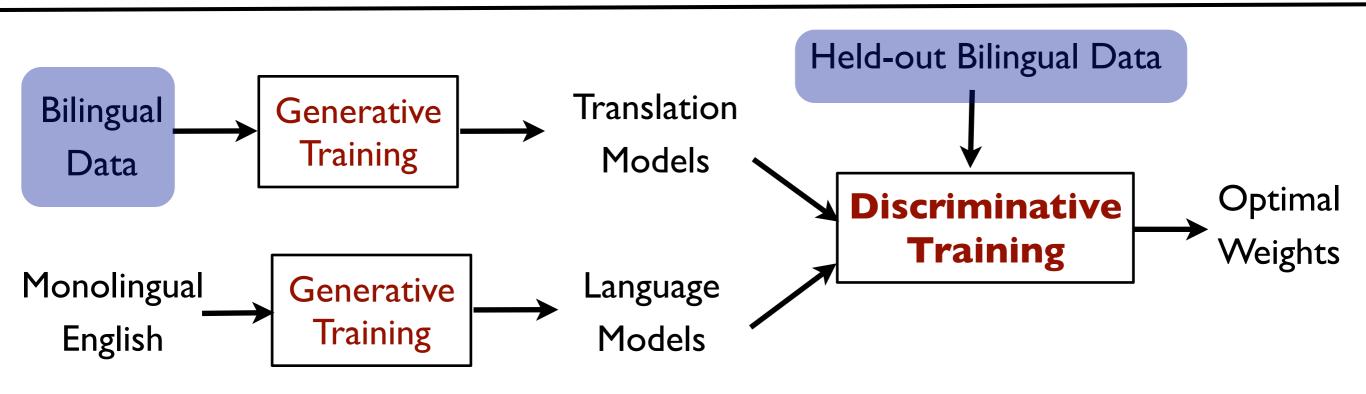
Data

Monolingual English

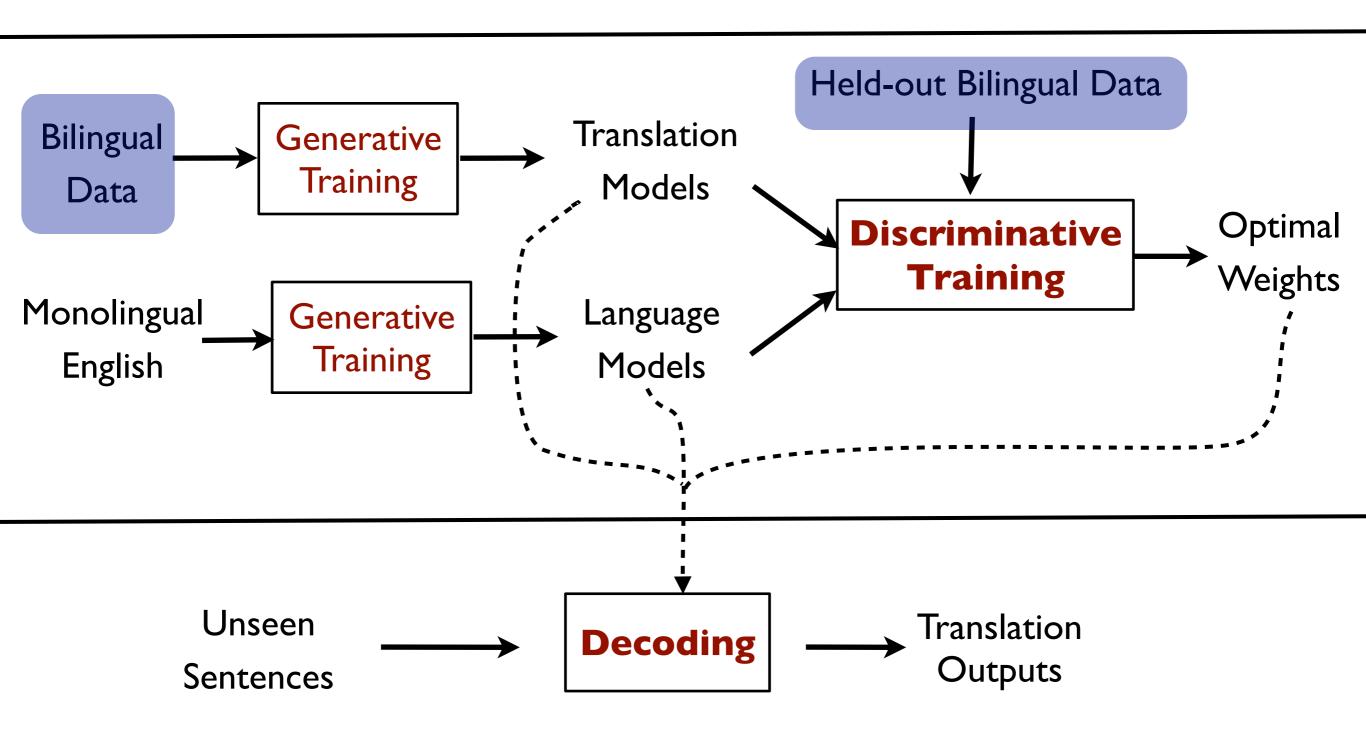








Unseen Sentences



垫子 上 的 猫 dianzi shang de mao

垫子 上 的 猫 dianzi shang de mao

a cat on the mat


```
垫子 上 的猫
dianzi shang de mao
a cat on the mat
```

 $X \, o \, \langle \, \operatorname{dianzi \, shang \, , \, the \, \, mat} \,
angle$


```
垫子 上 的 猫 dianzi shang de mao
```

a cat on the mat

$$X \to \langle \text{ dianzi shang, the mat} \rangle$$
 $X \to \langle \text{ mao, a cat} \rangle$


```
垫子 上 的 猫
dianzi shang de
on the mat
```

$$X \to \langle \text{ dianzi shang, the mat} \rangle$$
 $X \to \langle \text{ mao, a cat} \rangle$


```
垫子 上 的 猫 X_0 on the mat
```

$$X \to \langle \text{ dianzi shang, the mat} \rangle$$
 $X \to \langle \text{ mao, a cat} \rangle$


```
垫子 上 的 猫 X_0 on the mat
```

```
X 	o \langle dianzi shang , the mat \rangle X 	o \langle mao , a cat \rangle X 	o \langle dianzi shang de X_0 , X_0 on the mat \rangle
```



```
垫子 上 的 猫 X_0 de mao a cat on X_0
```

```
X 	o \langle dianzi shang , the mat \rangle X 	o \langle mao , a cat \rangle X 	o \langle dianzi shang de X_0 , X_0 on the mat \rangle
```



```
垫子 上 的 猫 X_0 de mao a cat on X_0
```

```
X \to \langle dianzi shang, the mat \rangle X \to \langle mao, a cat \rangle X \to \langle dianzi shang de X_0, X_0 on the mat \rangle X \to \langle X_0 de mao, a cat on X_0
```



```
垫子 上 的 猫 X_0 de X_1 on X_0
```

```
X \to \langle dianzi shang, the mat \rangle X \to \langle mao, a cat \rangle X \to \langle dianzi shang de X_0, X_0 on the mat \rangle X \to \langle X_0 de mao, a cat on X_0
```



```
垫子 上 的 猫 X_0 de X_1 on X_0
```

```
X 	o \langle dianzi shang, the mat \rangle X 	o \langle mao, a cat \rangle X 	o \langle dianzi shang de X_0, X_0 on the mat \rangle X 	o \langle X_0 de mao, a cat on X_0 \rangle X 	o \langle X_0 de X_1, X_1 on X_0 \rangle
```


垫子 上 的 狗

垫子 上 的 狗 dianzi shang de gou


```
X \rightarrow \langle \text{ dianzi shang , the mat } \rangle
X \rightarrow \langle \text{ gou , the dog } \rangle
X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle
S \rightarrow \langle X_0, X_0 \rangle
```



```
X \rightarrow \langle \text{ dianzi shang }, \text{ the mat } \rangle
X \rightarrow \langle \text{ gou }, \text{ the dog} \rangle
X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle
S \rightarrow \langle X_0, X_0 \rangle
```



```
X \rightarrow \langle \text{ dianzi shang }, \text{ the mat } \rangle
X \rightarrow \langle \text{ gou }, \text{ the dog } \rangle
X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle
X \rightarrow \langle X_0, X_0 \rangle
```


垫子 上 的 狗 dianzi shang de gou the dog on the mat

```
X \rightarrow \langle \text{ dianzi shang }, \text{ the mat } \rangle
X \rightarrow \langle \text{ gou }, \text{ the dog } \rangle
X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle
X \rightarrow \langle X_0, X_0 \rangle
```

dianzi shang de gou

垫子 上 的 狗 dianzi shang de gou the dog on the mat

```
X \rightarrow \langle \text{ dianzi shang }, \text{ the mat } \rangle
X \rightarrow \langle \text{ gou }, \text{ the dog } \rangle
X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle
S \rightarrow \langle X_0, X_0 \rangle
```

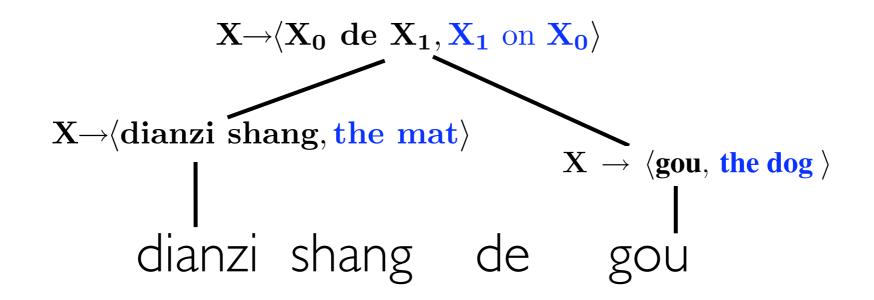
X→⟨dianzi shang, the mat⟩
dianzi shang de gou

垫子 上 的 狗 dianzi shang de gou the dog on the mat

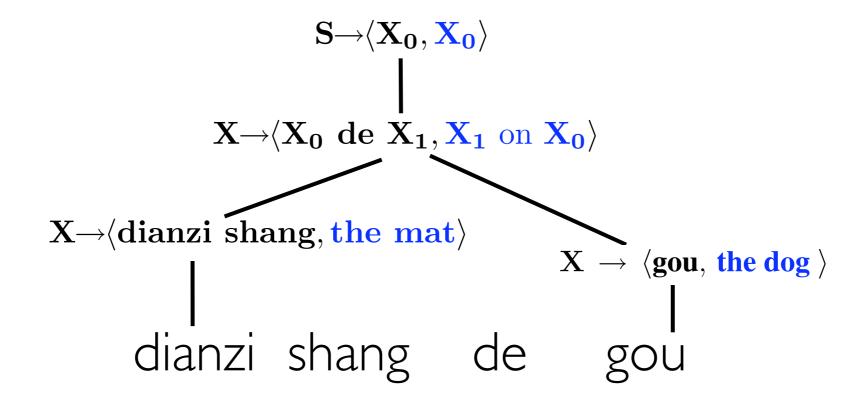
```
X \rightarrow \langle \text{ dianzi shang }, \text{ the mat } \rangle
X \rightarrow \langle \text{ gou }, \text{ the dog } \rangle
X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle
X \rightarrow \langle X_0, X_0 \rangle
```



```
X \rightarrow \langle \text{ dianzi shang , the mat } \rangle
X \rightarrow \langle \text{ gou , the dog } \rangle
X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle
X \rightarrow \langle X_0, X_0 \rangle
```



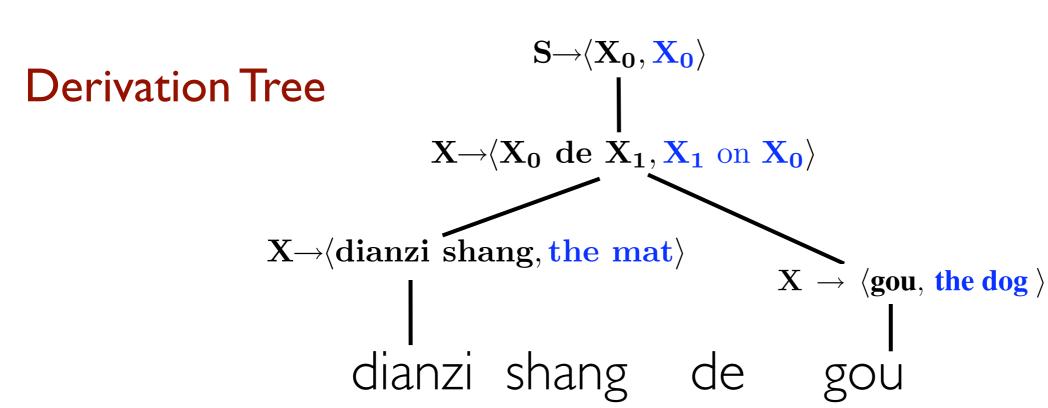

```
X \rightarrow \langle \text{ dianzi shang }, \text{ the mat } \rangle
X \rightarrow \langle \text{ gou }, \text{ the dog} \rangle
X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle
X \rightarrow \langle X_0, X_0 \rangle
```



Decoding a Test Sentence

垫子 上 的 狗 dianzi shang de gou the dog on the mat

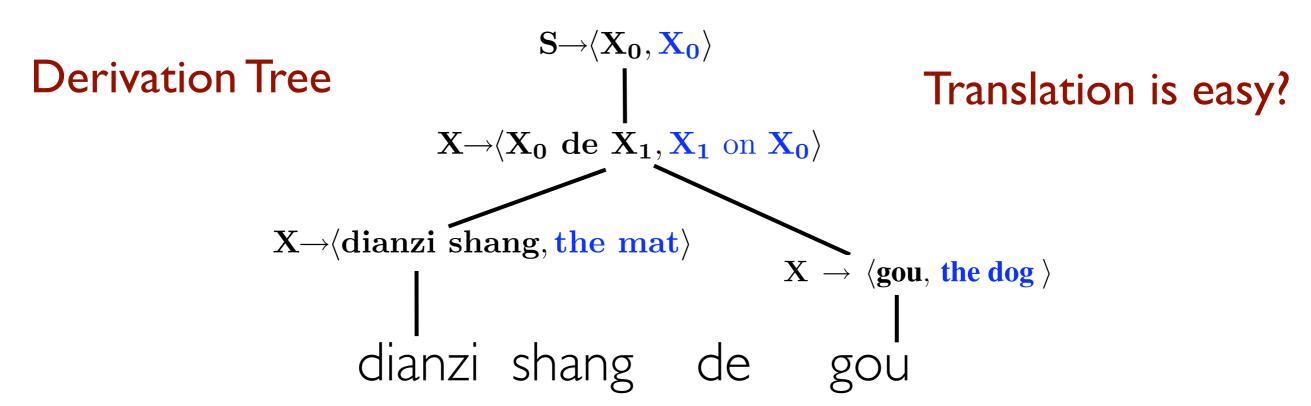
```
X \rightarrow \langle \text{ dianzi shang }, \text{ the mat } \rangle
X \rightarrow \langle \text{ gou }, \text{ the dog } \rangle
X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle
X \rightarrow \langle X_0, X_0 \rangle
```



Decoding a Test Sentence

垫子 上 的 狗 dianzi shang de gou the dog on the mat

```
X \rightarrow \langle \text{ dianzi shang }, \text{ the mat } \rangle
X \rightarrow \langle \text{ gou }, \text{ the dog } \rangle
X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle
X \rightarrow \langle X_0, X_0 \rangle
```



垫子 上 的 猫 dianzi shang de mao

a cat on the mat

垫子 上 的 猫 dianzi shang de mao

a cat on the mat

 $X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle$

垫子 上 的 猫 dianzi shang de mao

a cat on the mat

 $X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle$

zhongguo de shoudu capital of China

垫子 上 的 猫 dianzi shang de mao

a cat on the mat

 $X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle$

zhongguo de shoudu capital of China

垫子 上 的 猫 dianzi shang de mao

a cat on the mat

 $X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle$

 $X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ of } X_0 \rangle$


```
垫子 上 的 猫 dianzi shang de mao
```

a cat on the mat

$$X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle$$

zhongguo de shoudu capital of China

$$X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ of } X_0 \rangle$$

wo de mao my cat

垫子 上 的 猫 dianzi shang de mao

a cat on the mat

 $X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle$

zhongguo de shoudu

capital of China

 $X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ of } X_0 \rangle$

wo de mao

my cat

 $X \rightarrow \langle X_0 \text{ de } X_1, X_0 X_1 \rangle$

垫子 上 的 猫 dianzi shang de mao

a cat on the mat

$$X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle$$

zhongguo de shoudu

capital of China

$$X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ of } X_0 \rangle$$

wo de mao

my cat

$$X \rightarrow \langle X_0 \text{ de } X_1, X_0 X_1 \rangle$$

zhifei de mao

zhifei 's cat

垫子 上 的 猫 dianzi shang de mao

a cat on the mat

$$X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle$$

zhongguo de shoudu capital of China

 $X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ of } X_0 \rangle$

wo de mao

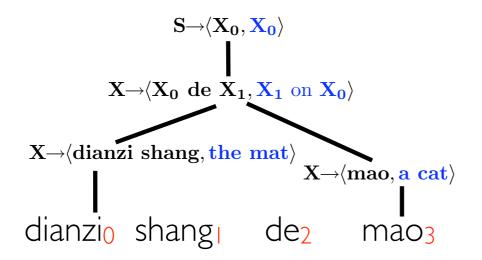
my cat

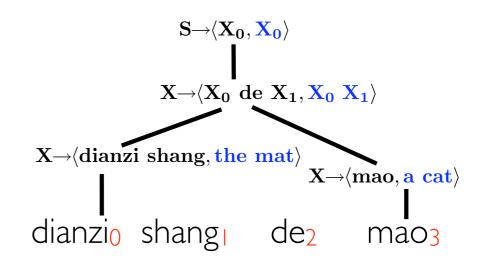
 $X \rightarrow \langle X_0 \text{ de } X_1, \frac{X_0}{X_1} \rangle$

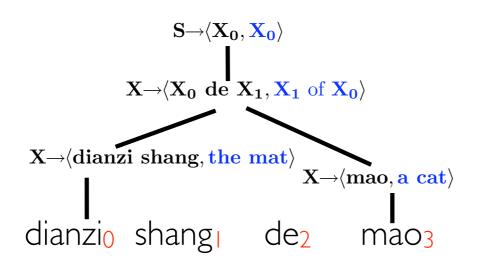
zhifei de mao zhifei 's cat

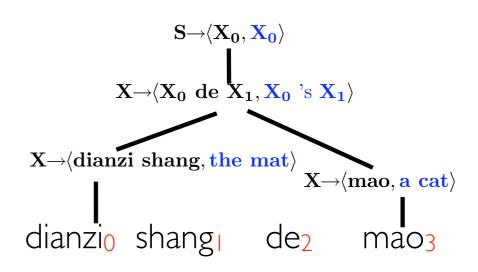
 $X \rightarrow \langle X_0 \text{ de } X_1, X_0 \text{ 's } X_1 \rangle$

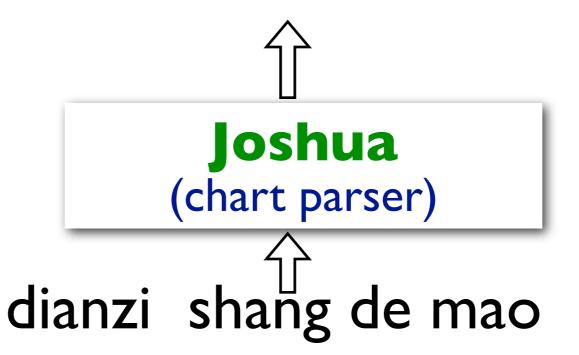
dianzi shang de mao

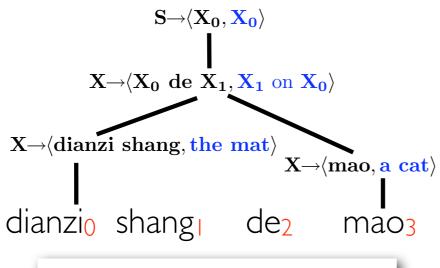




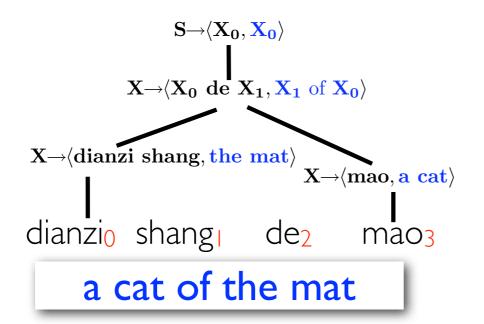


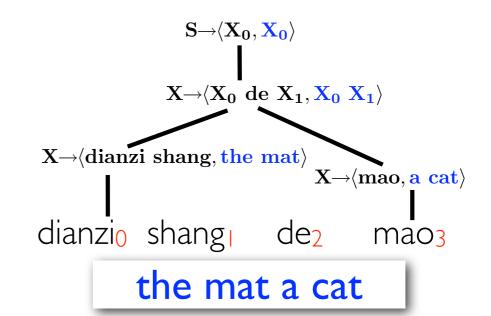


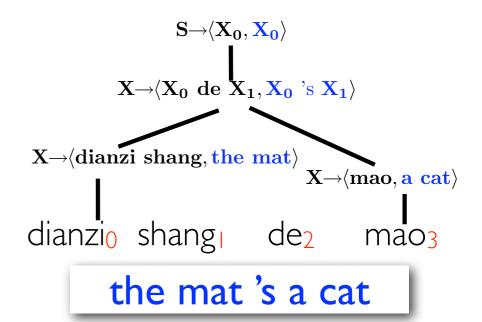




a cat on the mat

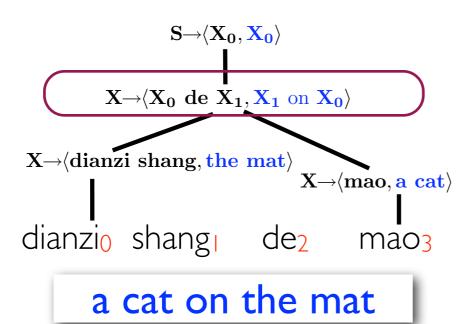


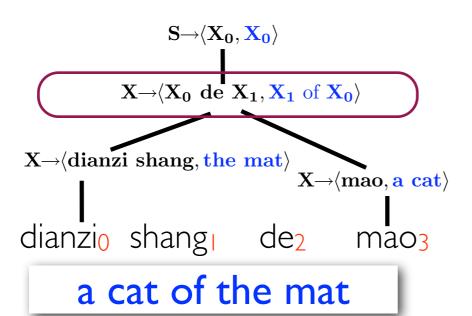


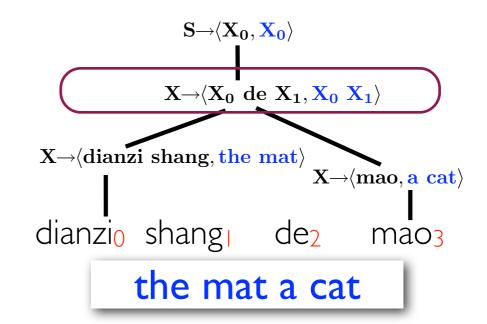


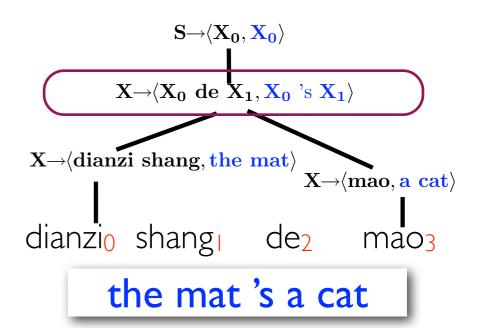
Joshua (chart parser)

dianzi shang de mao





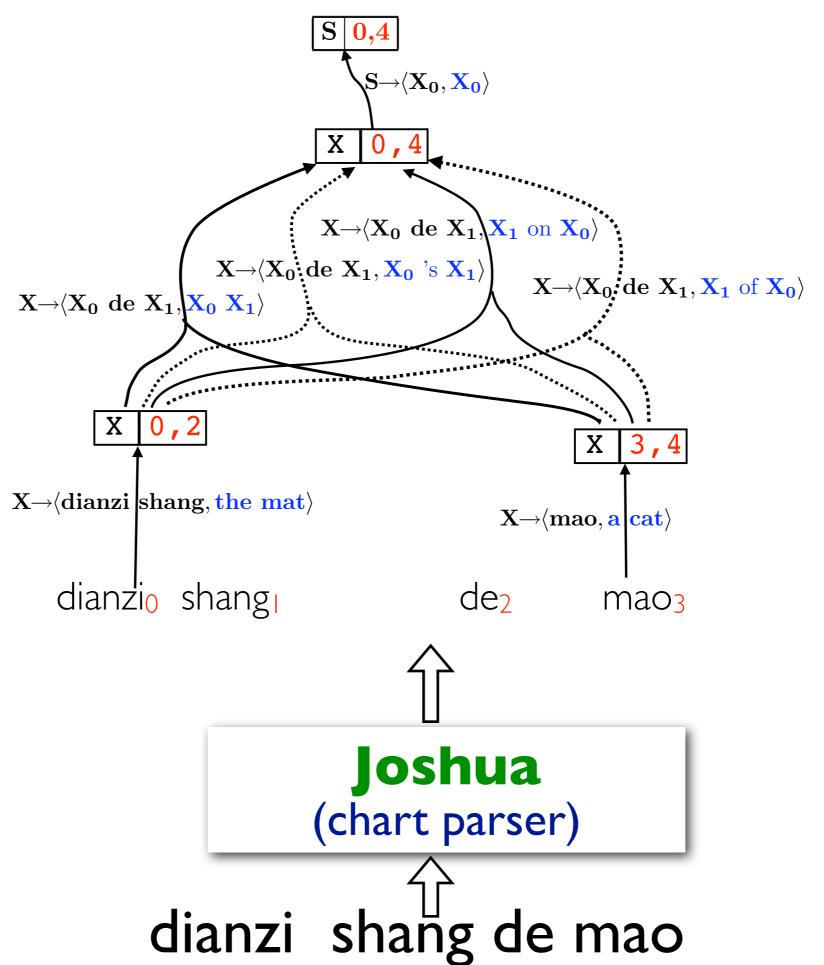


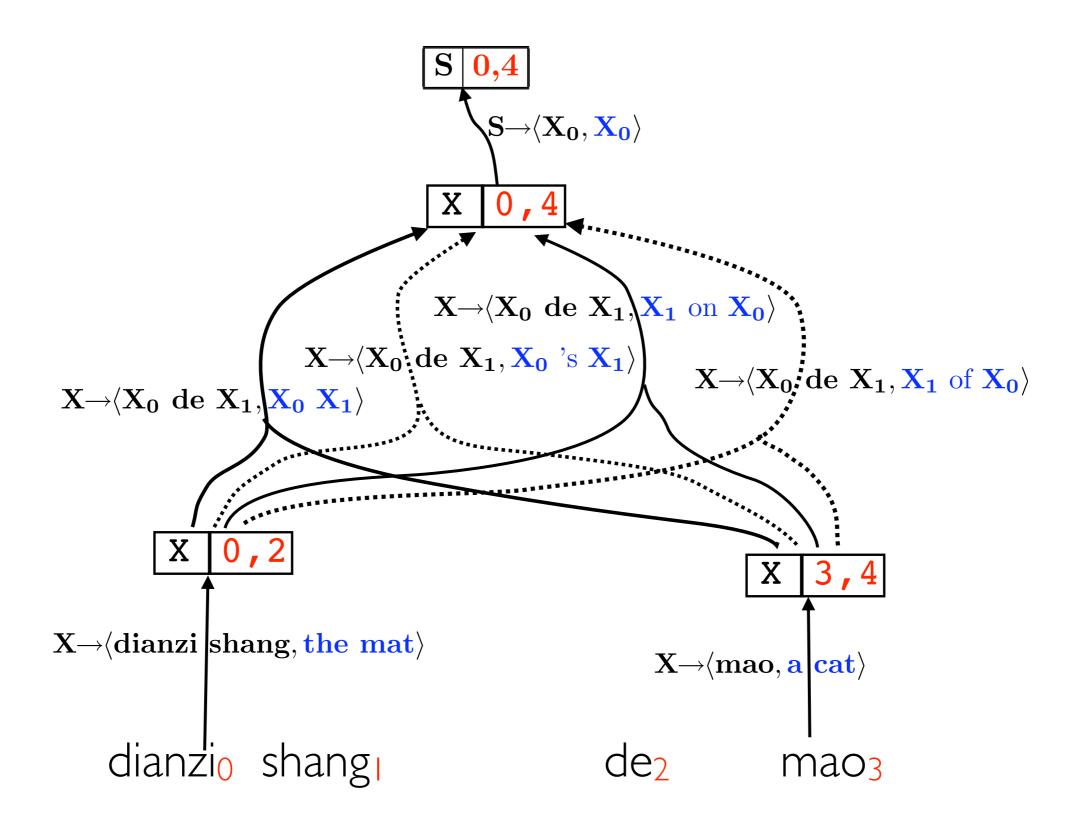


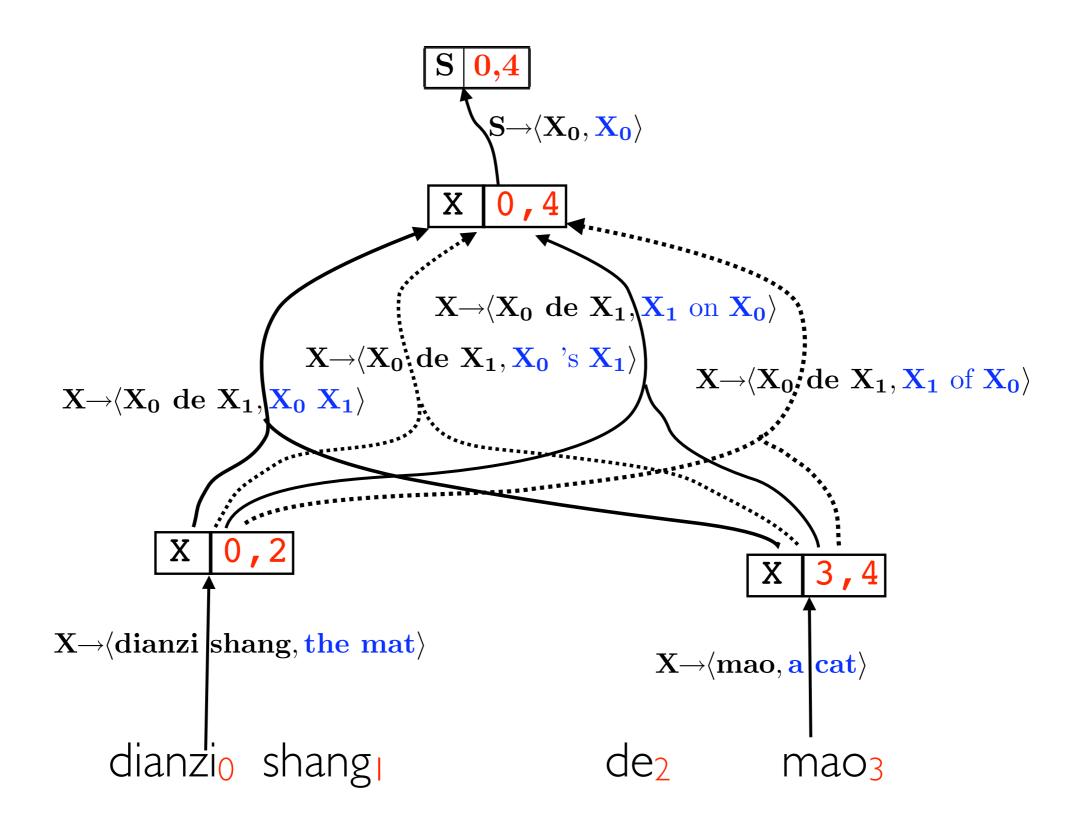
Joshua (chart parser)

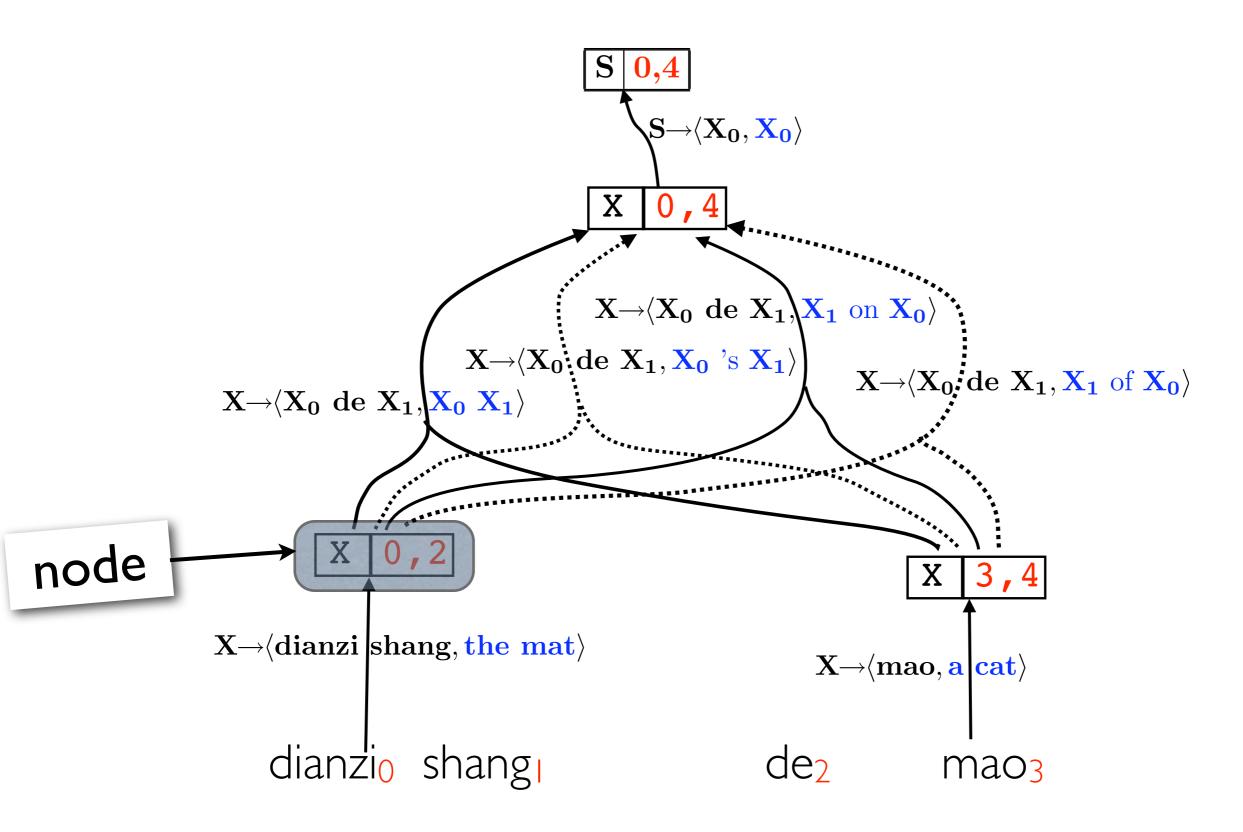
dianzi shang de mao

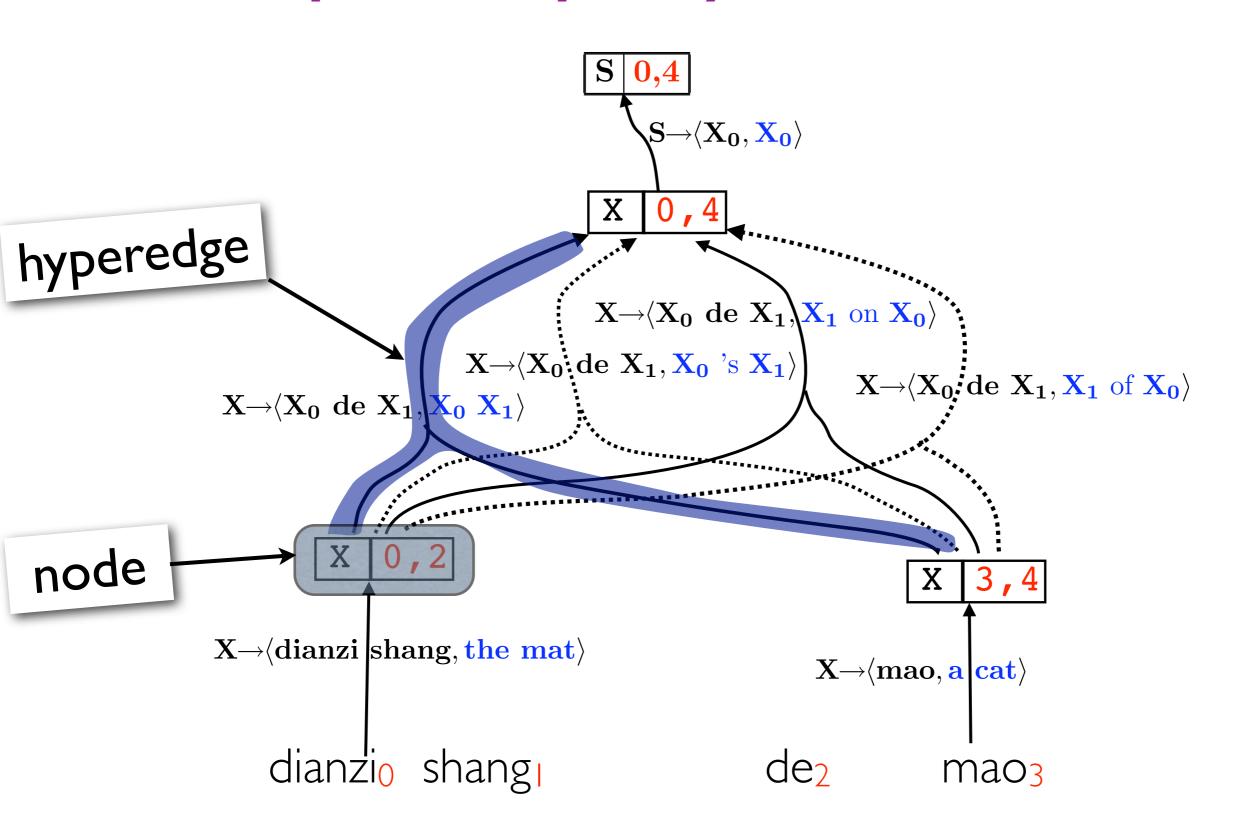
hypergraph

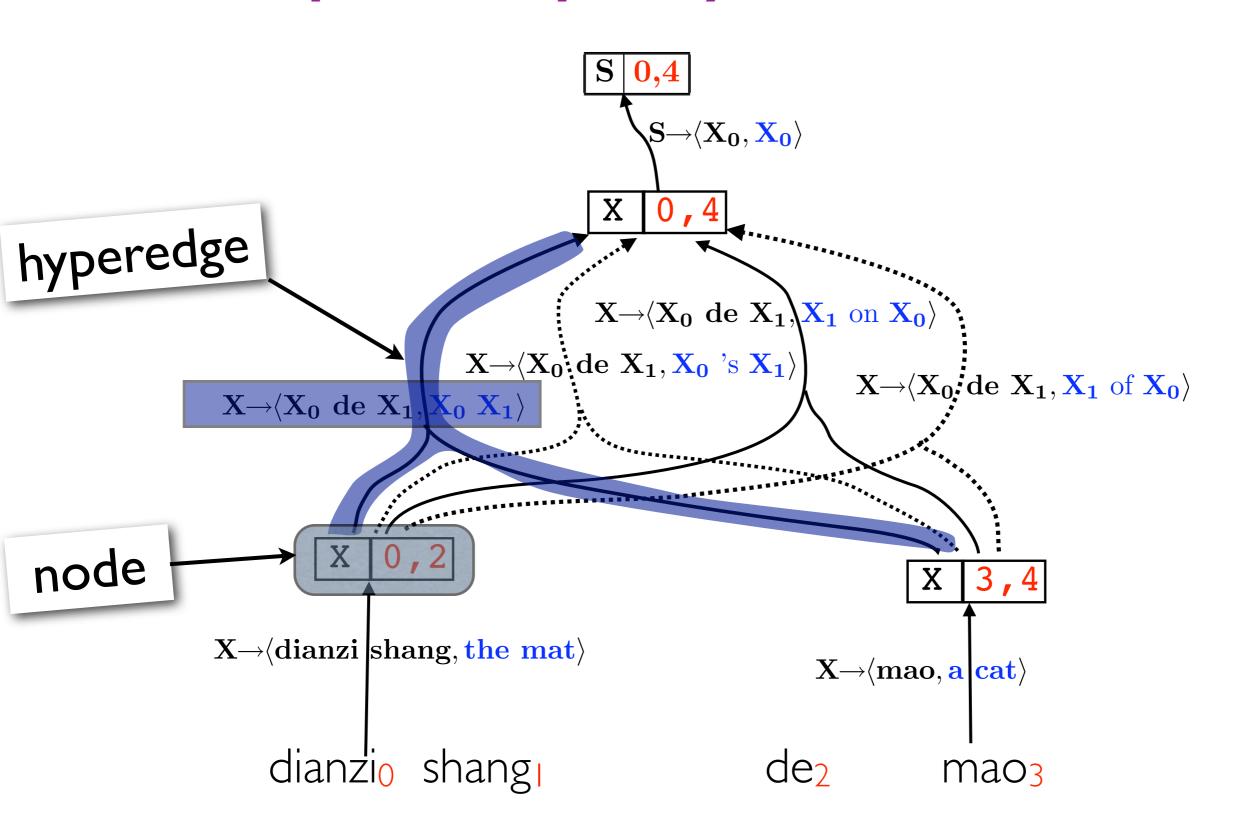


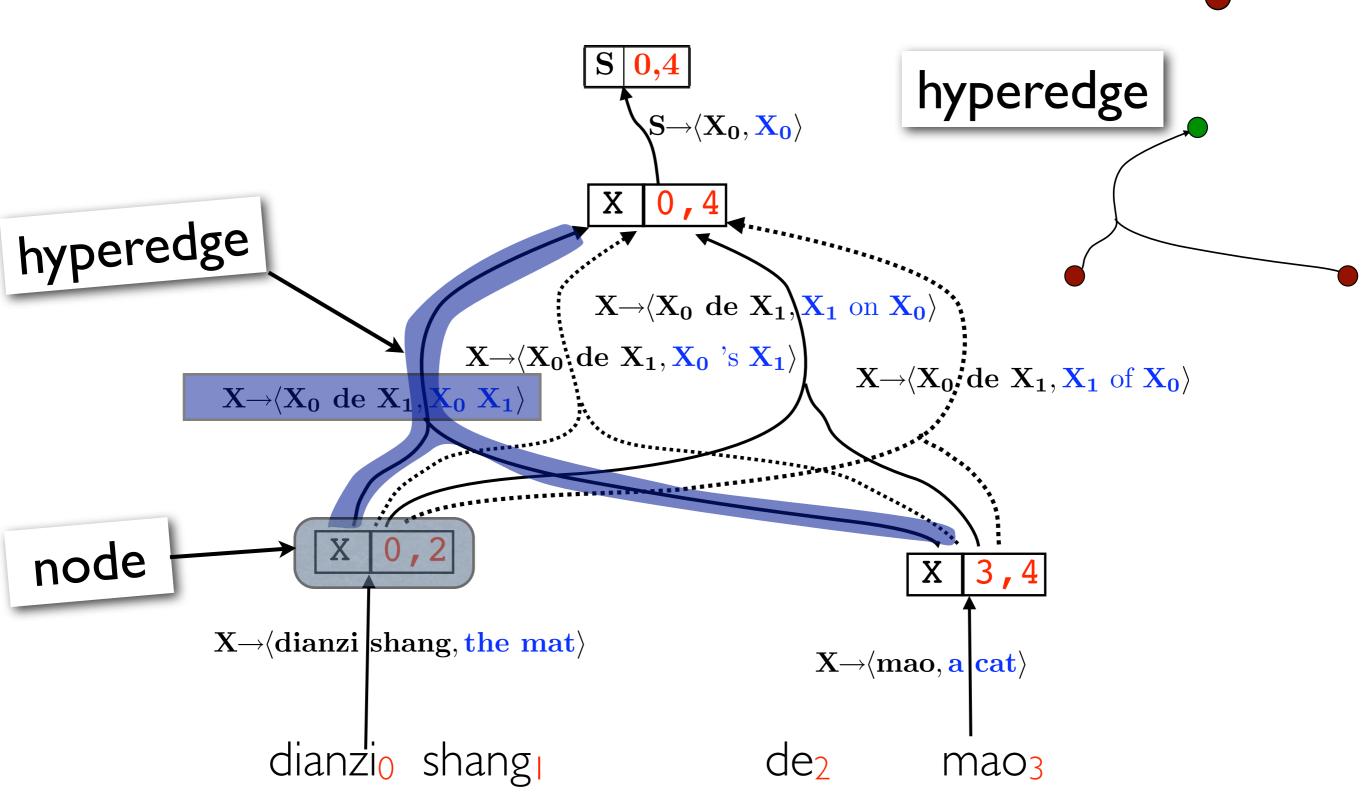


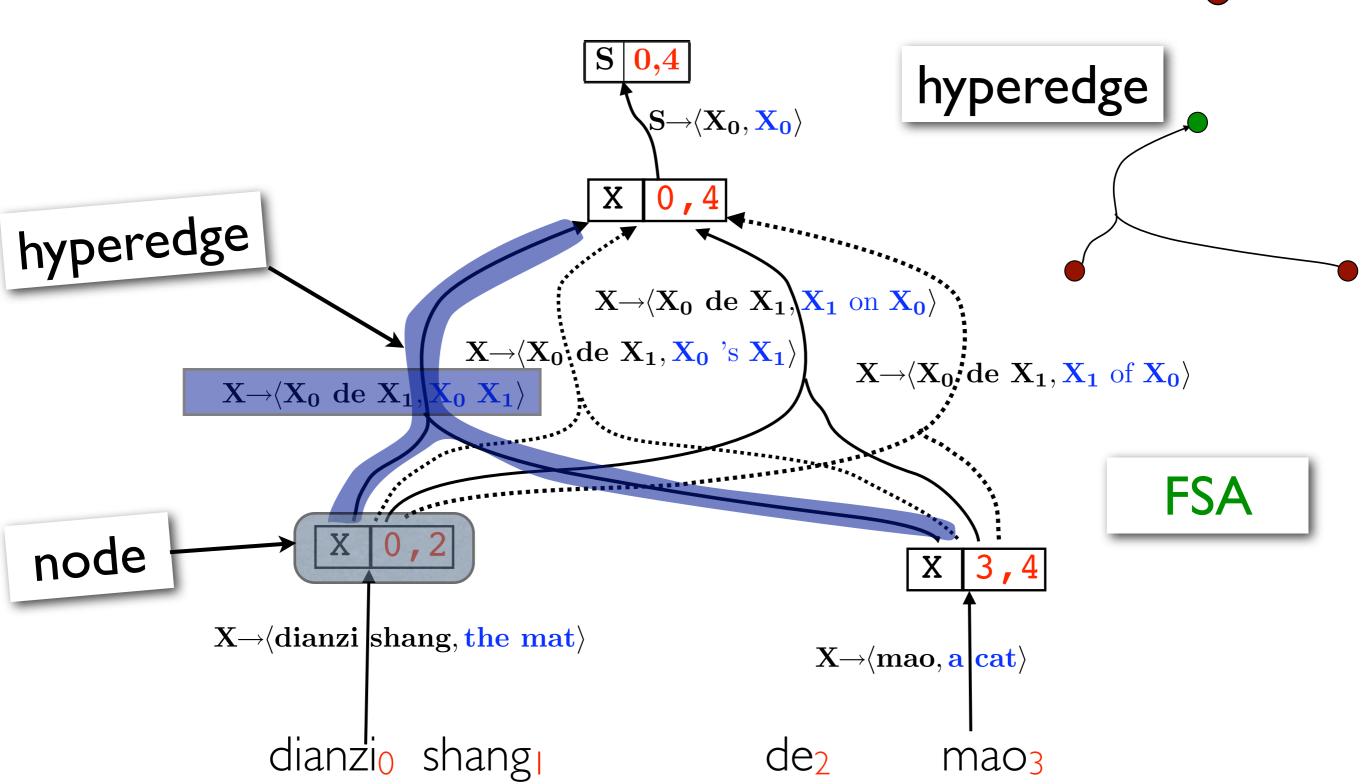


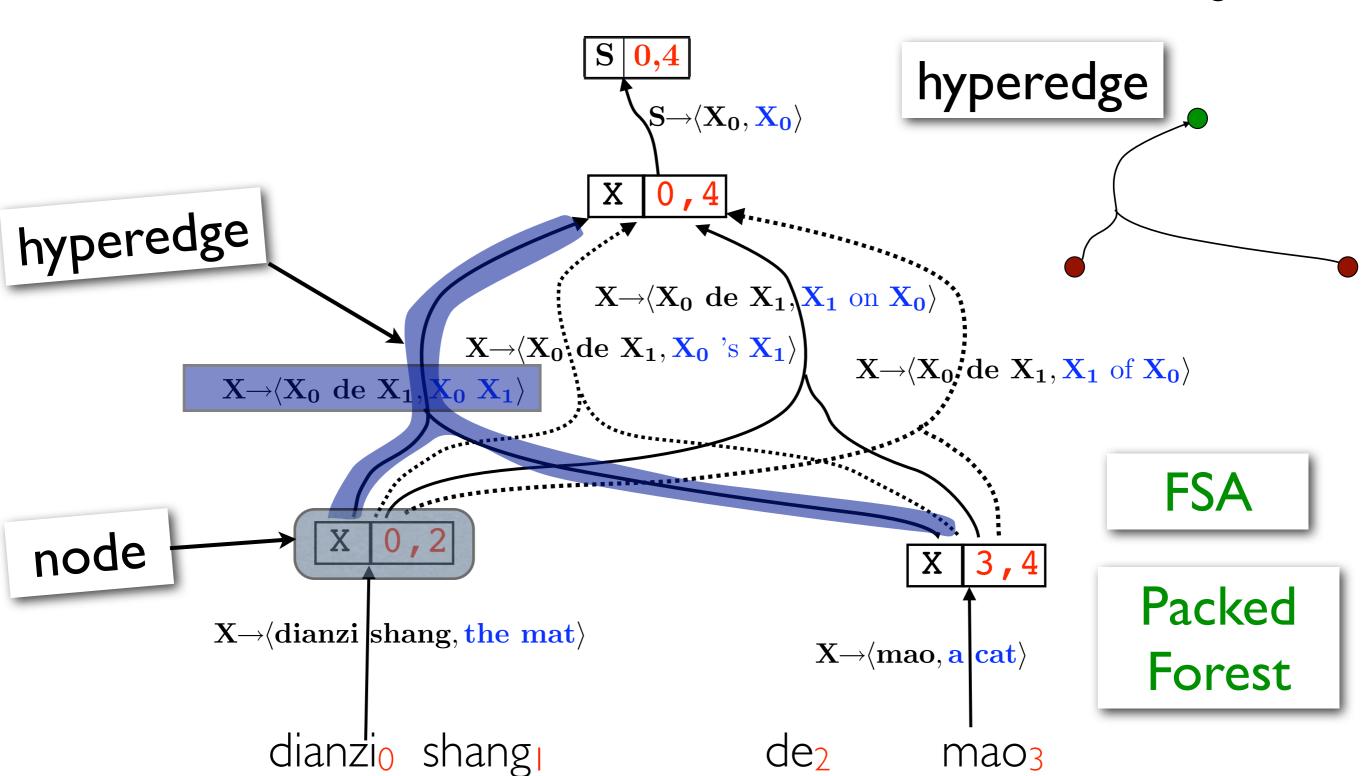


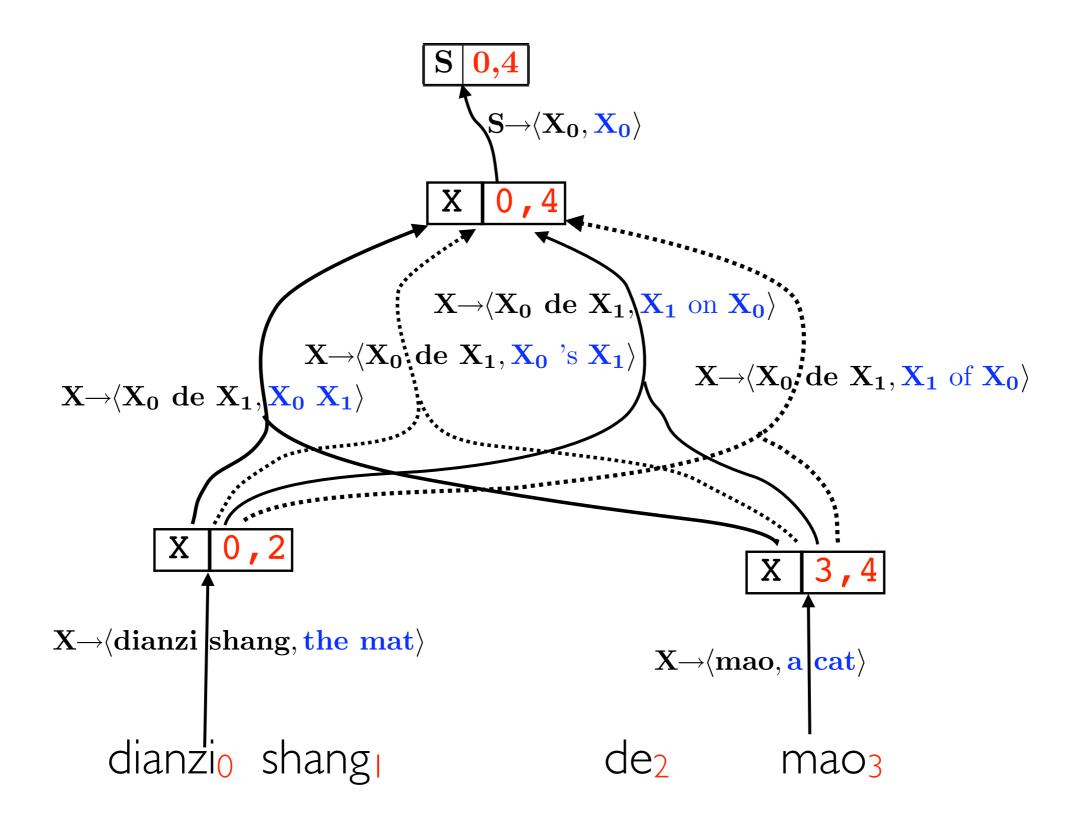


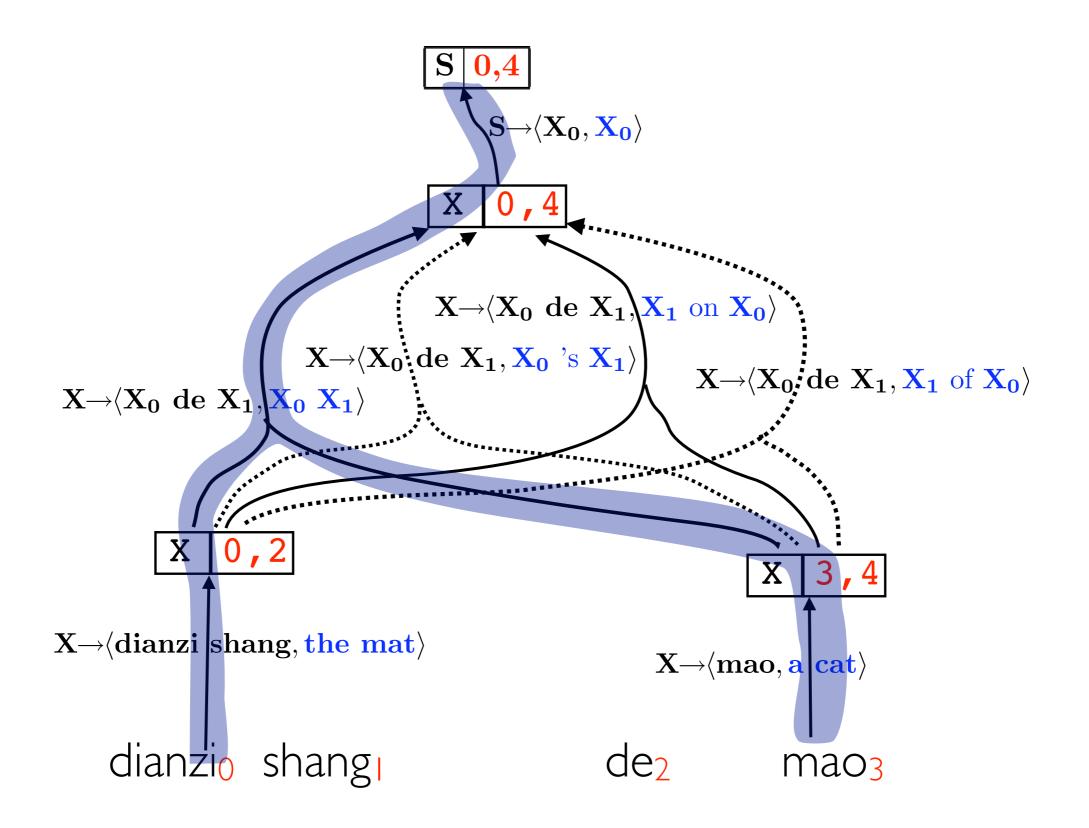


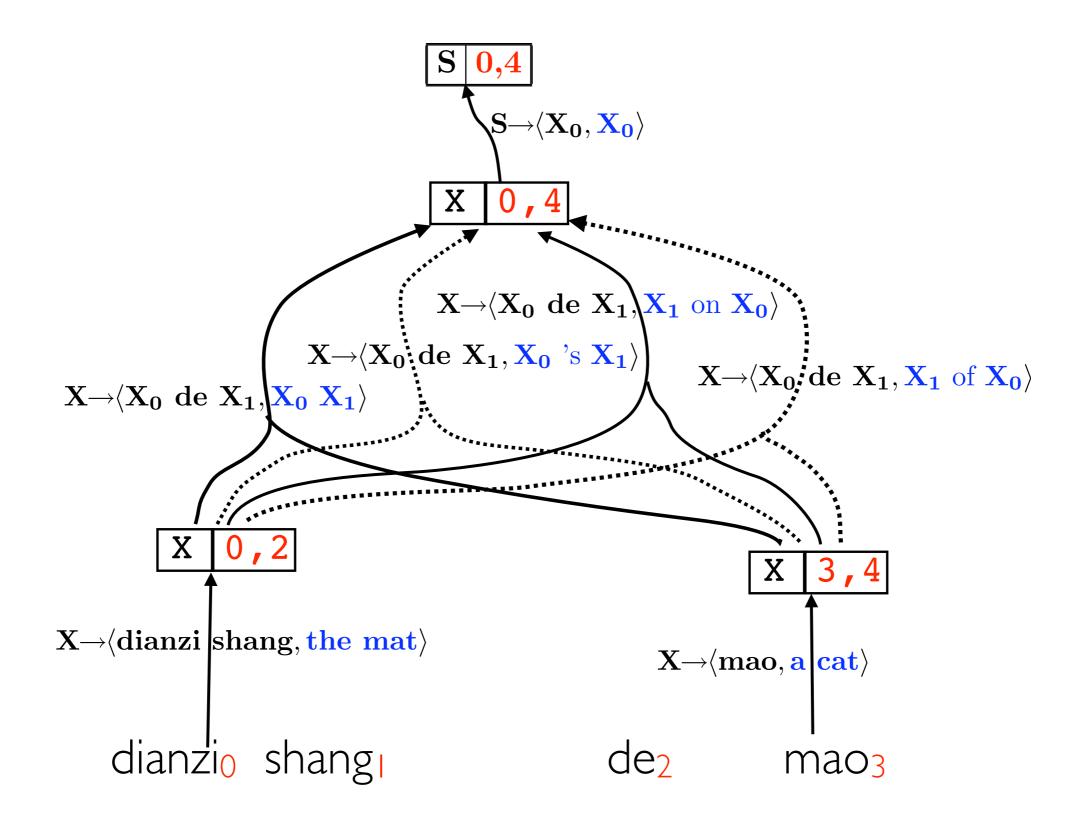


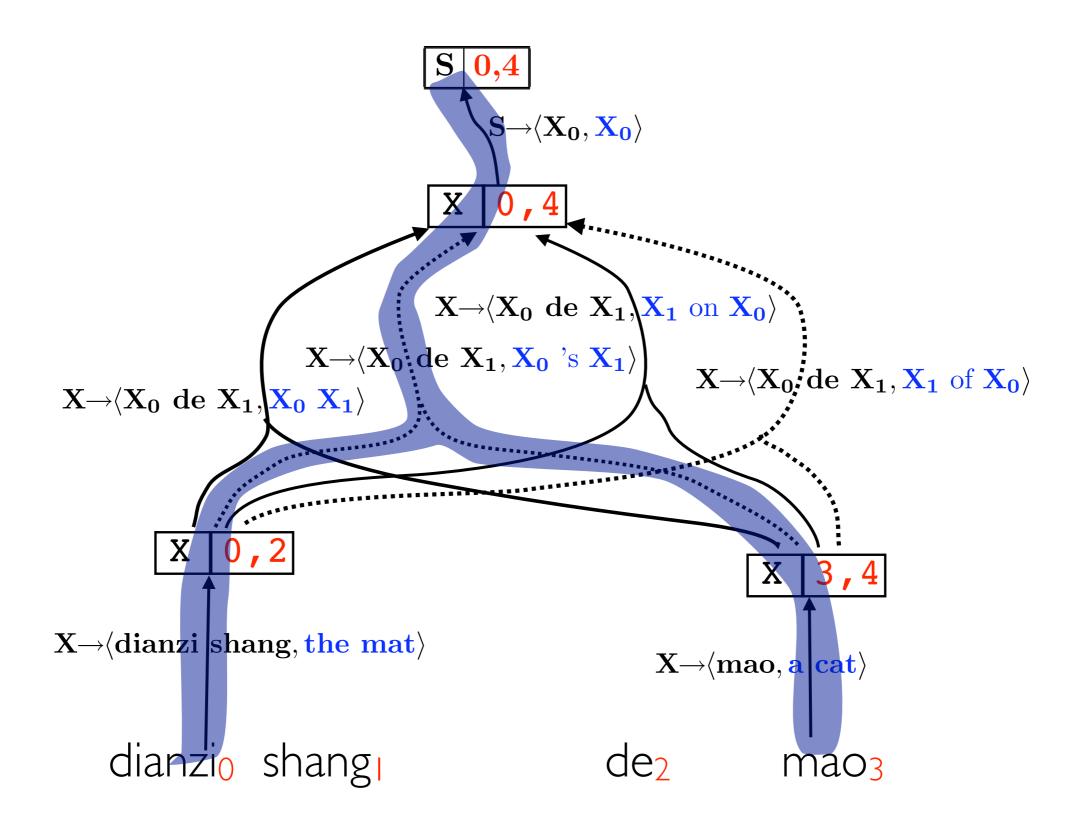


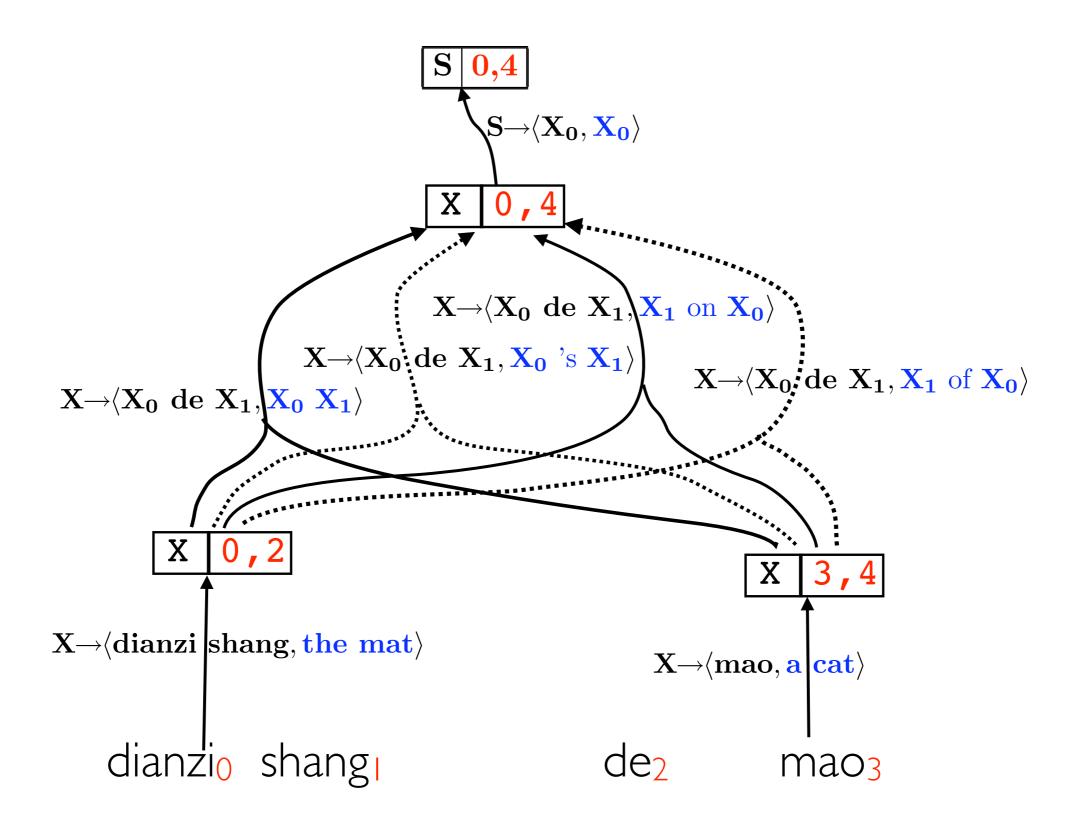


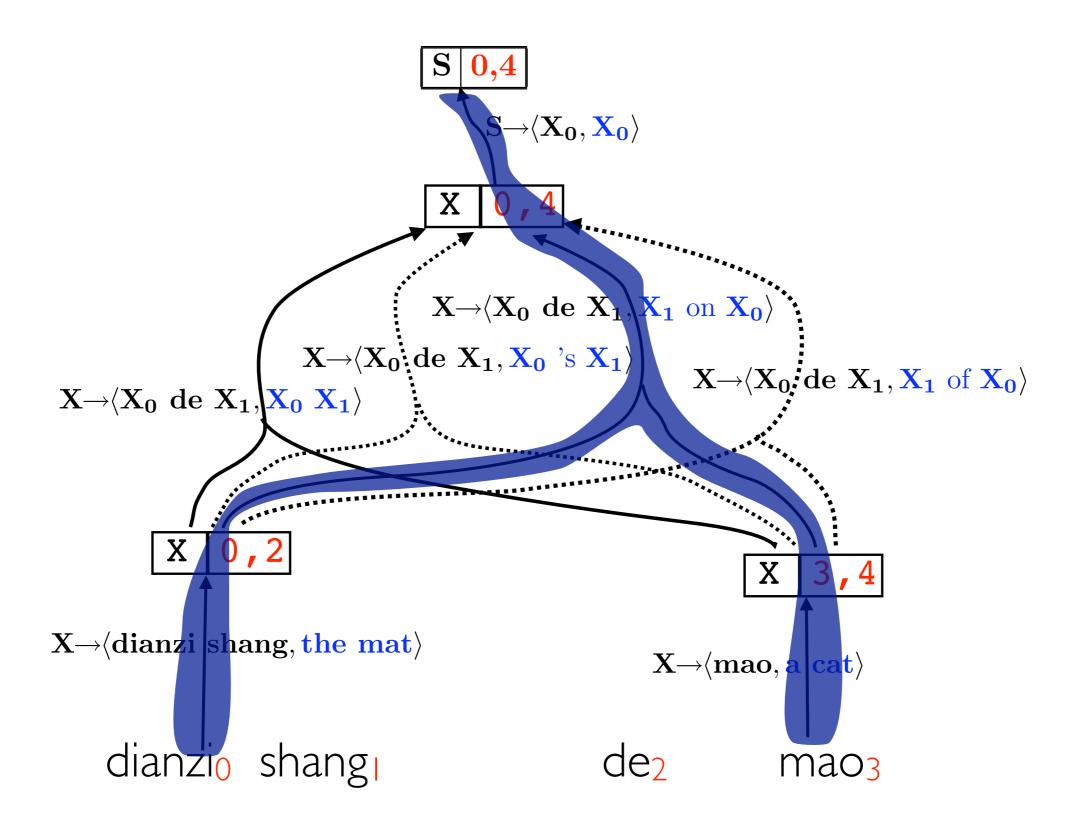


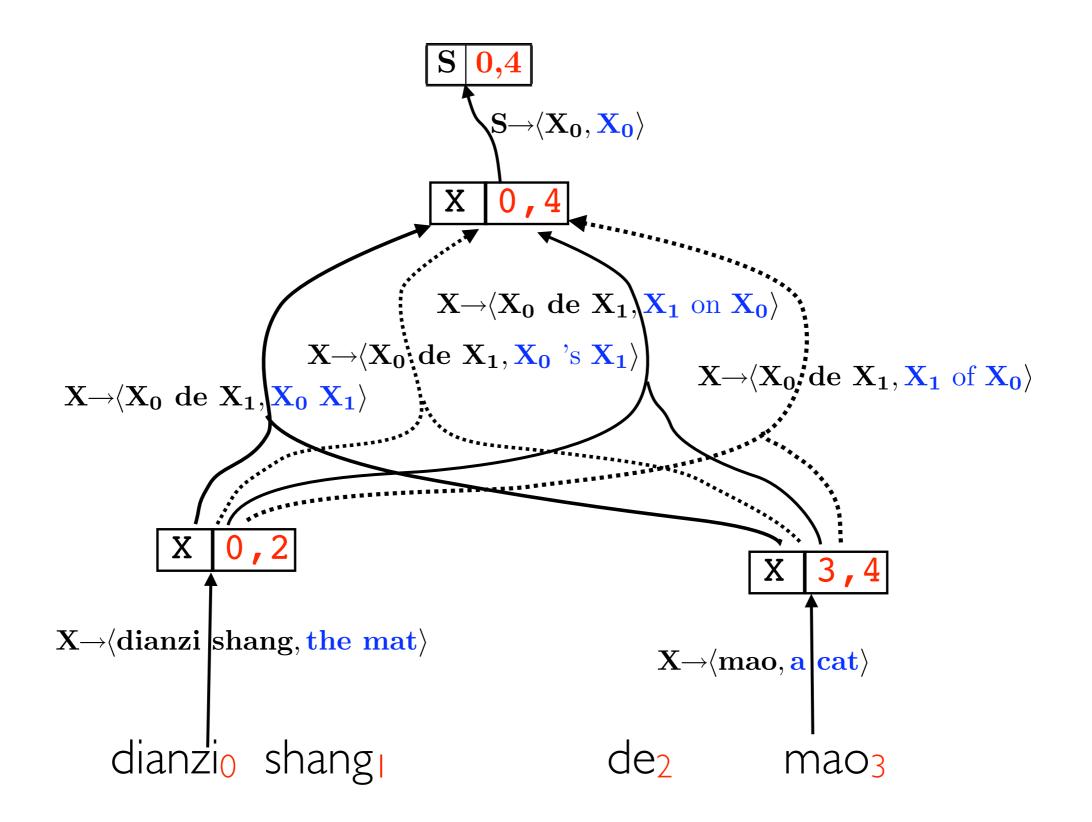


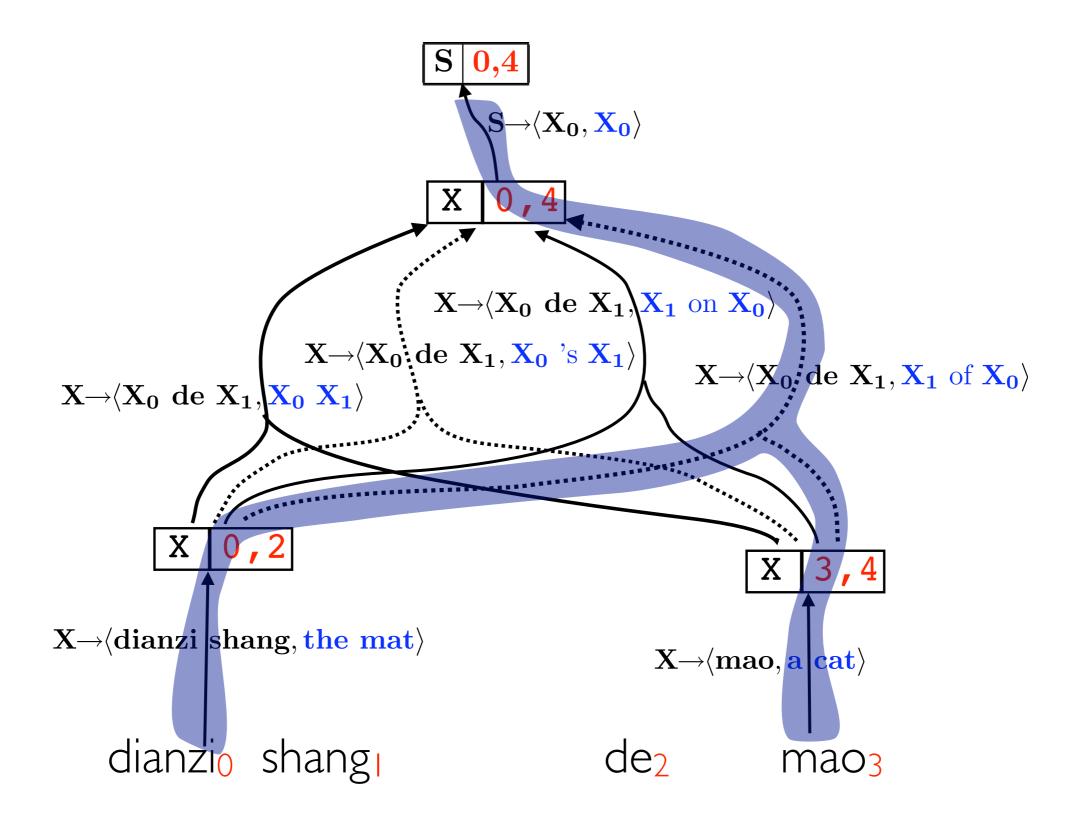


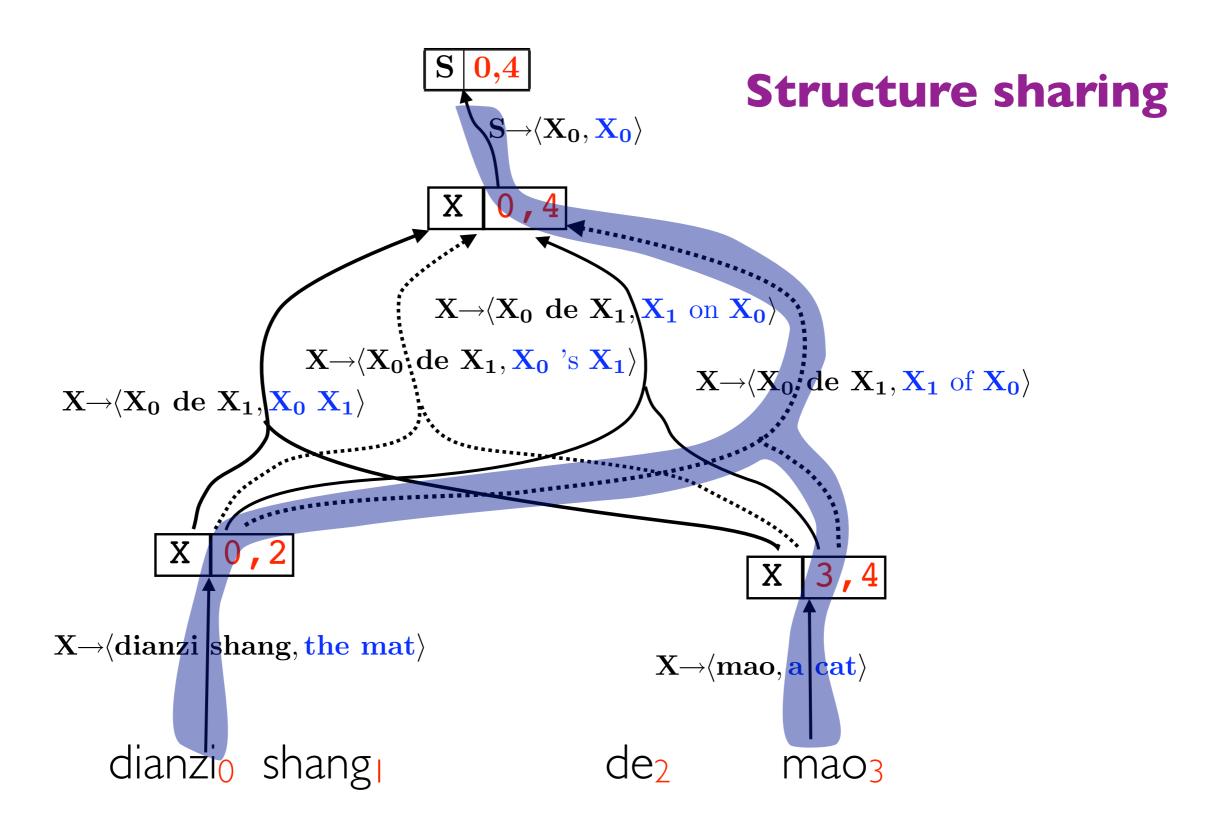








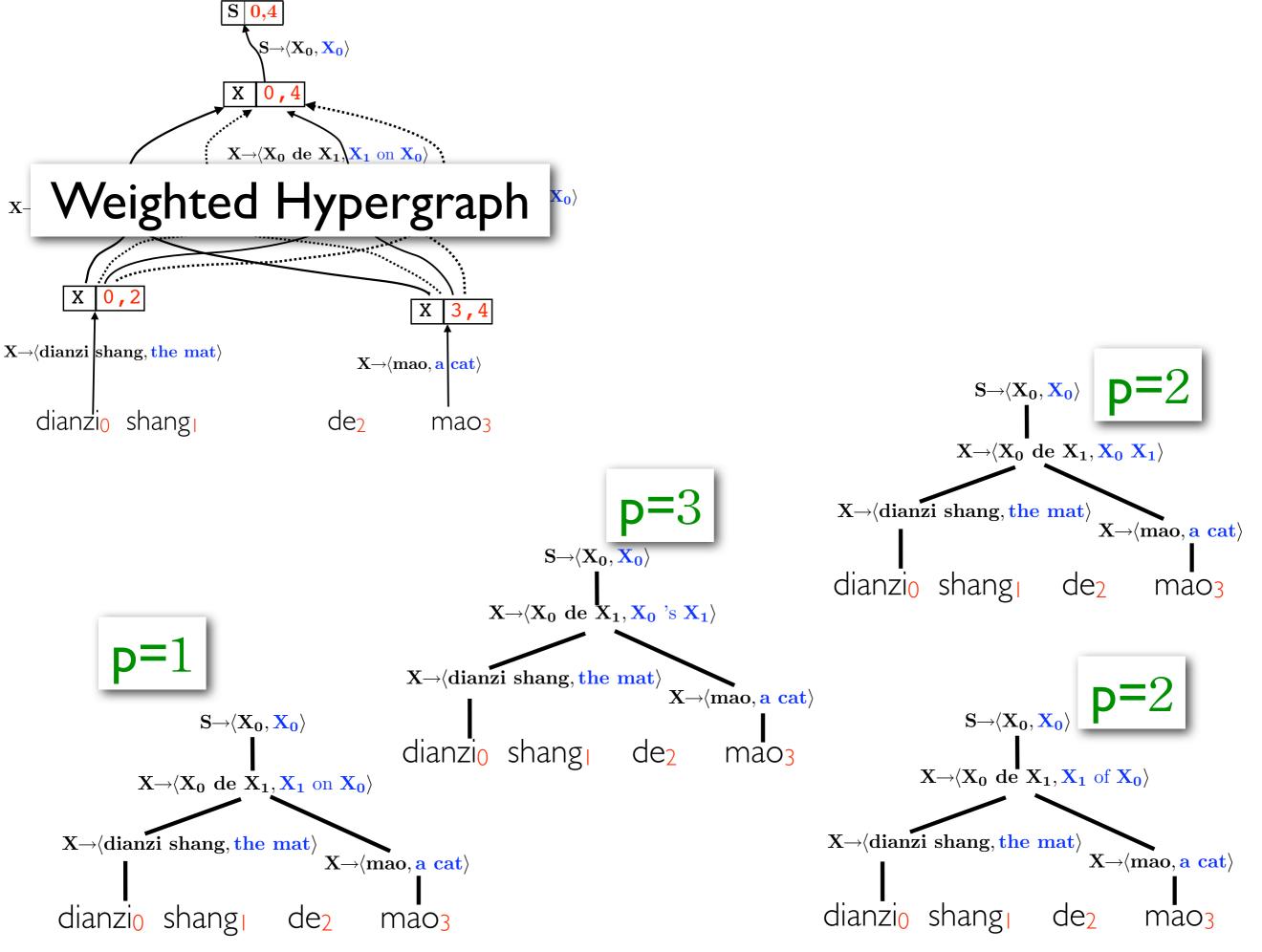


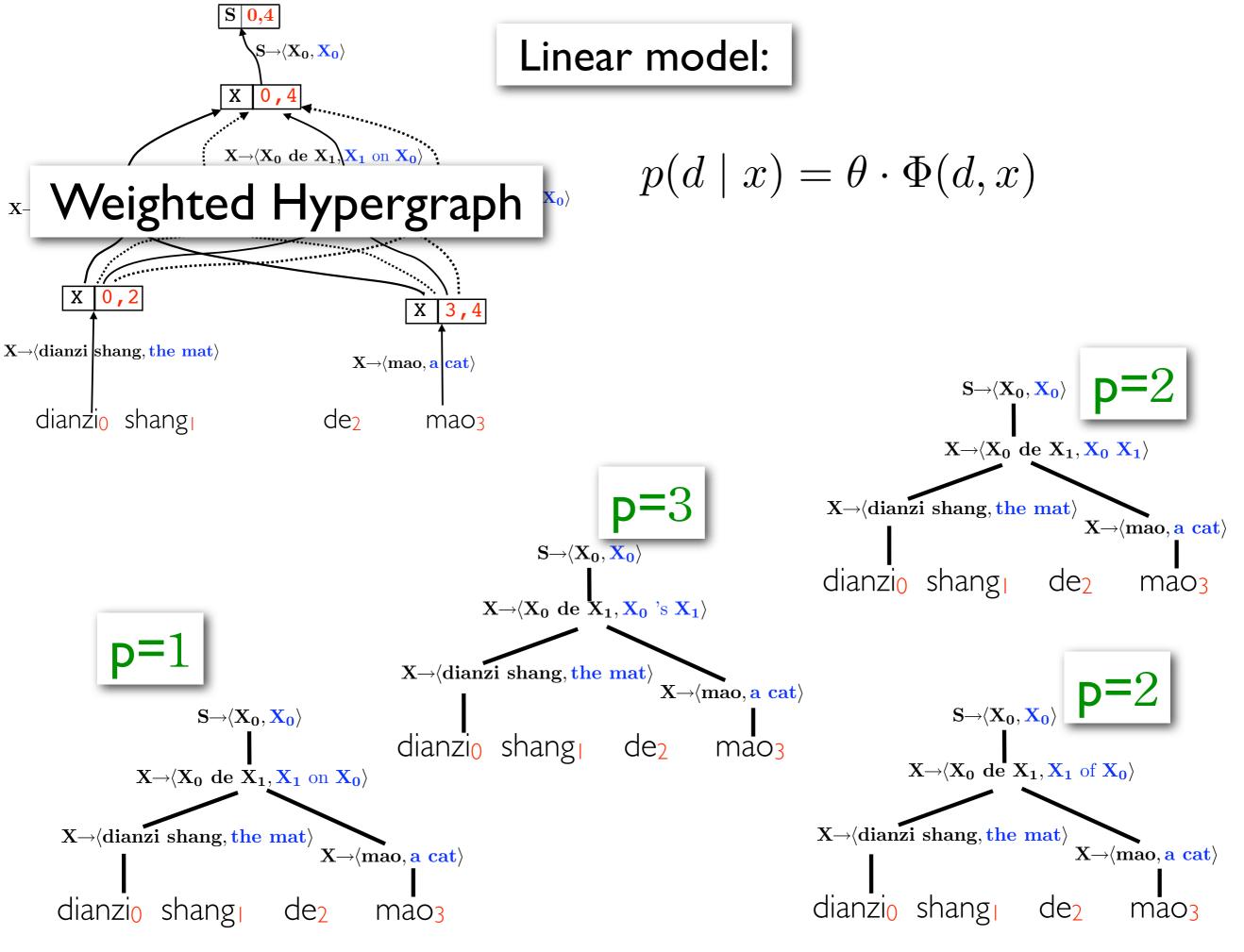


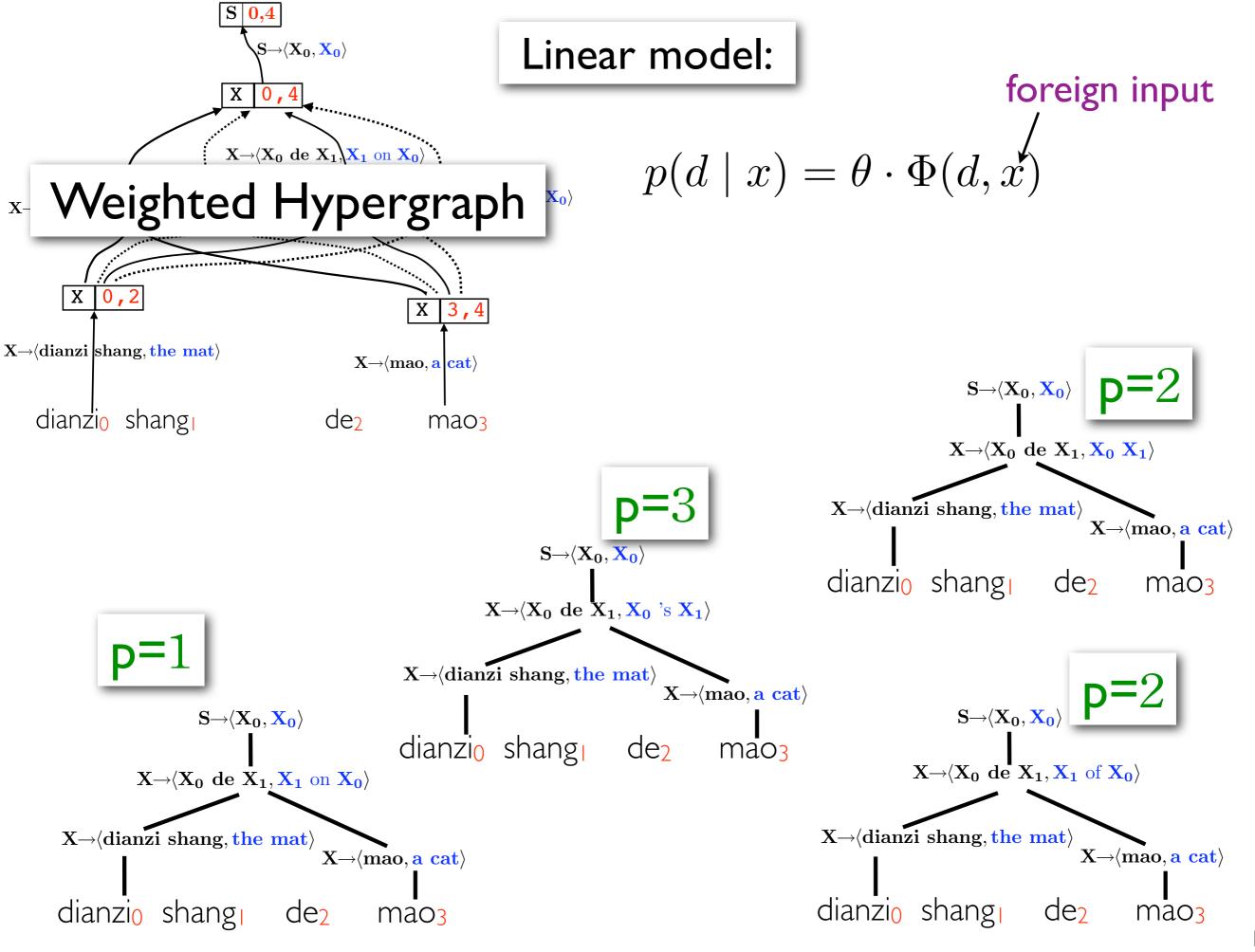
Why Hypergraphs?

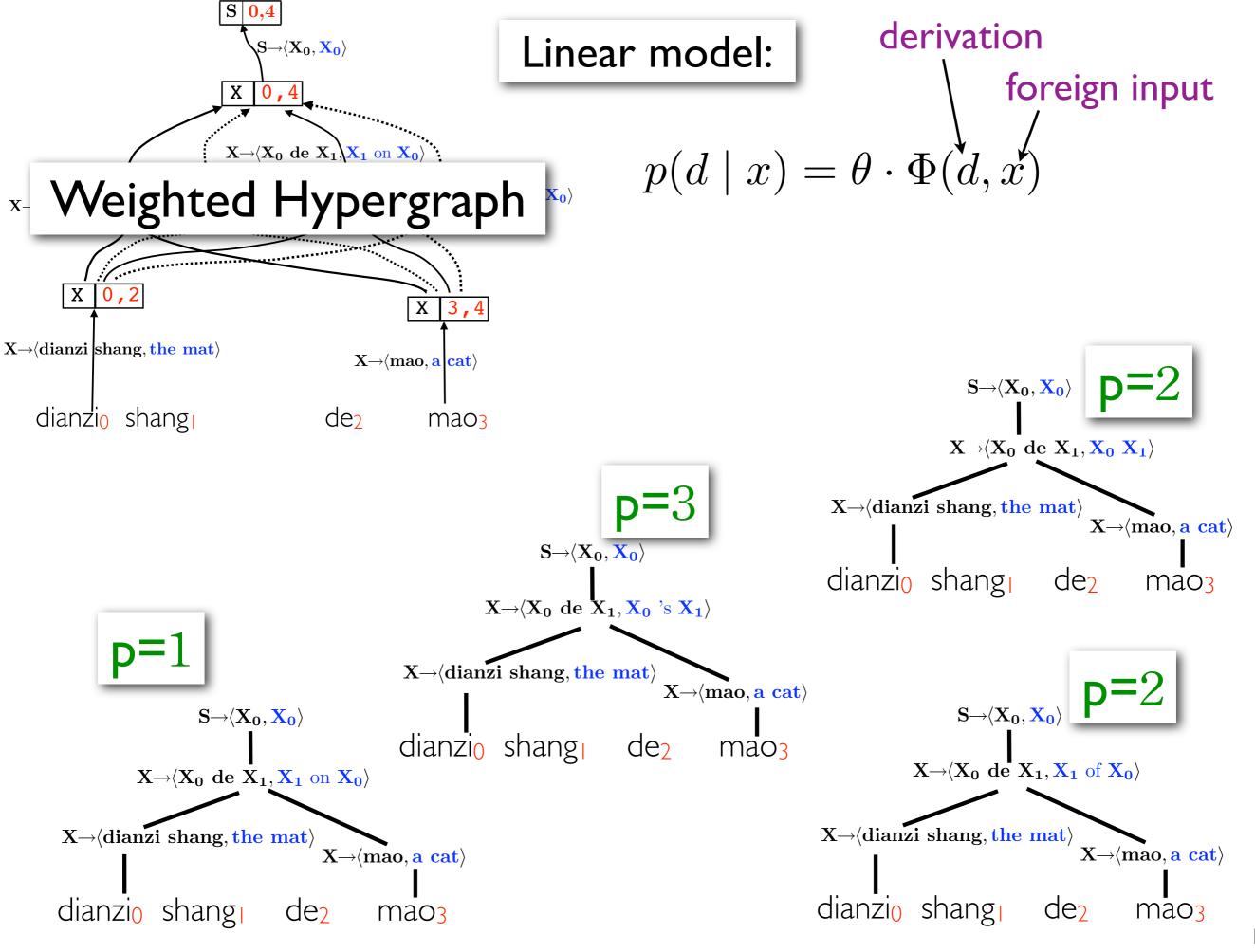
- Contains a much larger hypothesis space than a k-best list
- General compact data structure
 - special cases include
 - finite state machine (e.g., lattice),
 - and/or graph
 - packed forest
 - can be used for speech, parsing, tree-based MT systems, and many more

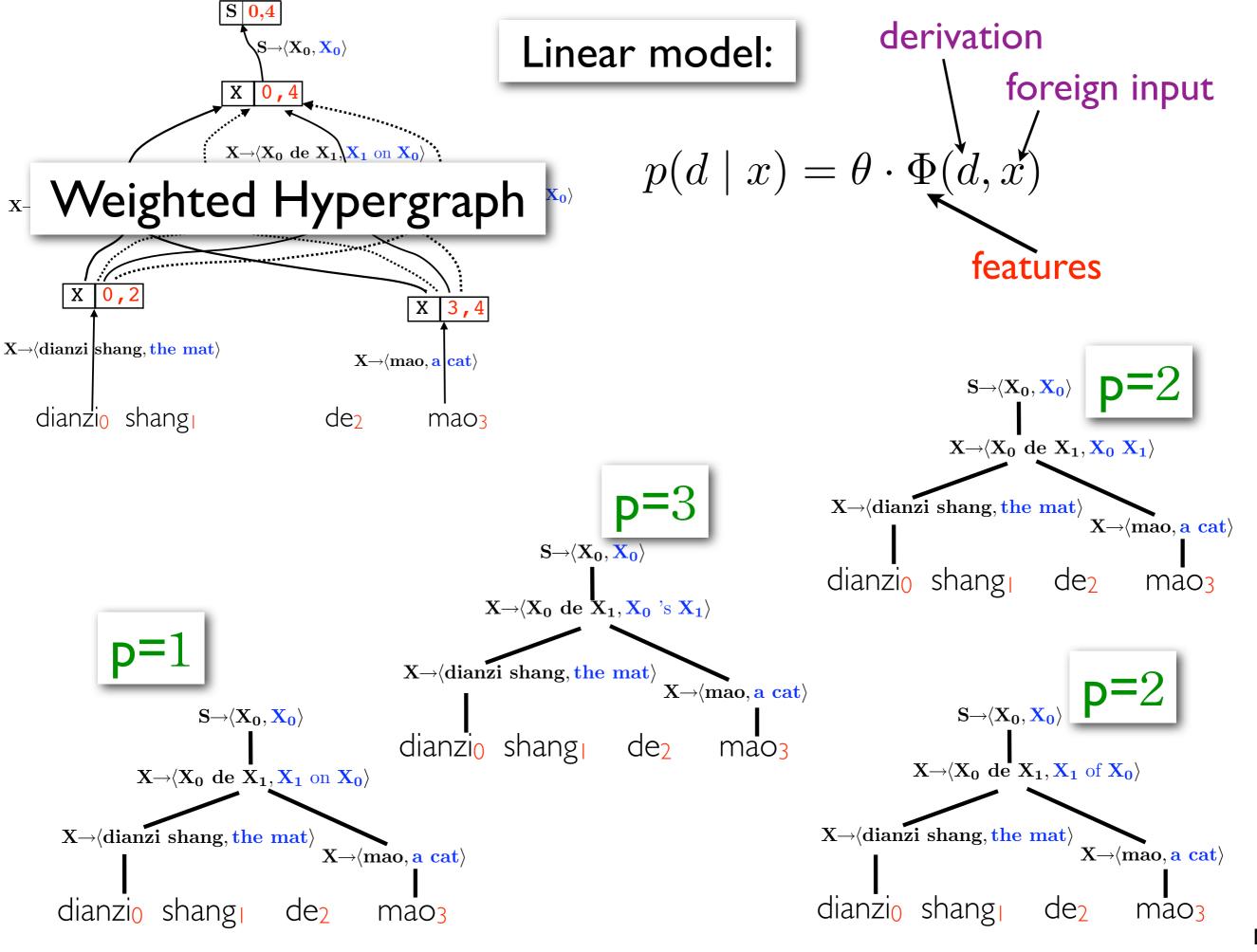


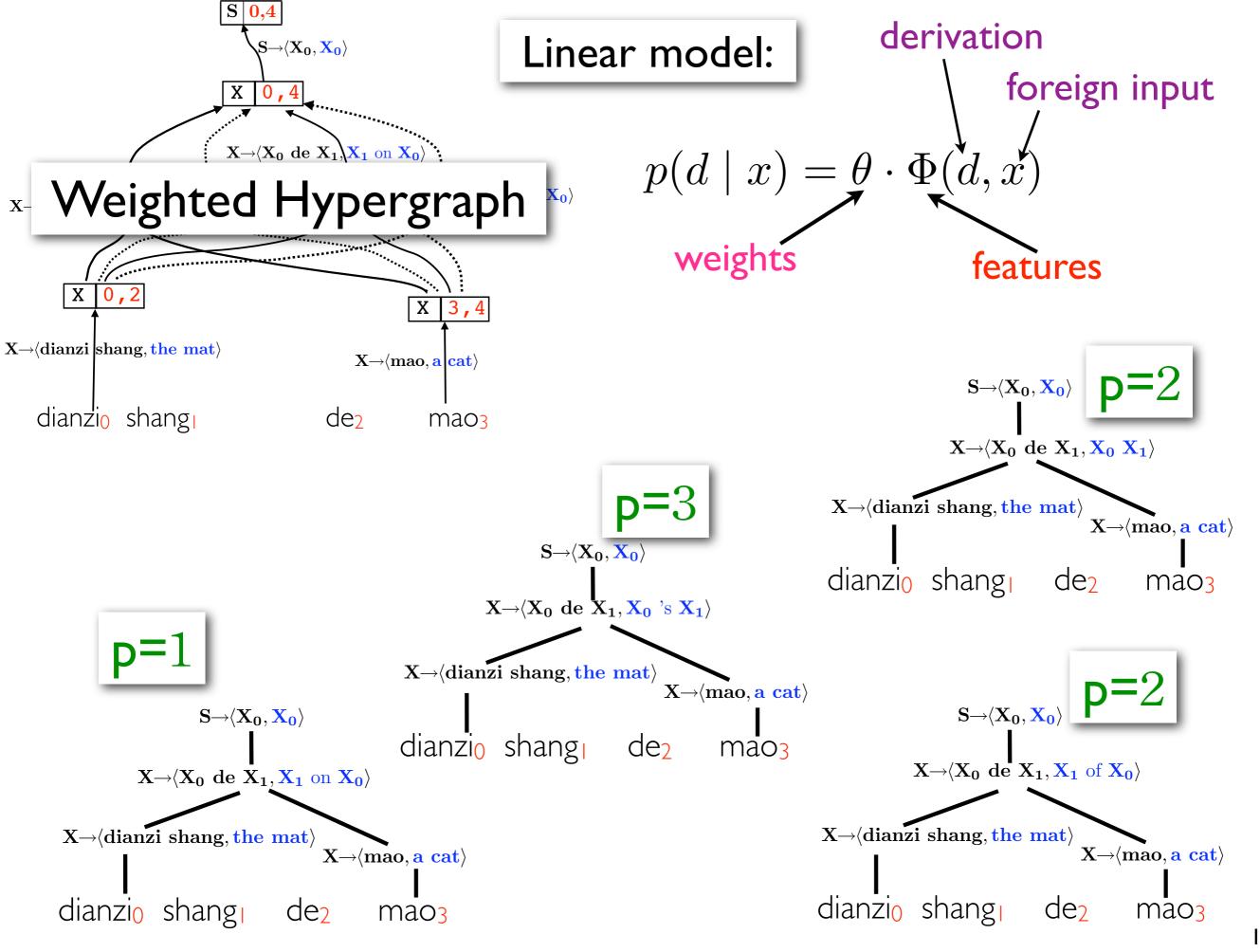








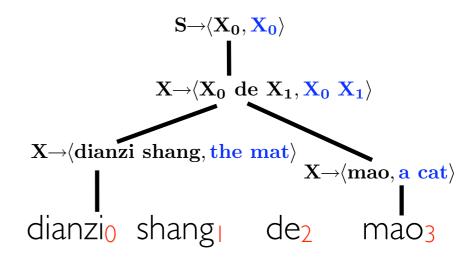


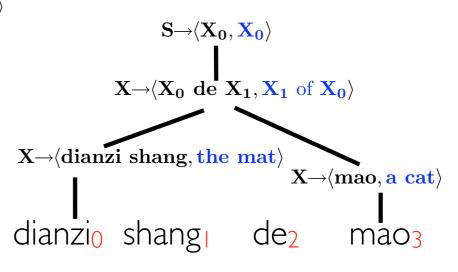


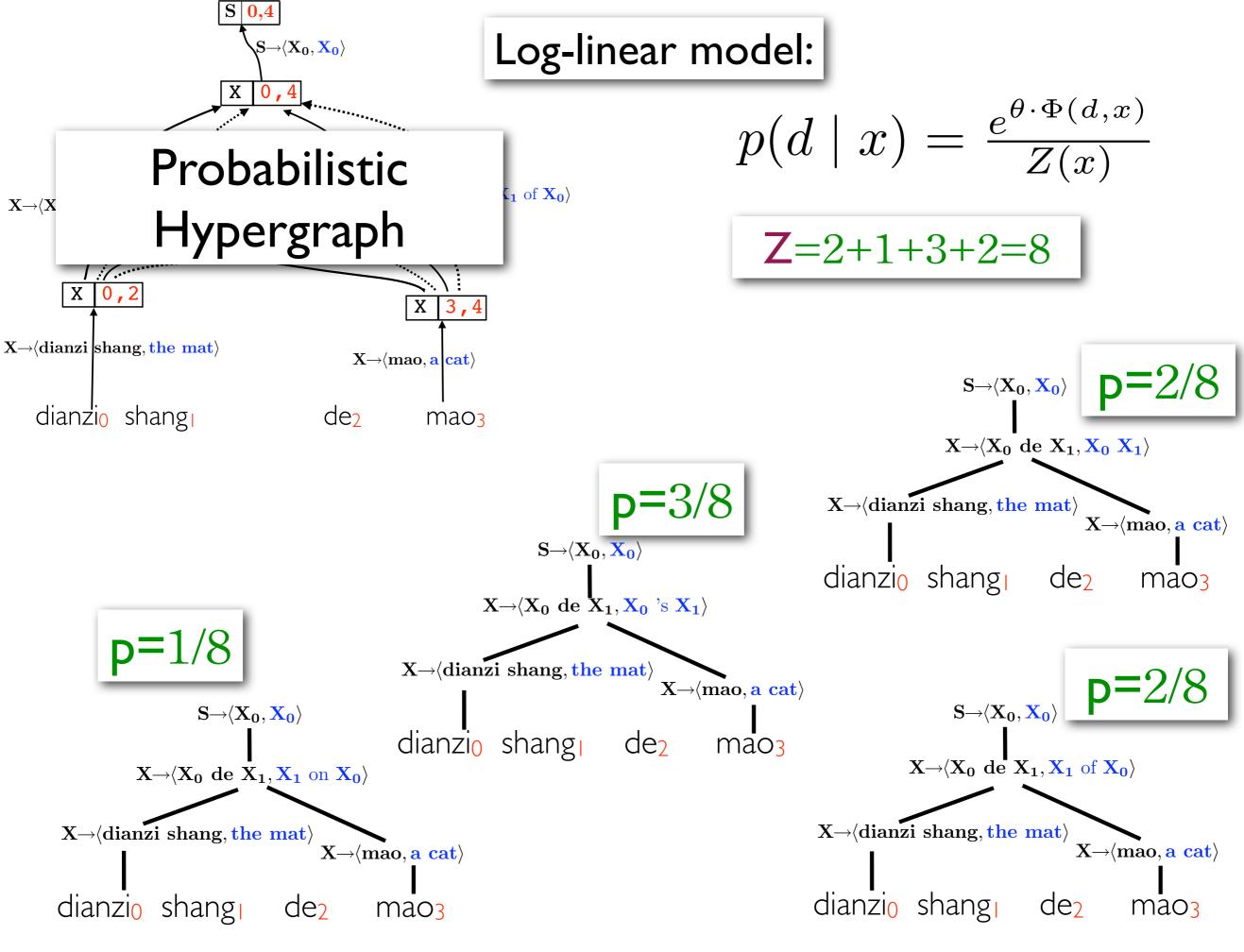
$S \mid 0,4$ Log-linear model: $\langle \mathbf{S} \rightarrow \langle \mathbf{X_0}, \mathbf{X_0} \rangle$ **Probabilistic** of X_0 $\mathbf{X} \rightarrow \langle \mathbf{X}$ Hypergraph 0,2 X 3,4 $X \rightarrow \langle dianzi | shang, the mat \rangle$ $X \rightarrow \langle mao, a | cat \rangle$ dianzio shangi de₂ mao₃ $S\!\!\to\!\!\langle X_0, \! \frac{X_0}{} \rangle$ $X \rightarrow \langle X_0 \text{ de } X_1, X_0 \text{ 's } X_1 \rangle$ $X\rightarrow\langle dianzi shang, the mat \rangle$ $X{\rightarrow}\langle mao, {\color{red} a \ cat} \rangle$ $S \rightarrow \langle X_0, X_0 \rangle$ dianzio shangi de₂ mao₃ $X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ on } X_0 \rangle$ $X\rightarrow\langle dianzi shang, the mat \rangle$ $X \rightarrow \langle mao, a cat \rangle$ dianzio shangi de₂ mao₃

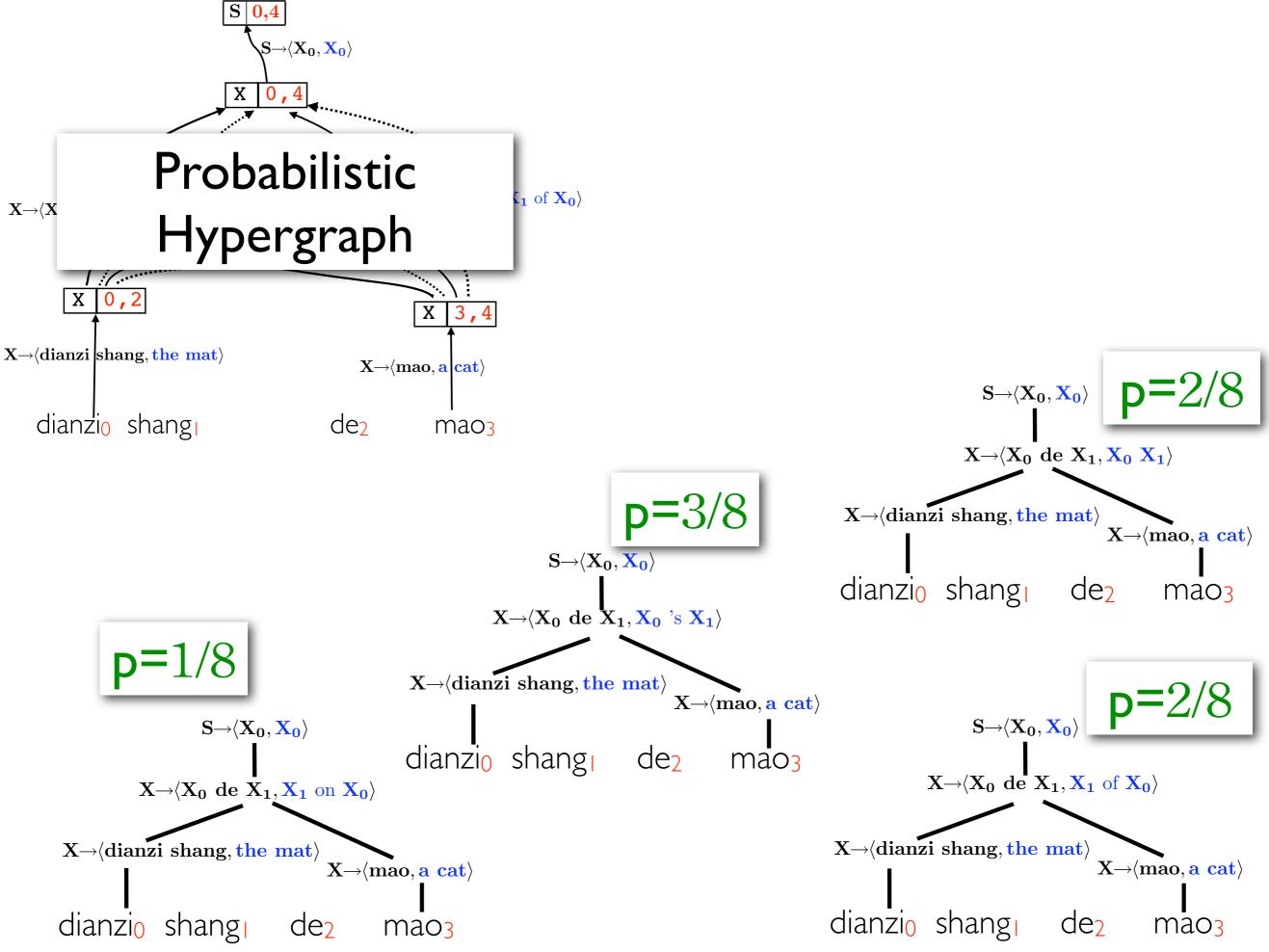
$$p(d \mid x) = \frac{e^{\theta \cdot \Phi(d,x)}}{Z(x)}$$

$$Z=2+1+3+2=8$$









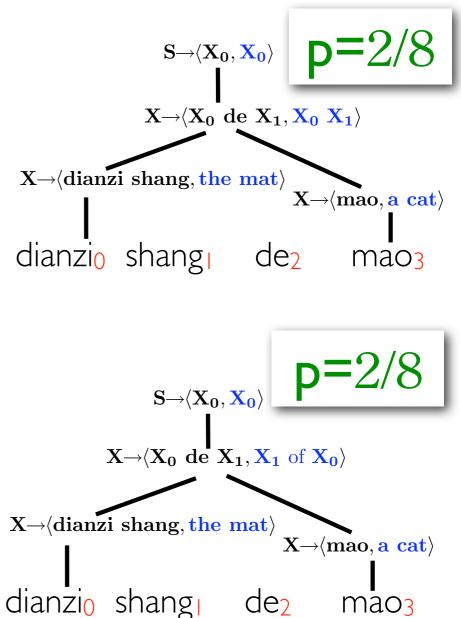
$S \mid 0,4$ $\langle \mathbf{S} \rightarrow \langle \mathbf{X_0}, \mathbf{X_0} \rangle$ **Probabilistic** of X_0 $\mathbf{X} \rightarrow \langle \mathbf{X}$ Hypergraph 0,2 X 3,4 $X \rightarrow \langle dianzi | shang, the mat \rangle$ $X \rightarrow \langle mao, a | cat \rangle$ dianzio shang de₂ mao₃ $S \rightarrow \langle X_0, \frac{X_0}{\rangle} \rangle$ $X \rightarrow \langle X_0 \text{ de } X_1, X_0 \text{ 's } X_1 \rangle$ $X\rightarrow\langle dianzi shang, the mat \rangle$ $X{\rightarrow}\langle mao, {\color{red} a \ cat} \rangle$ $S \rightarrow \langle X_0, X_0 \rangle$ dianzio shangi de₂ mao₃ $X{\rightarrow}\langle X_0 \ de \ X_1, \textcolor{red}{X_1} \ on \ \textcolor{red}{X_0} \rangle$ $X\rightarrow\langle dianzi shang, the mat \rangle$ $X \rightarrow \langle mao, a cat \rangle$

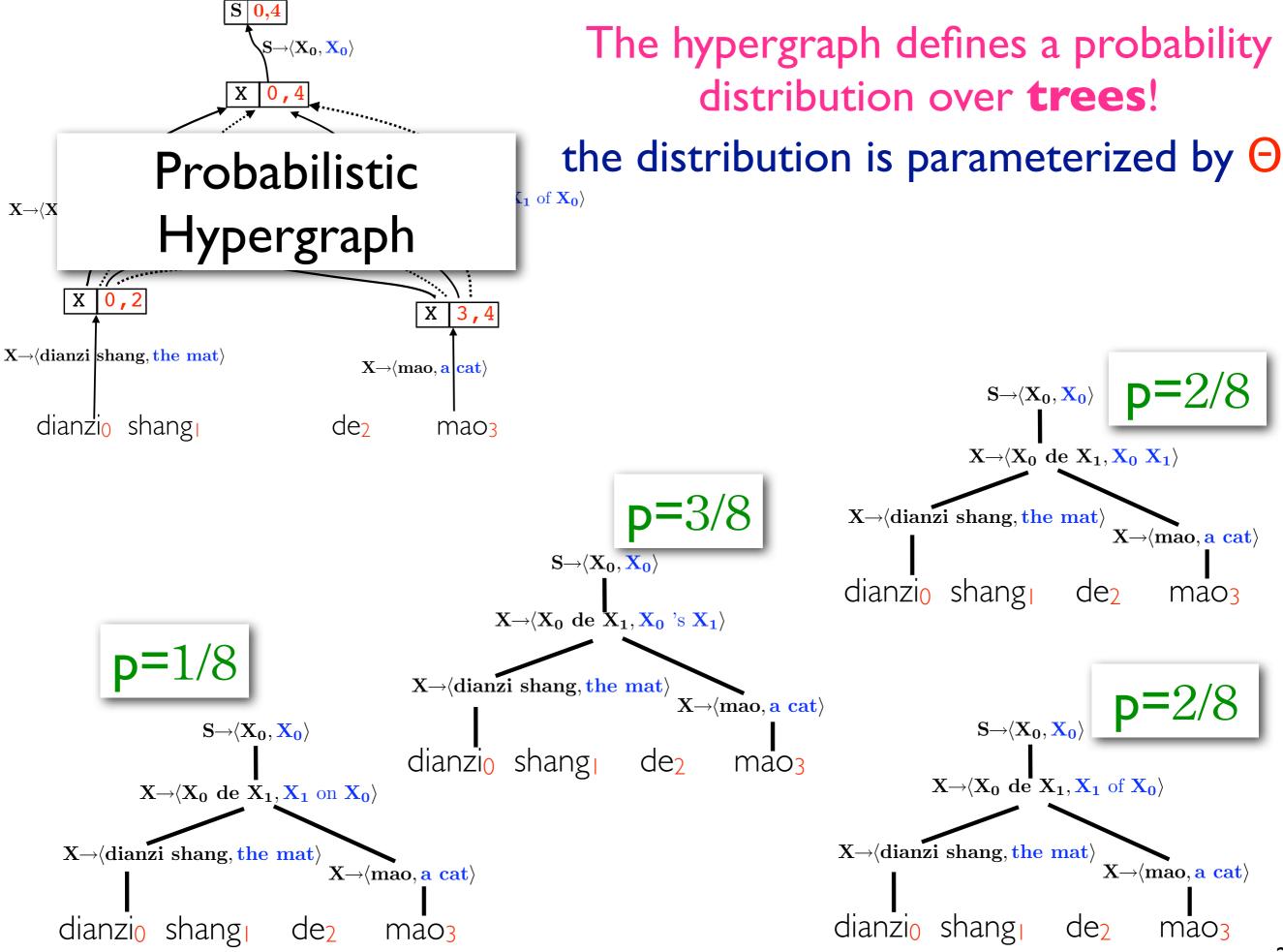
mao₃

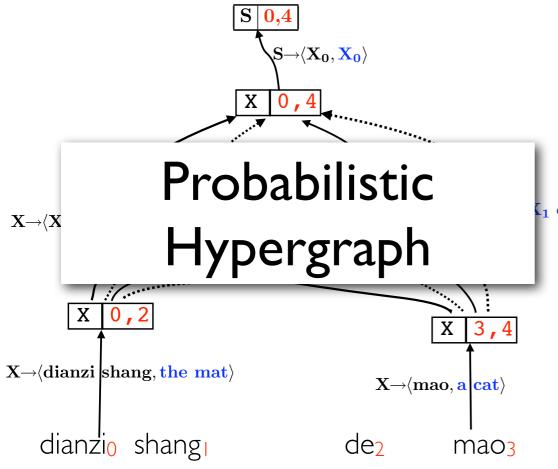
dianzio shangi

de₂

The hypergraph defines a probability distribution over **trees!**

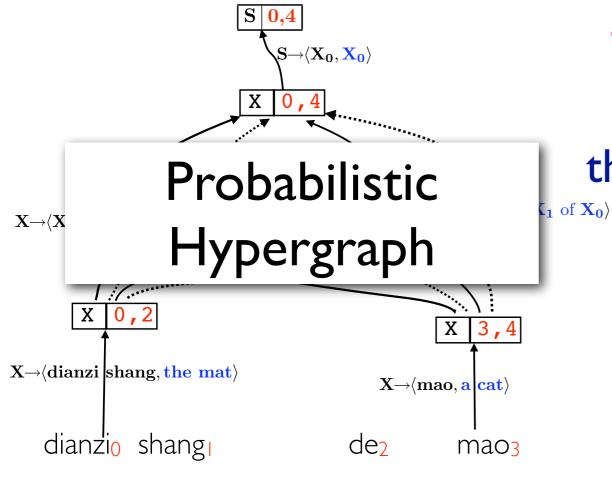






the distribution is parameterized by Θ

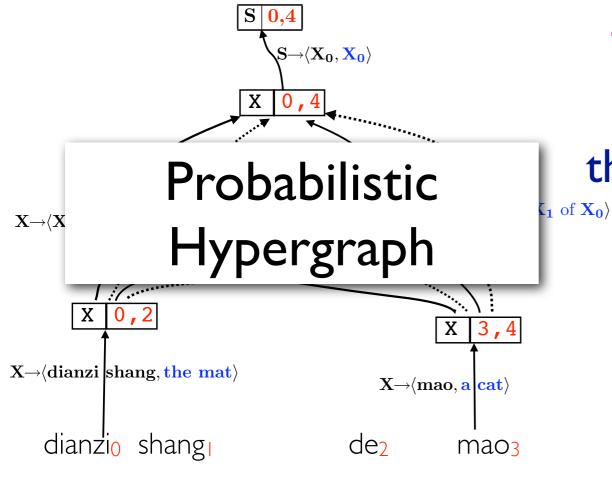
of $\mathbf{X_0}$



the distribution is parameterized by Θ

Which translation do we present to a user?

Decoding



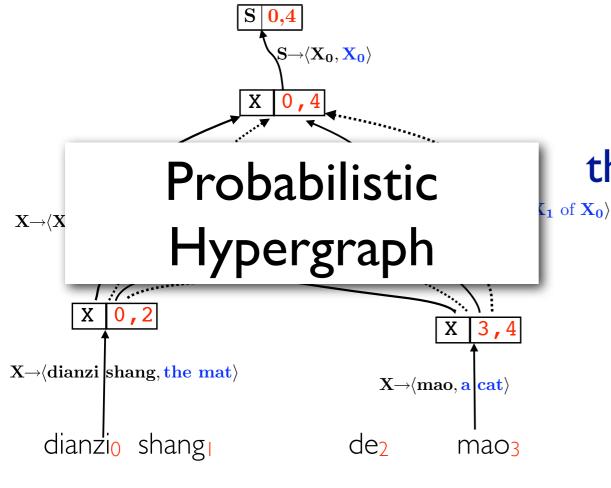
the distribution is parameterized by Θ

Which translation do we present to a user?

How do we set the parameters Θ ?

Decoding

Training



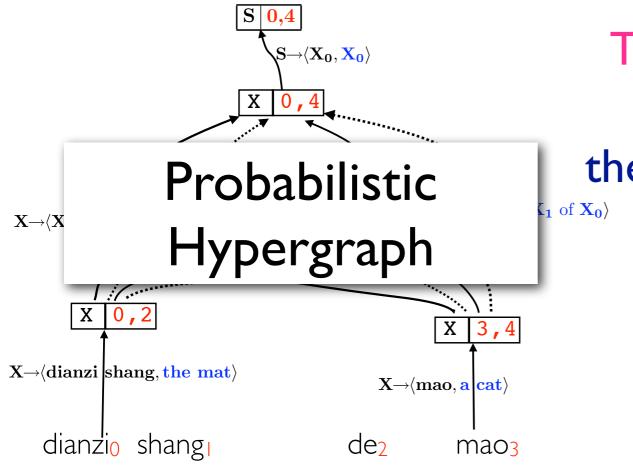
the distribution is parameterized by Θ

Which translation do we present to a user? Decoding

How do we set the parameters Θ ?

Training

What atomic operations do we need to perform? Atomic Inference



the distribution is parameterized by Θ

training decoding (e.g., mert) (e.g., mbr)

atomic inference operations

(e.g., finding one-best, k-best or expectation, inference can be exact or approximate)

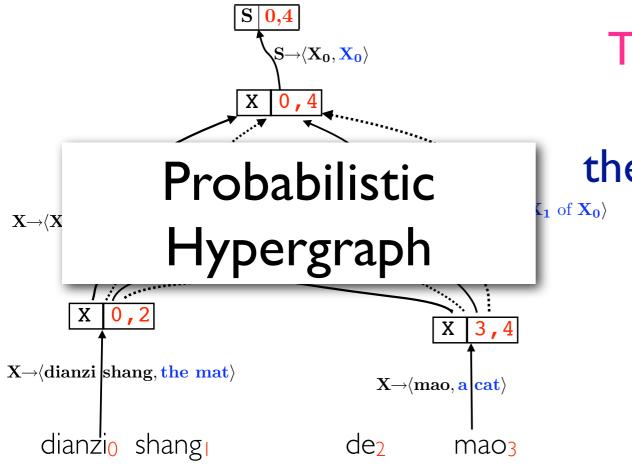
Which translation do we present to a user?

Decoding

How do we set the parameters Θ ?

Training

What atomic operations do we need to perform? Atomic Inference



the distribution is parameterized by Θ

training decoding (e.g., mert) (e.g., mbr)

atomic inference operations

(e.g., finding one-best, k-best or expectation, inference can be exact or approximate)

Which translation do we present to a user?

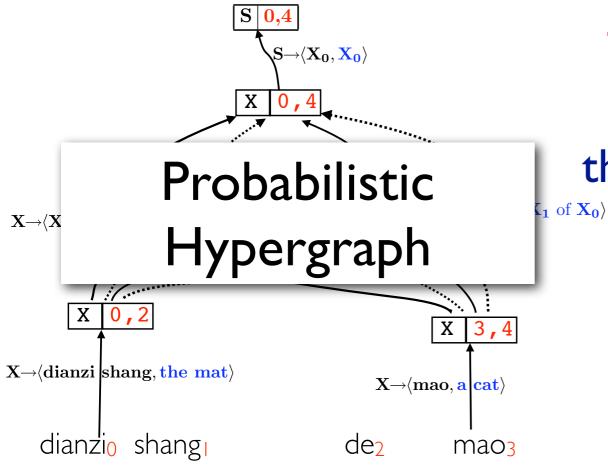
Decoding

How do we set the parameters Θ ?

Training

What atomic operations do we need to perform? Atomic Inference

Why are the problems difficult?



the distribution is parameterized by Θ

atomic inference operations

(e.g., finding one-best, k-best or expectation, inference can be exact or approximate)

Which translation do we present to a user?

Decoding

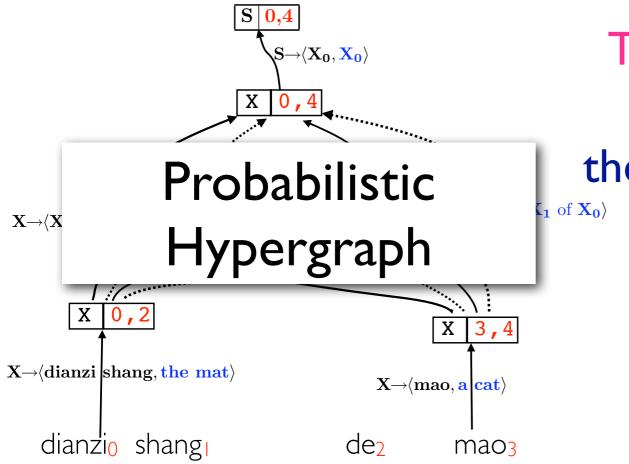
How do we set the parameters Θ ?

Training

What atomic operations do we need to perform? Atomic Inference

Why are the problems difficult?

- brute-force will be too slow as there are exponentially many trees, so require sophisticated dynamic programs



the distribution is parameterized by Θ

training decoding (e.g., mert) (e.g., mbr)

atomic inference operations

(e.g., finding one-best, k-best or expectation, inference can be exact or approximate)

Which translation do we present to a user?

Decoding

How do we set the parameters Θ ?

Training

What atomic operations do we need to perform? Atomic Inference

Why are the problems difficult?

- brute-force will be too slow as there are exponentially many trees, so require sophisticated dynamic programs
- sometimes intractable, require approximations

Inference, Training and Decoding on Hypergraphs

Atomic Inference

finding one-best derivations

Graph	Topological	Best-first		
		no heuristic	with heuristic	with hierarchy
FSA	Viterbi	Dijkstra	A^*	HA^*
Hypergraph	CYK	Knuth	Klein and Manning	Generalized A^*

- finding k-best derivations
- computing expectations (e.g., of features)

Training

 Perceptron, conditional random field (CRF), minimum error rate training (MERT), minimum risk, and MIRA

Decoding

 Viterbi decoding, maximum a posterior (MAP) decoding, and minimum Bayes risk (MBR) decoding

Outline

- Hypergraph as Hypothesis Space
- Unsupervised Discriminative Training
 - minimum imputed risk
 - contrastive language model estimation
- Variational Decoding
- First- and Second-order Expectation Semirings

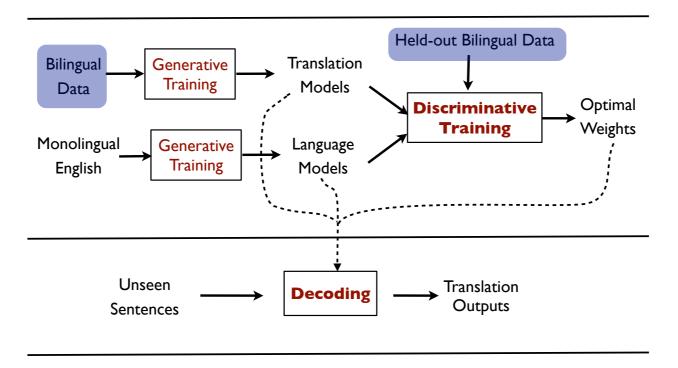
Outline

- Hypergraph as Hypothesis Space
- Unsupervised Discriminative Training
 - minimum imputed risk
 - contrastive language model estimation
- Variational Decoding
- First- and Second-order Expectation Semirings



Outline

- Hypergraph as Hypothesis Space
- Unsupervised Discriminative Training
 - minimum imputed risk
 - contrastive language model estimation
- Variational Decoding
- First- and Second-order Expectation Semirings

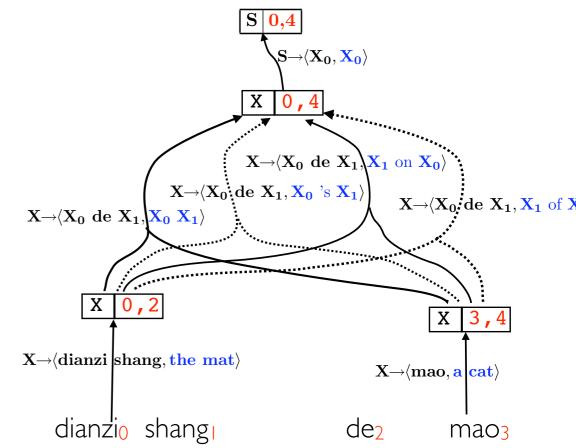


main focus

24

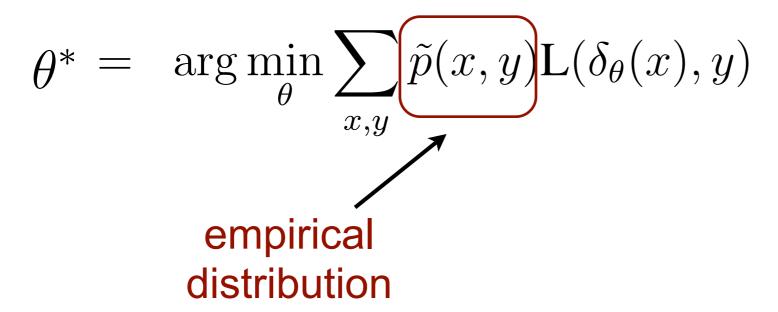
Training Setup

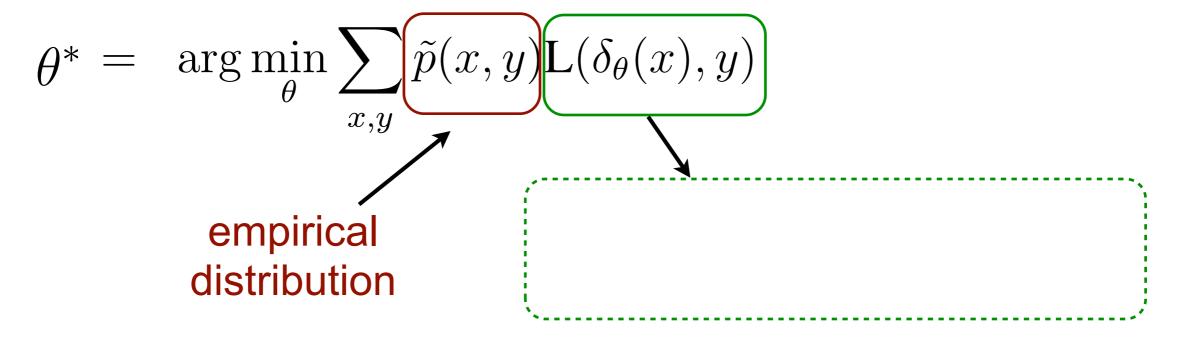
- Each training example consists of
 - a foreign sentence (from which a hypergraph is generated to represent many possible translations)
 - a reference translation
 - x: dianzi shang de mao
 - y: a cat on the mat

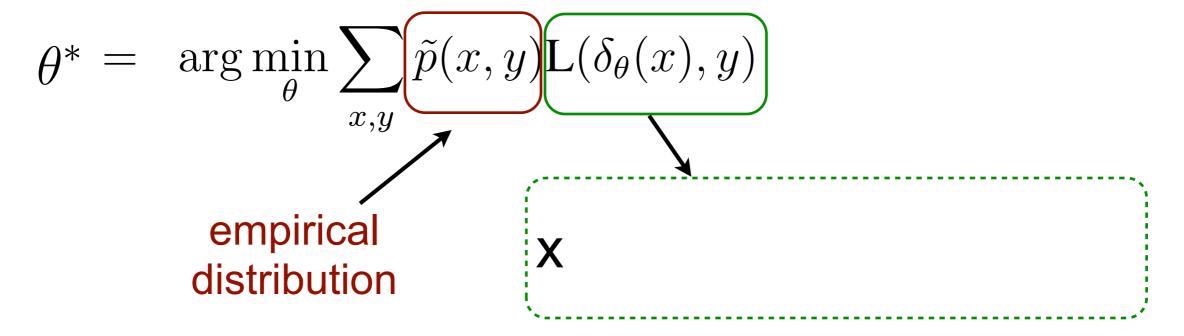


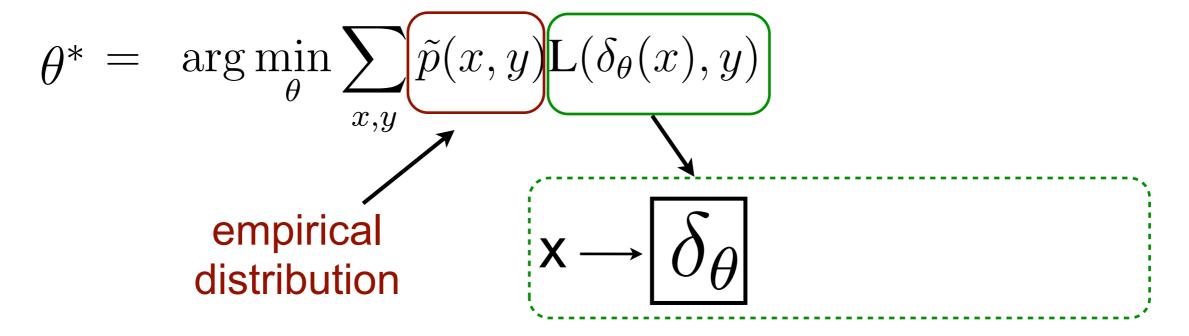
Training

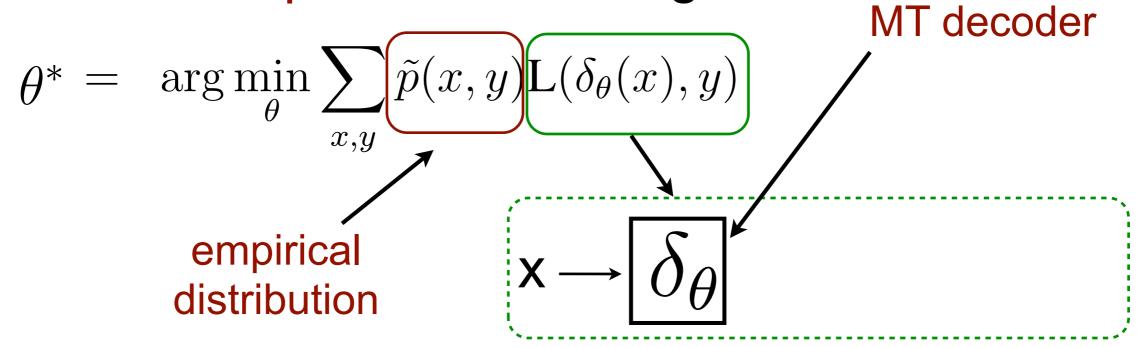
$$\theta^* = \arg\min_{\theta} \sum_{x,y} \tilde{p}(x,y) L(\delta_{\theta}(x),y)$$

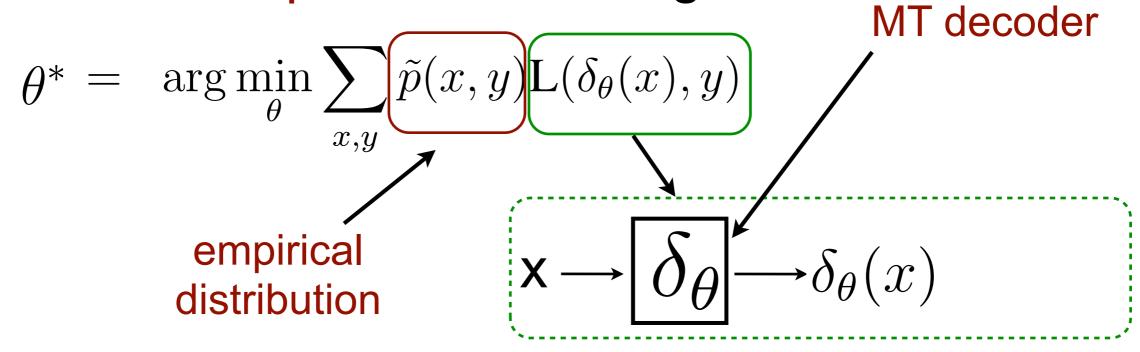


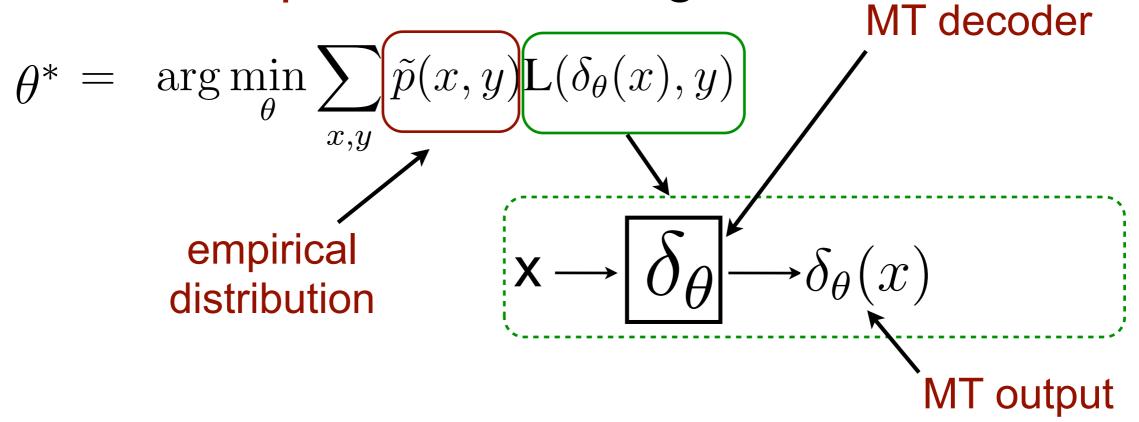


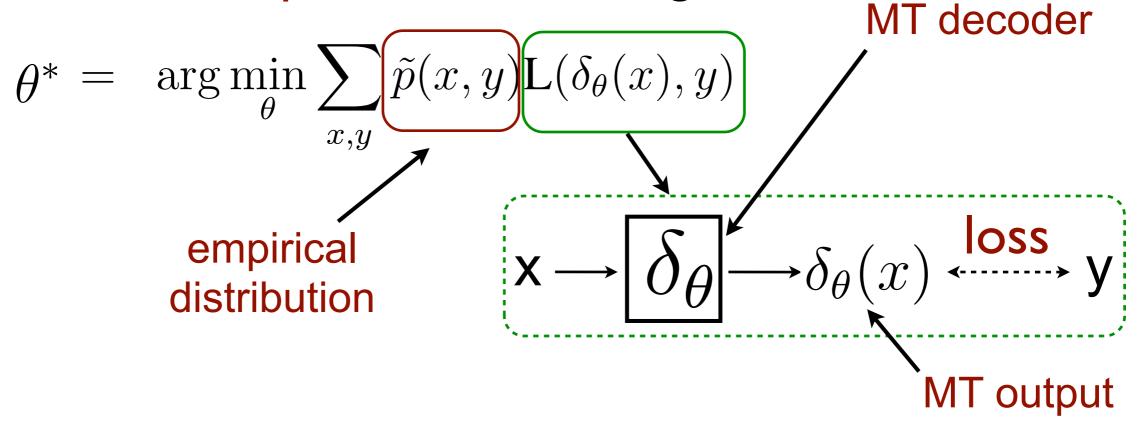


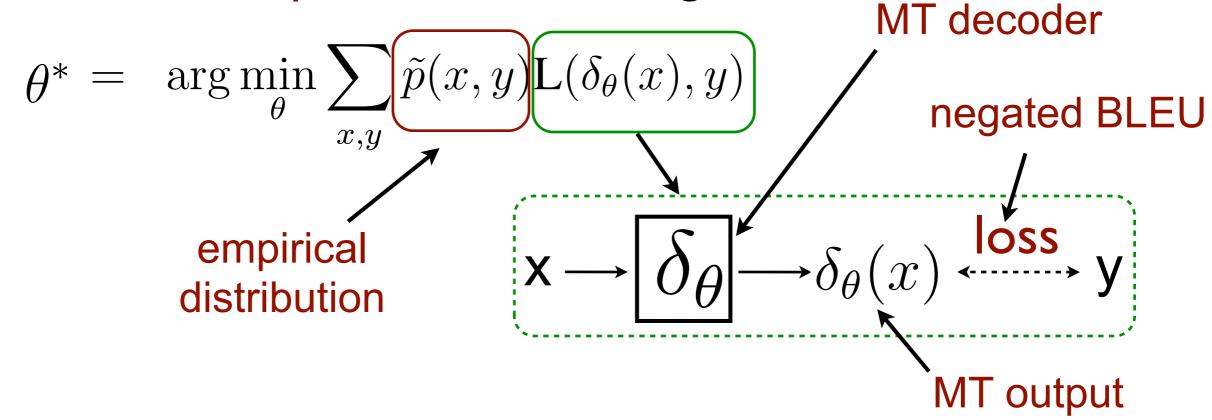




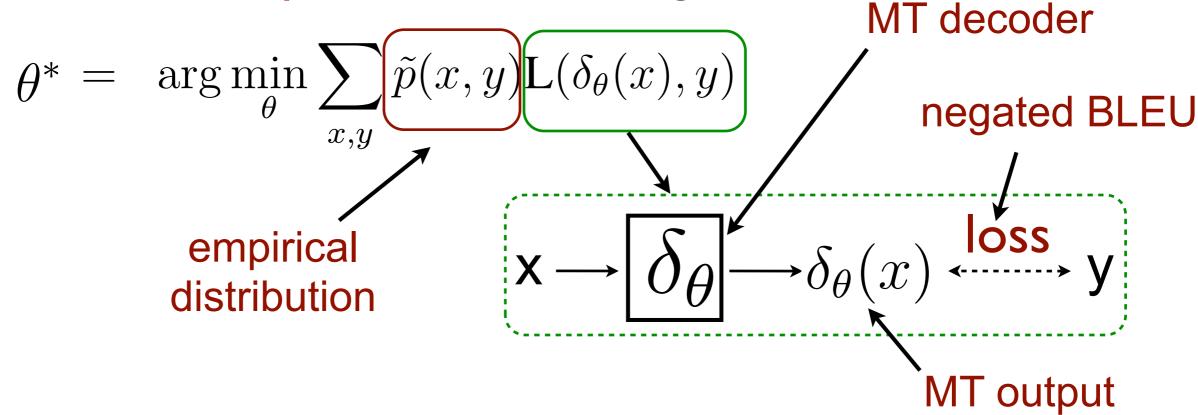








Minimum Empirical Risk Training

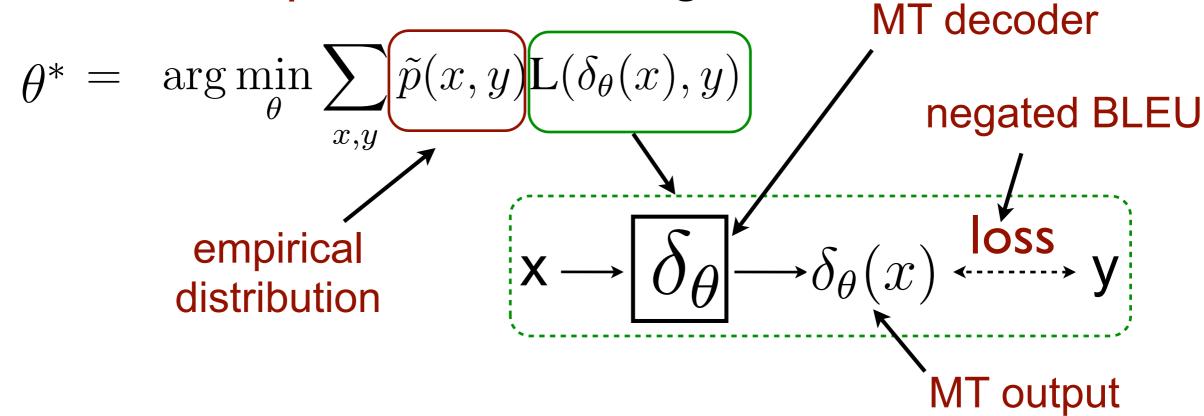


Uniform Empirical Distribution

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

Supervised: Minimum Empirical Risk

Minimum Empirical Risk Training



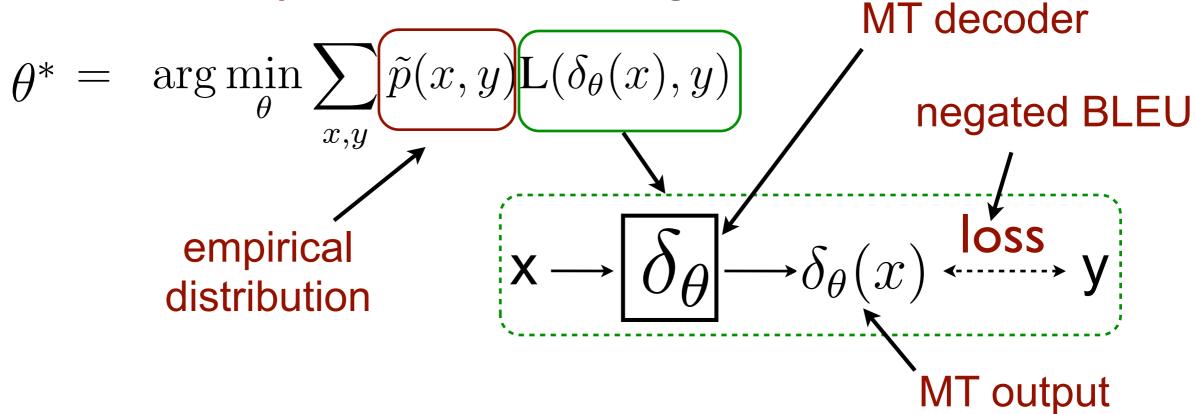
Uniform Empirical Distribution

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

- MERT
- CRF
- Peceptron

Supervised: Minimum Empirical Risk

Minimum Empirical Risk Training



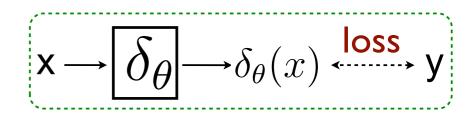
Uniform Empirical Distribution

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

What if the input x is missing?

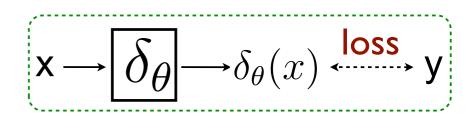
- MERT
- CRF
- Peceptron

Minimum Empirical Risk Training



$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

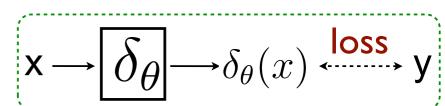
• Minimum Empirical Risk Training



$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)$$

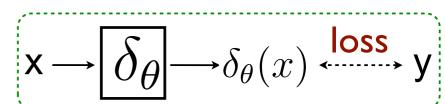
Minimum Empirical Risk Training



$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i) \right]$$

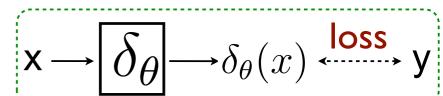
Minimum Empirical Risk Training



$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i) \right]$$

Minimum Empirical Risk Training

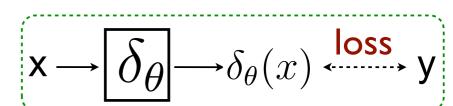


$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \underbrace{\sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)}_{X}$$

$$\widetilde{y}_i$$

Minimum Empirical Risk Training

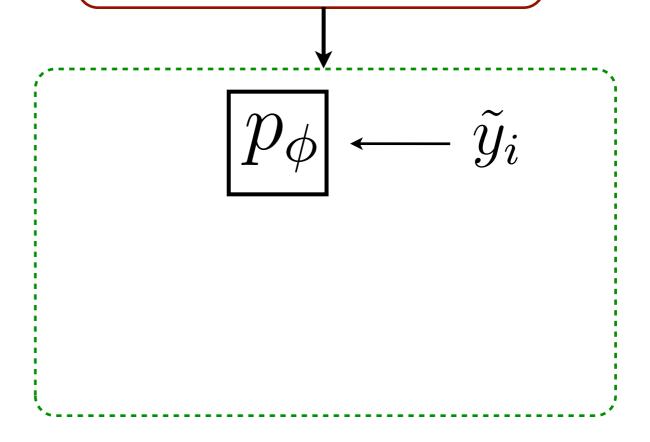


$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

Minimum Imputed Risk Training

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)$$

 p_{ϕ} : reverse model



Minimum Empirical Risk Training

$$\mathbf{x} \longrightarrow \delta_{\theta}(x) \stackrel{\mathbf{loss}}{\longleftrightarrow} \mathbf{y}$$

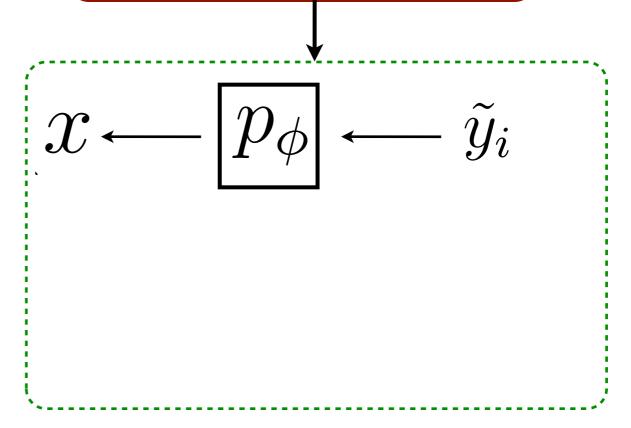
$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

Minimum Imputed Risk Training

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)$$

 p_{ϕ} : reverse model

 \mathcal{X} : imputed input



Minimum Empirical Risk Training

$$\mathbf{x} \longrightarrow \boxed{\delta_{\theta}} \longrightarrow \delta_{\theta}(x) \stackrel{\mathbf{loss}}{\longleftrightarrow} \mathbf{y}$$

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$

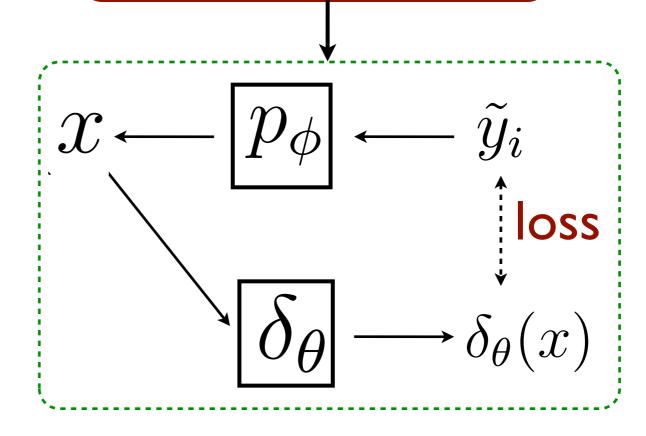
Minimum Imputed Risk Training

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i) \right]$$

 p_{ϕ} : reverse model

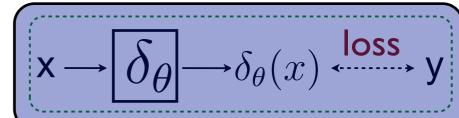
 \mathcal{X} : imputed input

 δ_{θ} : forward system



Minimum Empirical Risk Training

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$



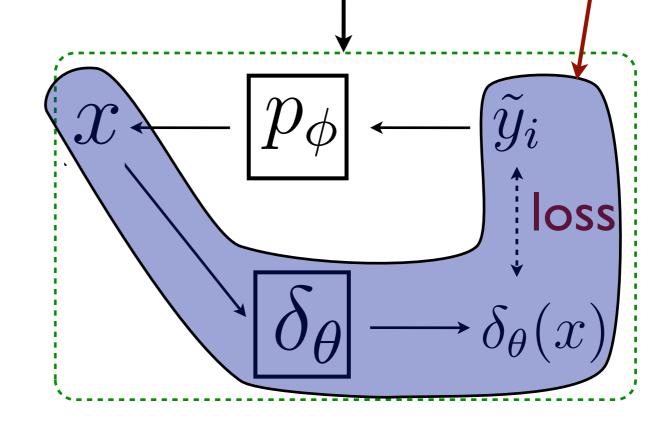
Minimum Imputed Risk Training

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i) \right]$$

 p_{ϕ} : reverse model

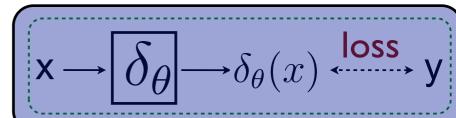
 \mathcal{X} : imputed input

 δ_{θ} : forward system



Minimum Empirical Risk Training

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$



Minimum Imputed Risk Training

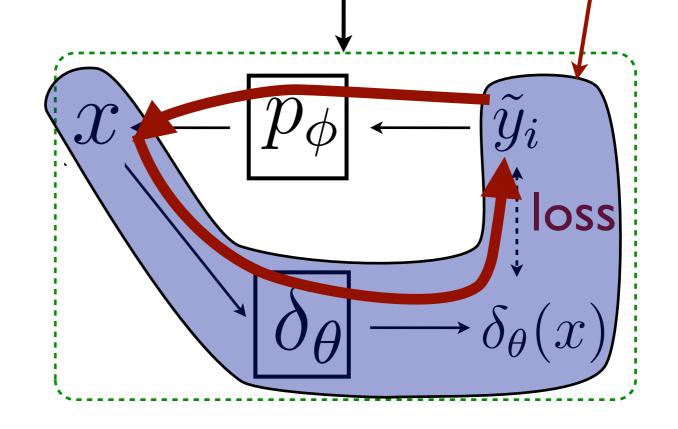
$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)$$

 p_{ϕ} : reverse model

 \mathcal{X} : imputed input

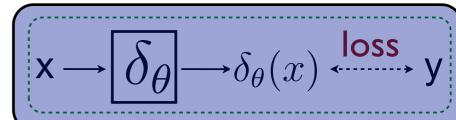
 δ_{θ} : forward system

Round trip translation



Minimum Empirical Risk Training

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(\delta_{\theta}(x_i), \tilde{y}_i)$$



Minimum Imputed Risk Training

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i) \right]$$

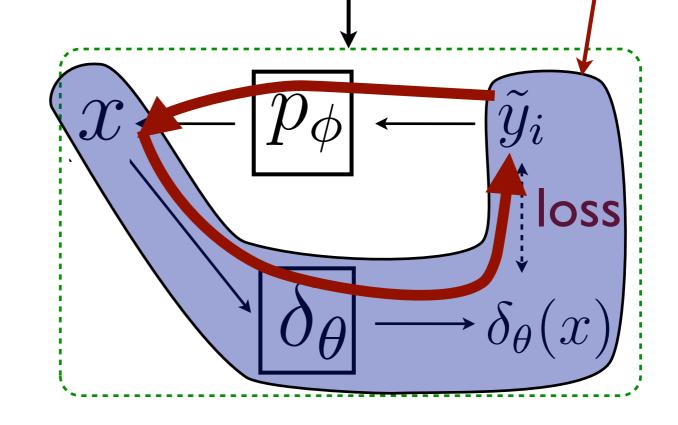
 p_{ϕ} : reverse model

 \mathcal{X} : imputed input

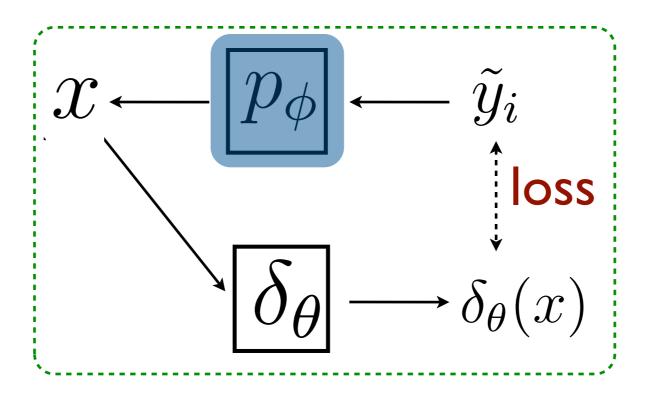
 δ_{θ} : forward system

Round trip translation

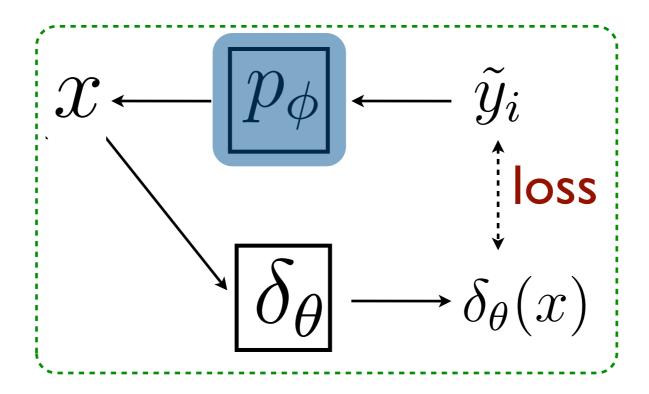
Speech recognition?



Training Reverse Model $\,p_{\phi}$

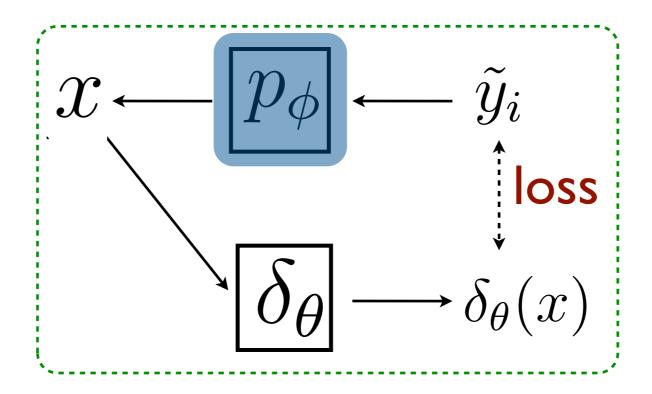


Training Reverse Model p_{ϕ}



Our goal is to train a good forward system $\,\delta_{ heta}$

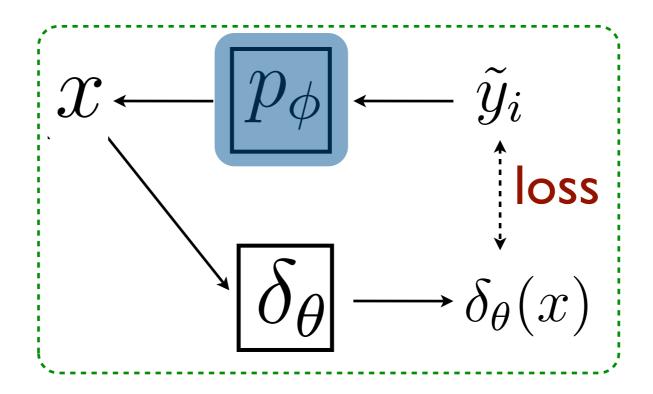
Training Reverse Model p_{ϕ}



Our goal is to train a good forward system $\delta_{ heta}$

 p_{ϕ} and $\delta_{ heta}$ are parameterized and trained separately

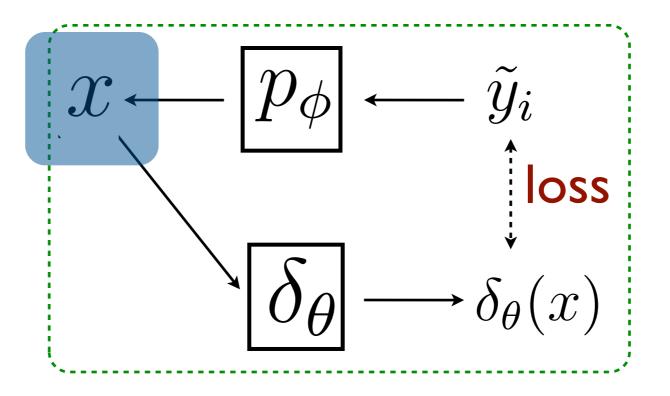
Training Reverse Model $\,p_{\phi}$

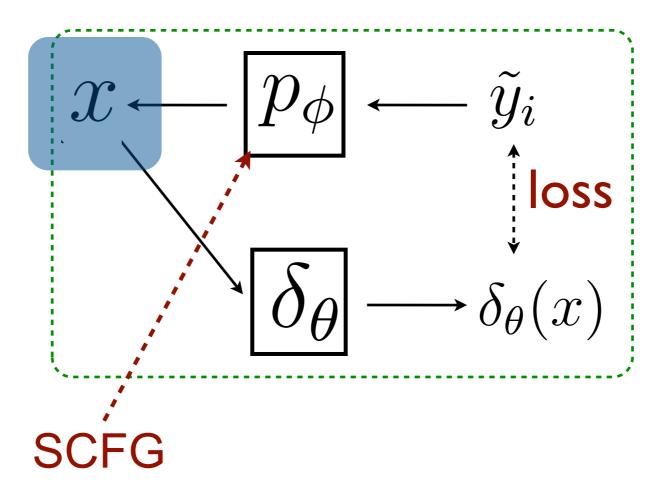


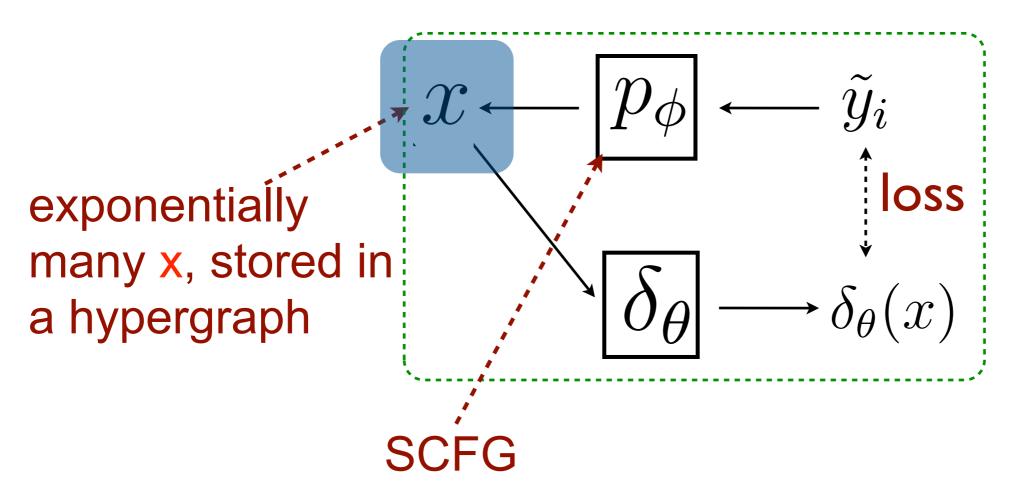
Our goal is to train a good forward system $\delta_{ heta}$

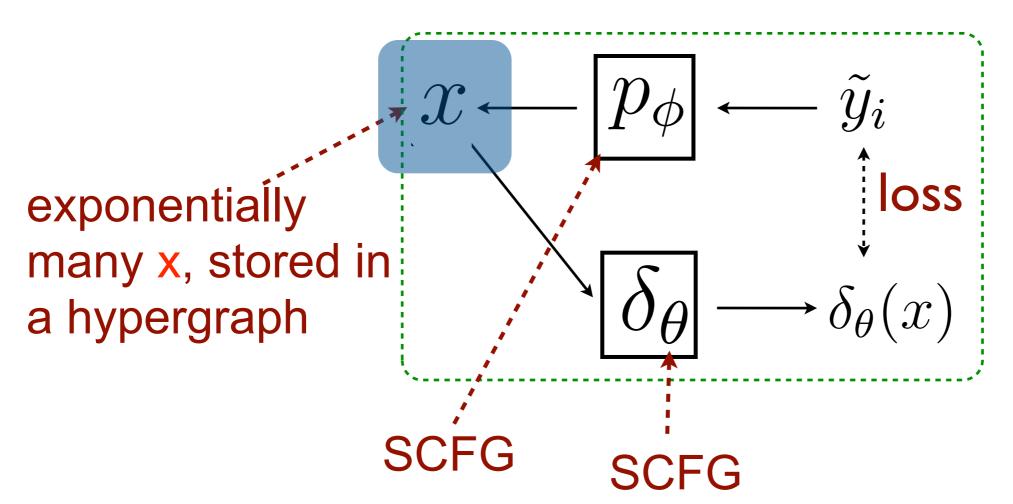
 p_{ϕ} and $\delta_{ heta}$ are parameterized and trained separately

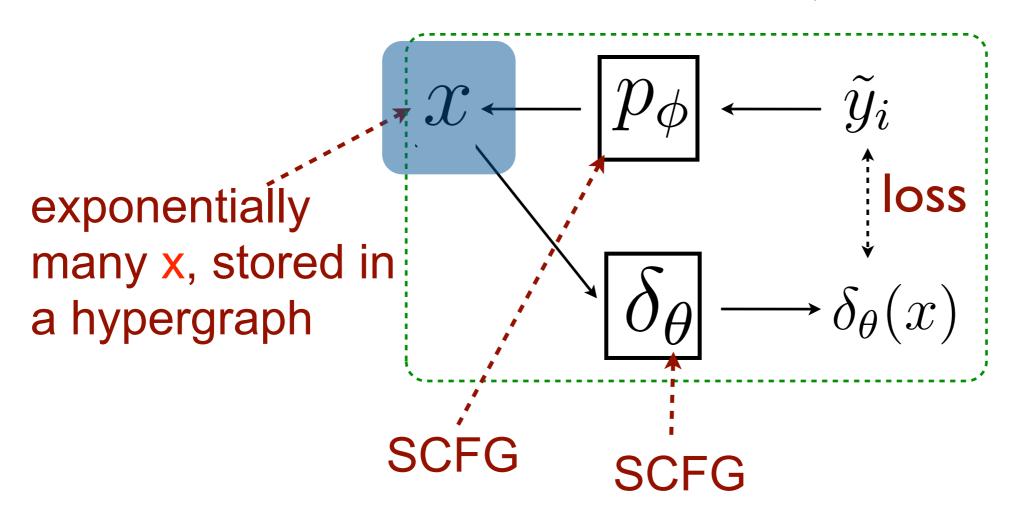
 p_{ϕ} is fixed when training $\delta_{ heta}$



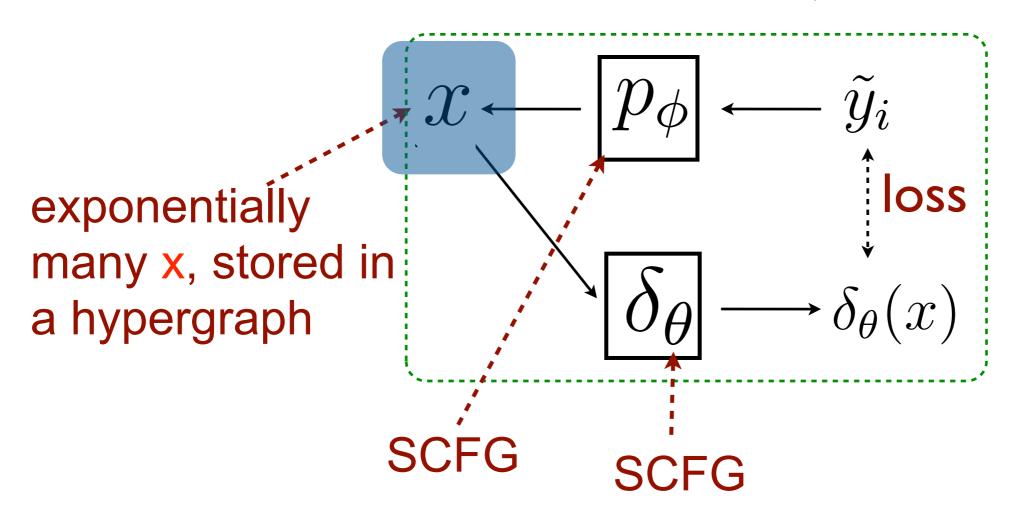






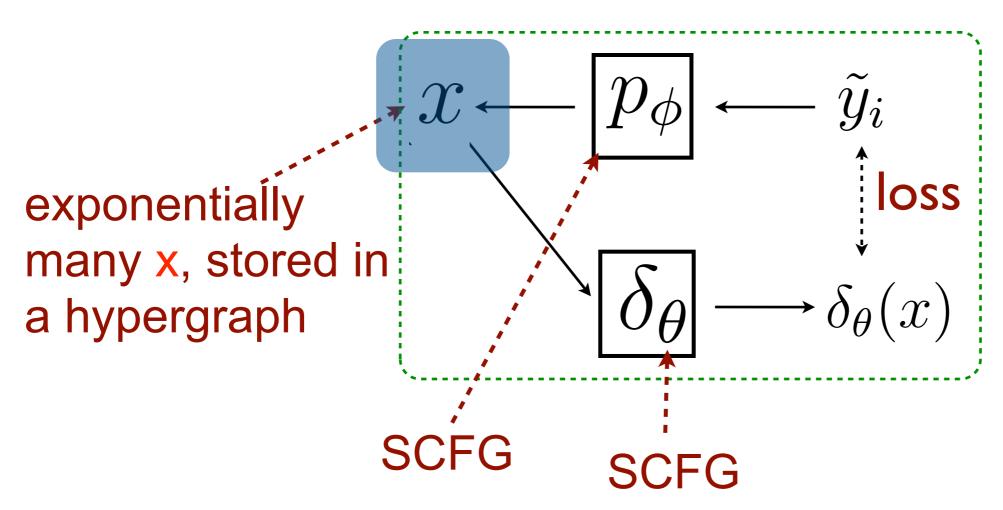


CFG is not closed under composition!



CFG is not closed under composition!

- Approximations
 - k-best
 - sampling
 - lattice



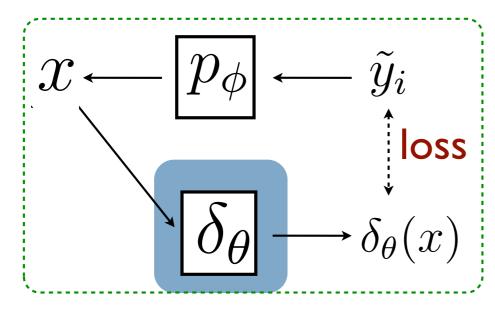
CFG is not closed under composition!

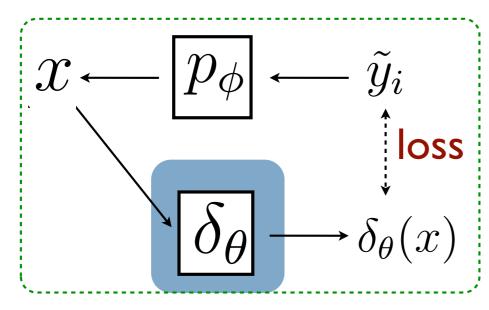
- Approximations
 - k-best
 - sampling
 - lattice

variational approximation

+

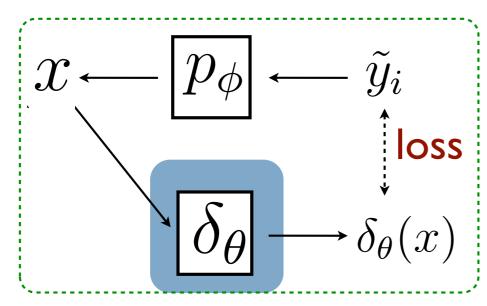
lattice decoding (Dyer et al., 2008)





- $\delta_{\theta}(x) = \underset{y}{\operatorname{argmax}} p_{\theta}(y \mid x)$
- Deterministic Decoding
 - use one-best translation

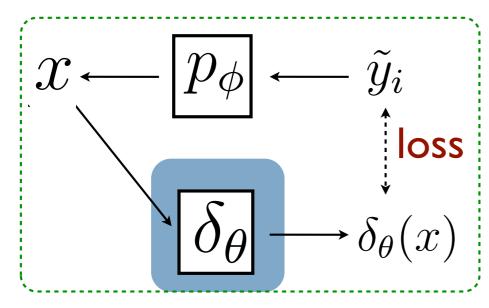
$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)$$



- $\delta_{\theta}(x) = \underset{y}{\operatorname{argmax}} p_{\theta}(y \mid x)$
- Deterministic Decoding
 - use one-best translation

the objective is not differentiable

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)$$



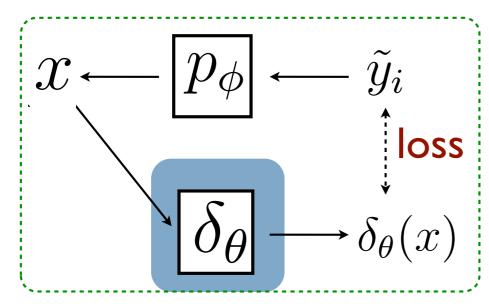
 $\delta_{\theta}(x) = \underset{y}{\operatorname{argmax}} p_{\theta}(y \mid x)$

- Deterministic Decoding
 - use one-best translation

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)$$

- Randomized Decoding
 - use a distribution of translations

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) \sum_{y} p_{\theta}(y \mid x) L(y, \tilde{y}_i)$$



 $\delta_{\theta}(x) = \underset{y}{\operatorname{argmax}} p_{\theta}(y \mid x)$

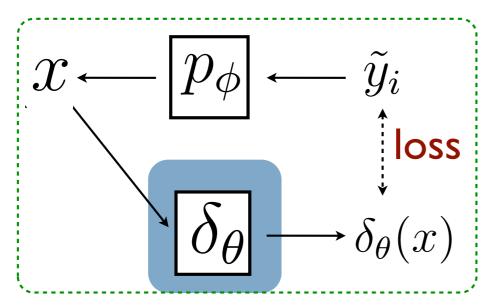
- Deterministic Decoding
 - use one-best translation

the objective is not differentiable

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)$$

- Randomized Decoding
 - use a distribution of translations

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) \left[\sum_{y} p_{\theta}(y \mid x) L(y, \tilde{y}_i) \right]$$



 $\delta_{\theta}(x) = \operatorname{argmax} p_{\theta}(y \mid x)$

- Deterministic Decoding
 - use one-best translation

the objective is not differentiable

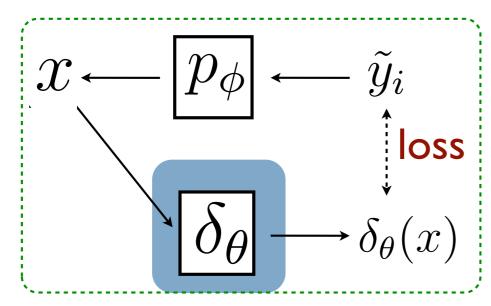
$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)$$

- Randomized Decoding
 - use a distribution of translations

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) \sum_{y} p_{\theta}(y \mid x) L(y, \tilde{y}_i)$$

expected loss

$$\left(\sum_{y} p_{\theta}(y \mid x) L(y, \tilde{y}_{i})\right)$$



 $\delta_{\theta}(x) = \underset{y}{\operatorname{argmax}} p_{\theta}(y \mid x)$

- Deterministic Decoding
 - use one-best translation

the objective is not differentiable

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) L(\delta_{\theta}(x), \tilde{y}_i)$$

- Randomized Decoding
 - use a distribution of translations

differentiable

expected loss

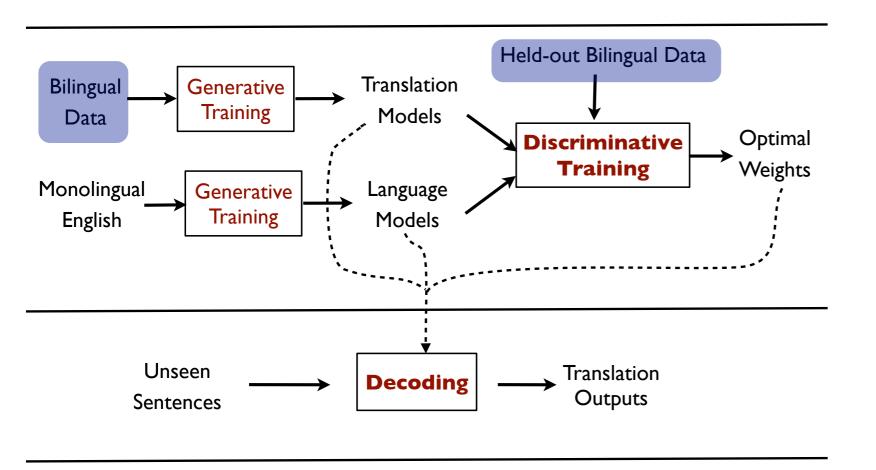
$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \sum_{x} p_{\phi}(x \mid \tilde{y}_i) \left[\sum_{y} p_{\theta}(y \mid x) L(y, \tilde{y}_i) \right]$$

Experiments

- Supervised Training
 - require bitext
- Unsupervised Training
 - require monolingual English
- Semi-supervised Training
 - interpolation of supervised and unsupervised

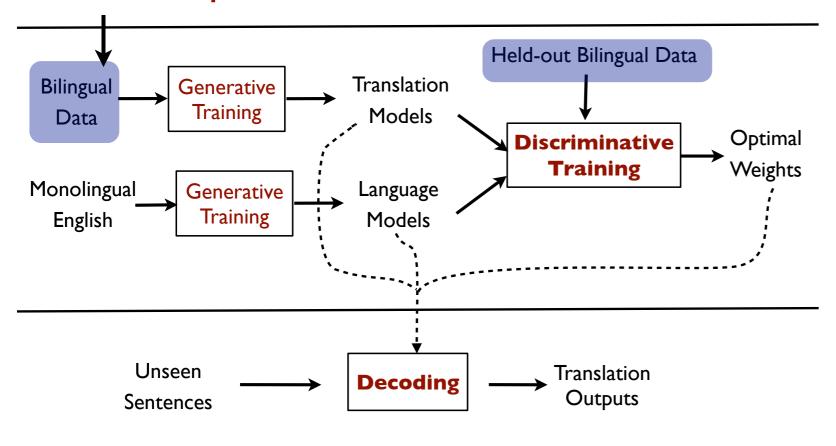
Training scenario	Test BLEU
Sup, (200, 200*16)	47.6

Training scenario	Test BLEU
Sup, (200, 200*16)	47.6

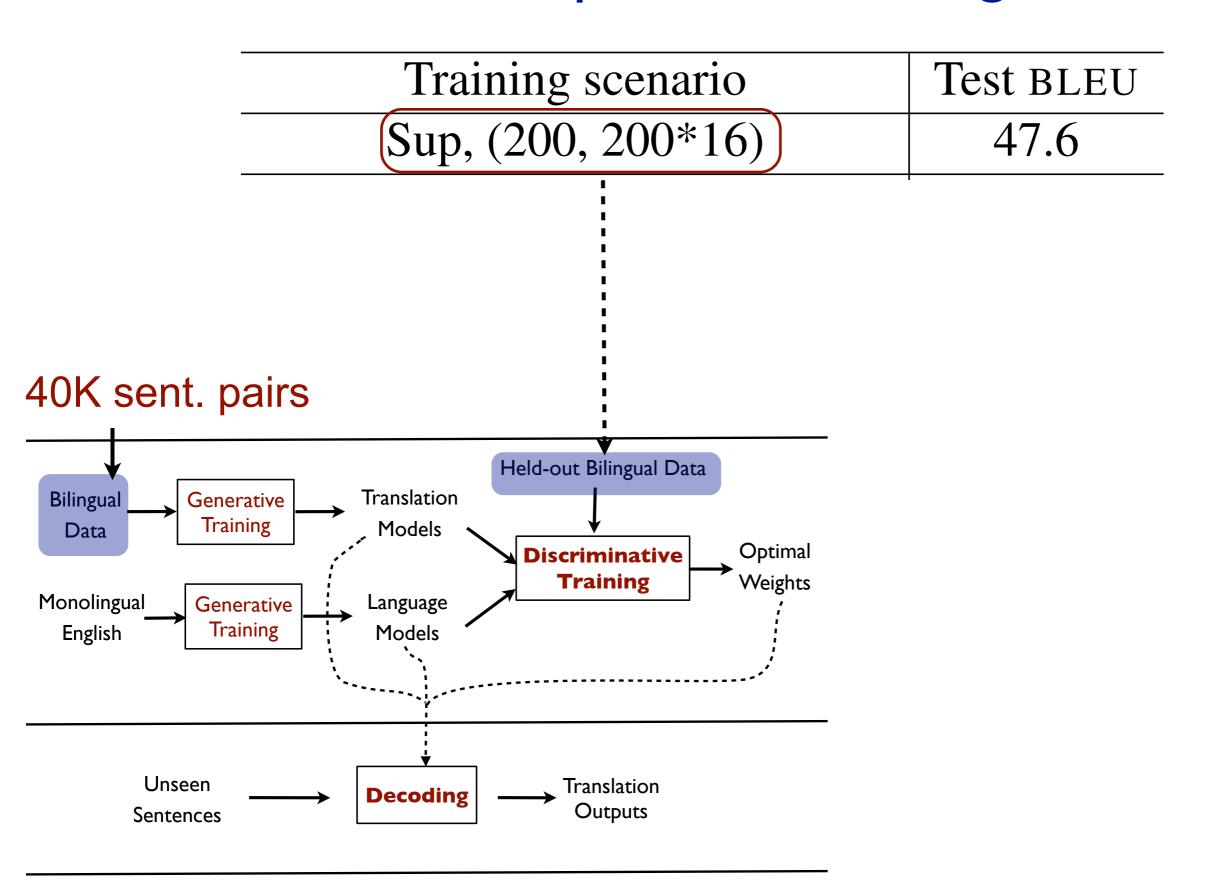


Training scenario	Test BLEU
Sup, (200, 200*16)	47.6

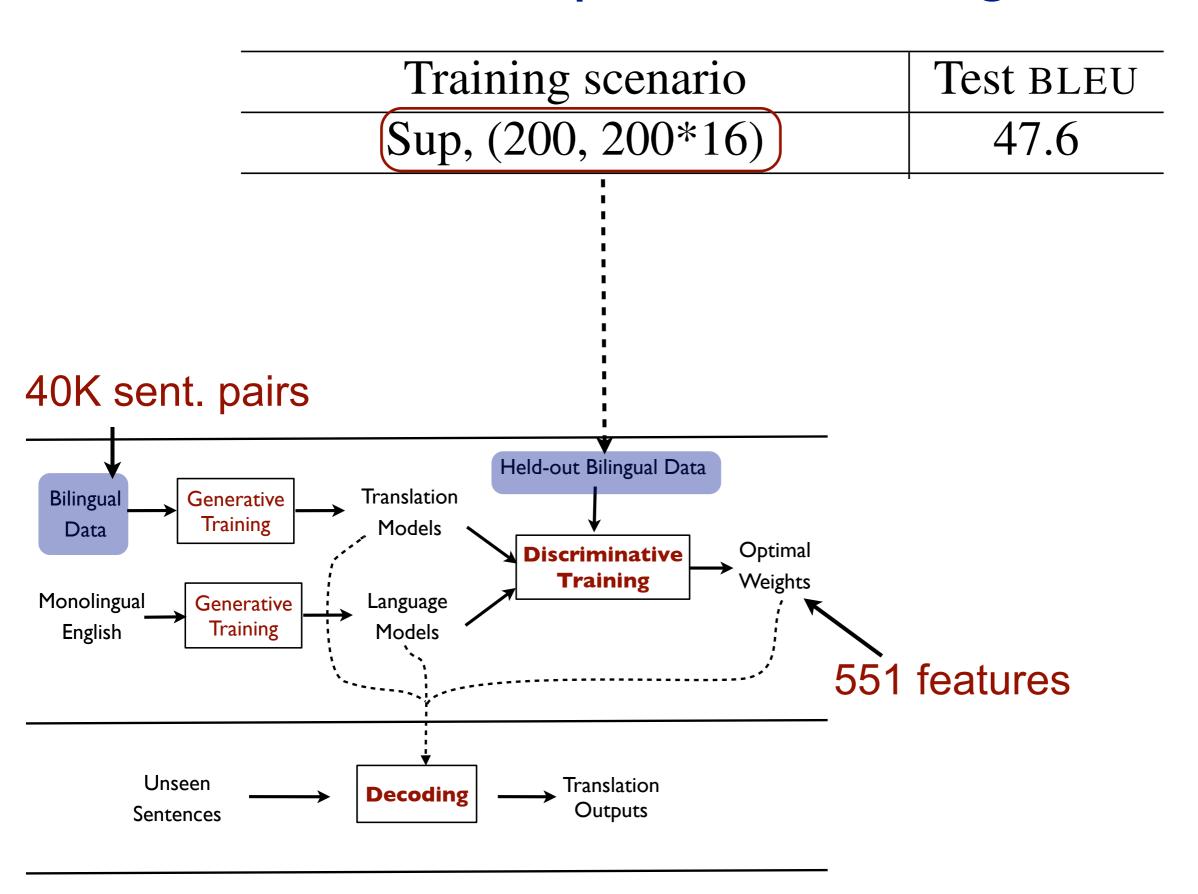
40K sent. pairs



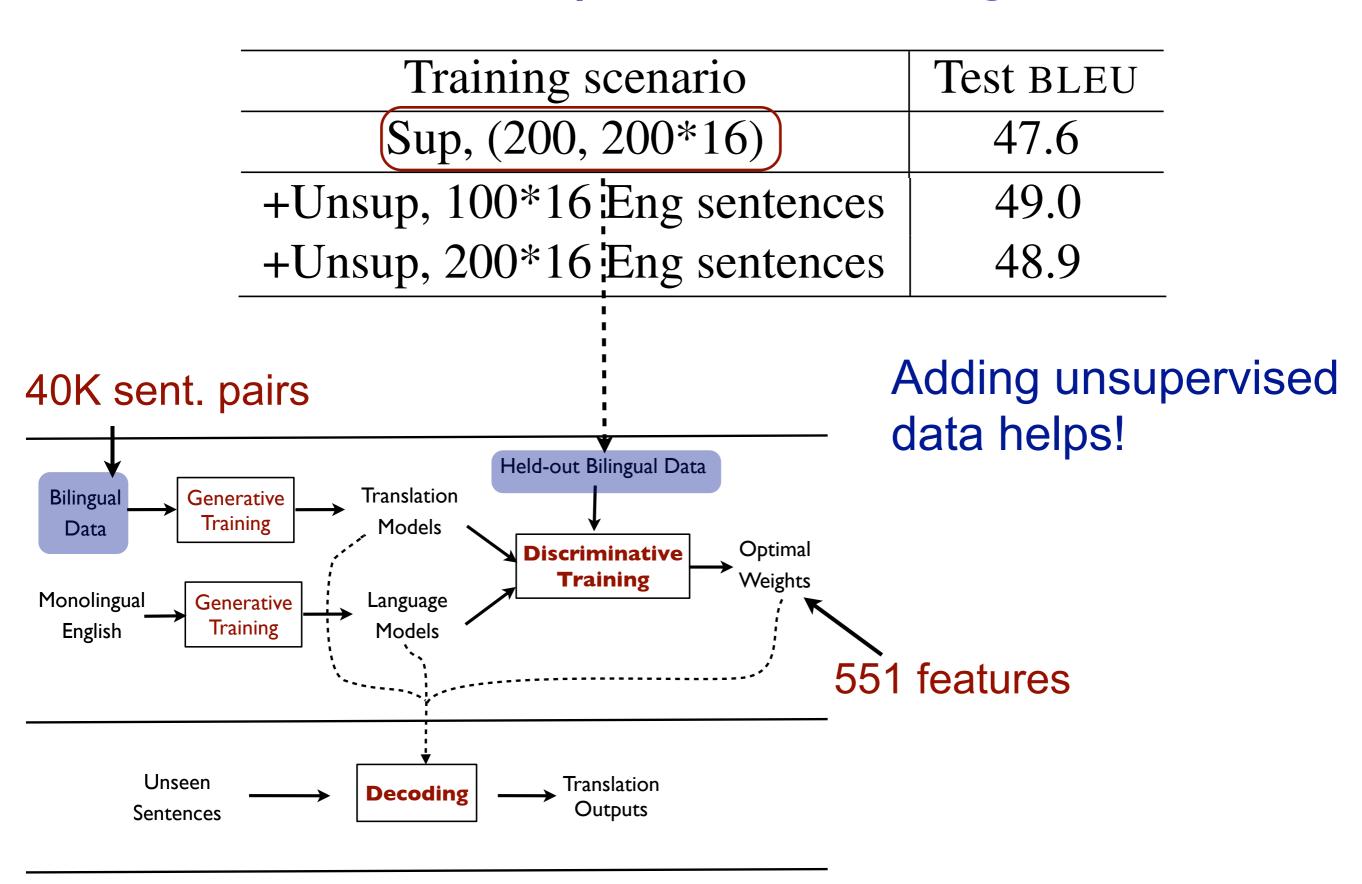
Semi-supervised Training

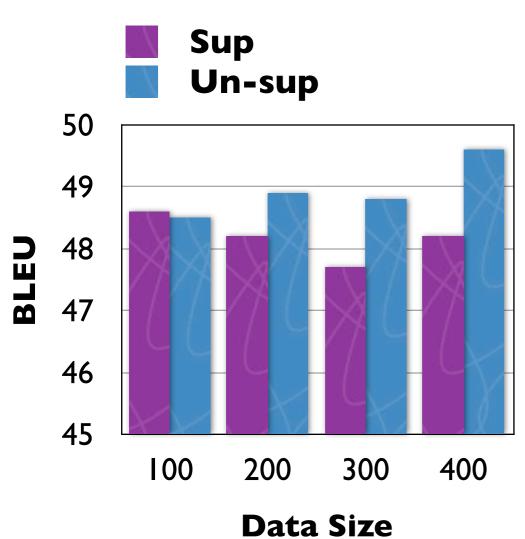


Semi-supervised Training

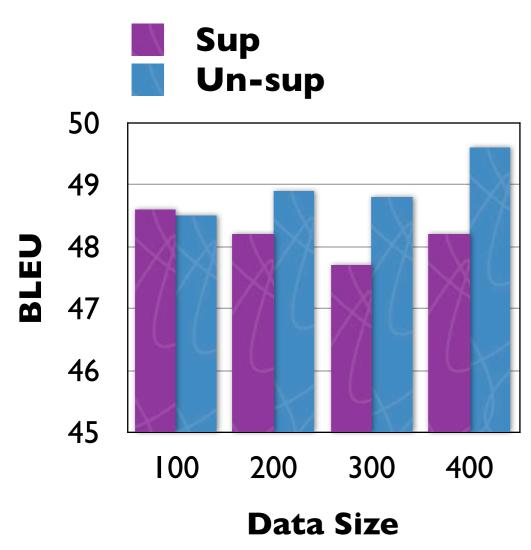


Semi-supervised Training



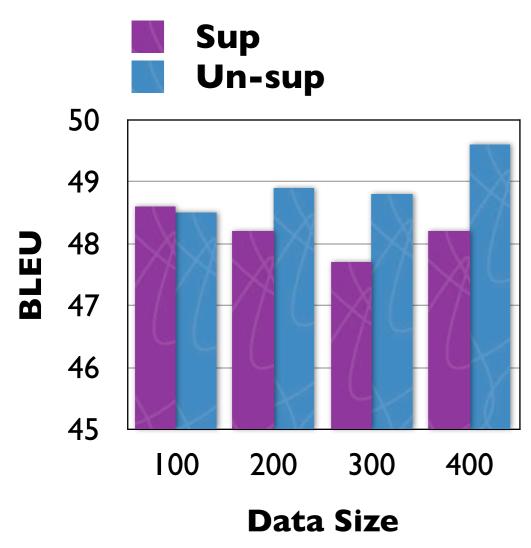


Unsupervised training performs as well as (and often better than) the supervised one!



Unsupervised training performs as well as (and often better than) the supervised one!

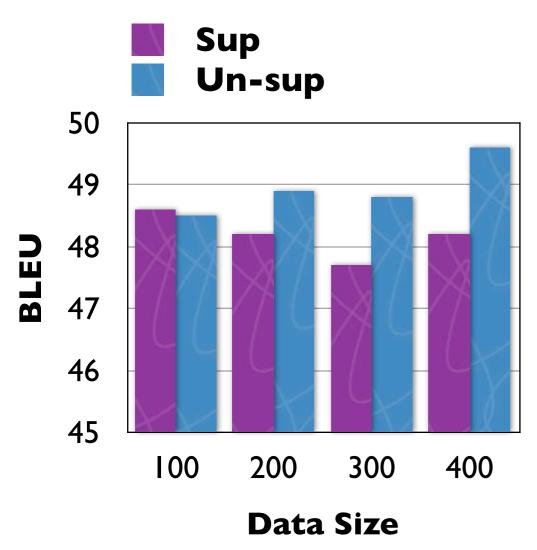
Unsupervised uses **16** times of data as supervised. For example,



Unsupervised training performs as well as (and often better than) the supervised one!

Unsupervised uses **16** times of data as supervised. For example,

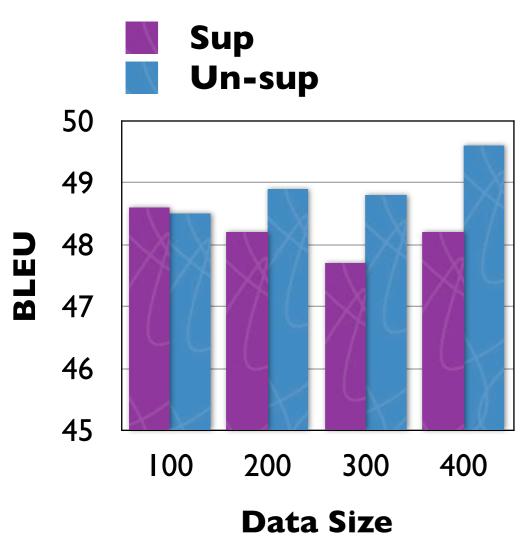
	Chinese	English
Sup	100	16*100



Unsupervised training performs as well as (and often better than) the supervised one!

Unsupervised uses **16** times of data as supervised. For example,

	Chinese	English
Sup	100	16*100
Unsup	16*100	16*16*100

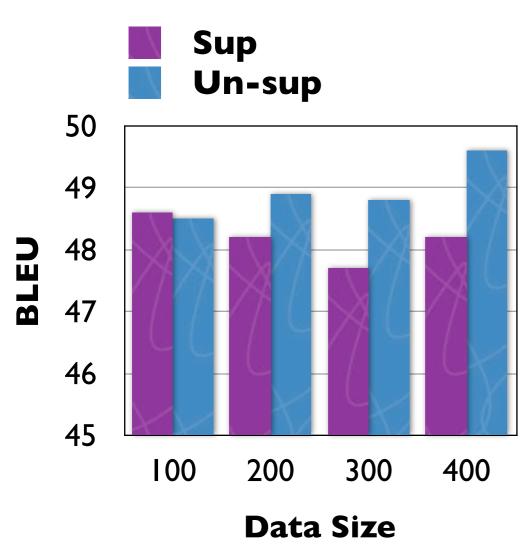


Unsupervised training performs as well as (and often better than) the supervised one!

Unsupervised uses **16** times of data as supervised. For example,

	Chinese	English
Sup	100	16*100
Unsup	16*100	16*16*100

But, fair comparison!



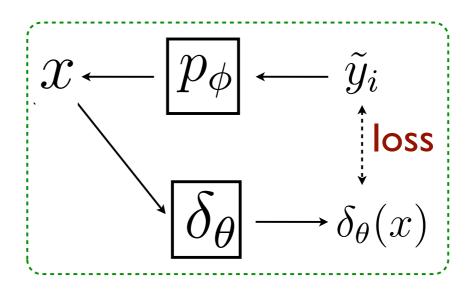
Unsupervised training performs as well as (and often better than) the supervised one!

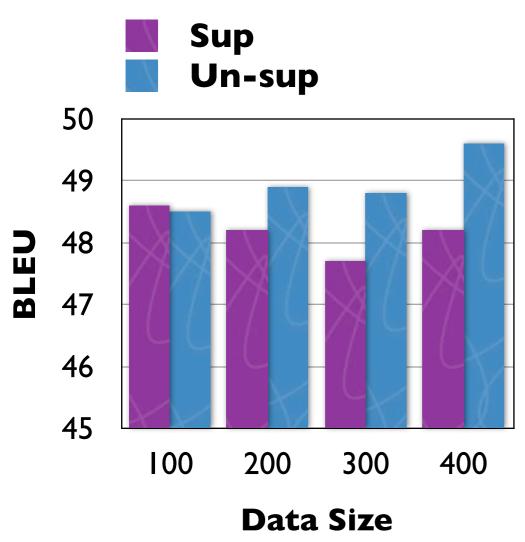
Unsupervised uses **16** times of data as supervised. For example,

	Chinese	English
Sup	100	16*100
Unsup	16*100	16*16*100

But, fair comparison!

More experiments





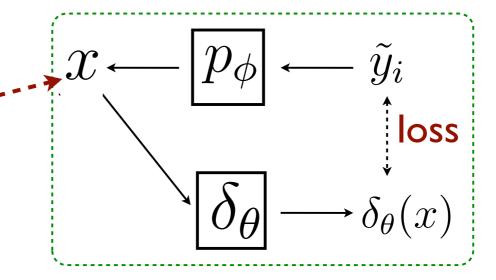
Unsupervised training performs as well as (and often better than) the supervised one!

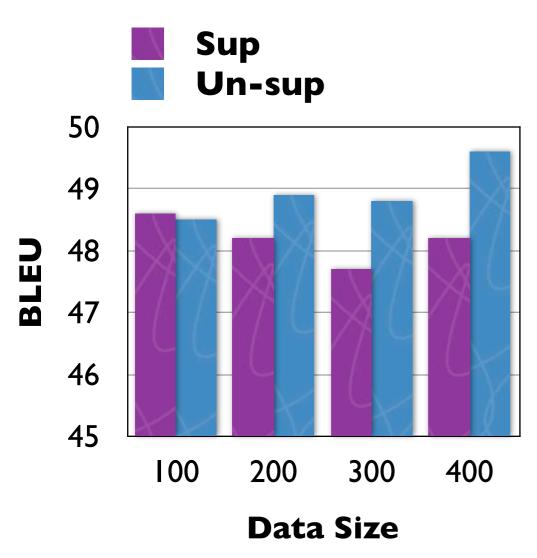
Unsupervised uses **16** times of data as supervised. For example,

	Chinese	English
Sup	100	16*100
Unsup	16*100	16*16*100

But, fair comparison!

- More experiments
 - different k-best size





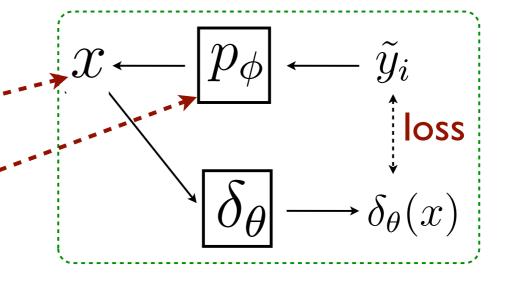
Unsupervised training performs as well as (and often better than) the supervised one!

Unsupervised uses **16** times of data as supervised. For example,

	Chinese	English
Sup	100	16*100
Unsup	16*100	16*16*100

But, fair comparison!

- More experiments
 - different k-best size
 - different reverse model



Outline

- Hypergraph as Hypothesis Space
- Unsupervised Discriminative Training
 - minimum imputed risk
 - contrastive language model estimation
- Variational Decoding
- First- and Second-order Expectation Semirings

- Language Model $p_{\theta}(y)$
 - assign a probability to an English sentence y
 - typically use an n-gram model

- Language Model $p_{\theta}(y)$
 - assign a probability to an English sentence y
 - typically use an n-gram model

$$p(y) = \prod_{w \in W_n} p(r(w) \mid h(w))^{c_w(y)}$$

- Language Model $p_{\theta}(y)$
 - assign a probability to an English sentence y
 - typically use an n-gram model

$$p(y) = \prod_{w \in W_n} p(r(w) \mid h(w))^{c_w(y)}$$
 a set of n-grams occurred in y

- Language Model $p_{\theta}(y)$
 - assign a probability to an English sentence y
 - typically use an n-gram model

```
p(y) = \prod_{w \in W_n} p(r(w) \mid h(w))^{c_w(y)} a set of n-grams occurred in y normalized
```

- Language Model $p_{\theta}(y)$
 - assign a probability to an English sentence y
 - typically use an n-gram model

$$p(y) = \prod_{w \in W_n} p(r(w) \mid h(w))^{c_w(y)}$$
 Locally normalized

Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{\mathbf{Z}(*)}$$

- Language Model $p_{\theta}(y)$
 - assign a probability to an English sentence y
 - typically use an n-gram model

$$p(y) = \prod_{w \in W_n} p(r(w) \mid h(w))^{c_w(y)}$$
 Locally normalized

Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{\mathbf{Z}(*)}$$

Globally normalized

- Language Model $p_{\theta}(y)$
 - assign a probability to an English sentence y
 - typically use an n-gram model

$$p(y) = \prod_{w \in W_n} p(r(w) \mid h(w))^{c_w(y)}$$
 Locally normalized

Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y)\cdot\theta}}{\mathbf{Z}(*)}$$
 $\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y'\in\Sigma^*} e^{f(y')\cdot\theta}$

Globally normalized

- Language Model $p_{\theta}(y)$
 - assign a probability to an English sentence y
 - typically use an n-gram model

$$p(y) = \prod_{w \in W_n} p(r(w) \mid h(w))^{c_w(y)}$$
 Locally normalized

Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y)\cdot\theta}}{Z(*)}$$

$$Z(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y')\cdot\theta}$$
 Globally

Globally normalized

All English sentences with any length!

- Language Model $p_{\theta}(y)$
 - assign a probability to an English sentence y
 - typically use an n-gram model

$$p(y) = \prod_{w \in W_n} p(r(w) \mid h(w))^{c_w(y)}$$
 Locally normalized

Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{Z(*)} \qquad Z(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

Globally normalized

All English sentences with any length!

Sampling

- Language Model $p_{\theta}(y)$
 - assign a probability to an English sentence y
 - typically use an n-gram model

$$p(y) = \prod_{w \in W_n} p(r(w) \mid h(w))^{c_w(y)}$$
 Locally normalized

Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{Z(*)} \qquad Z(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

Globally normalized

All English sentences with any length!

Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y)\cdot\theta}}{\mathbf{Z}(*)}$$
 $\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y'\in\Sigma^*} e^{f(y')\cdot\theta}$

Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y)\cdot\theta}}{\mathbf{Z}(*)}$$
 $\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y'\in\Sigma^*} e^{f(y')\cdot\theta}$

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})} e^{f(y')\cdot\theta}}$$

Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{\mathbf{Z}(*)}$$

$$\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})} e^{f(y')\cdot\theta}}$$

Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{\mathbf{Z}(*)}$$

$$\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})} e^{f(y')\cdot\theta}}$$

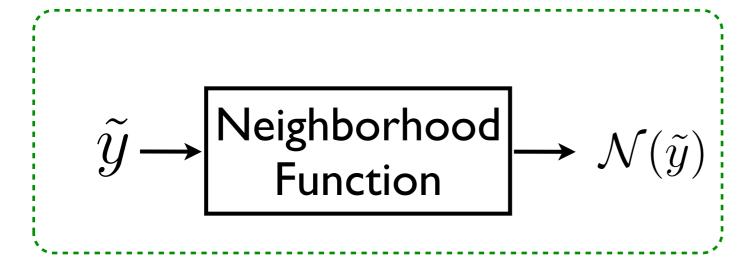
Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{\mathbf{Z}(*)}$$

$$\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})} e^{f(y')\cdot\theta}}$$



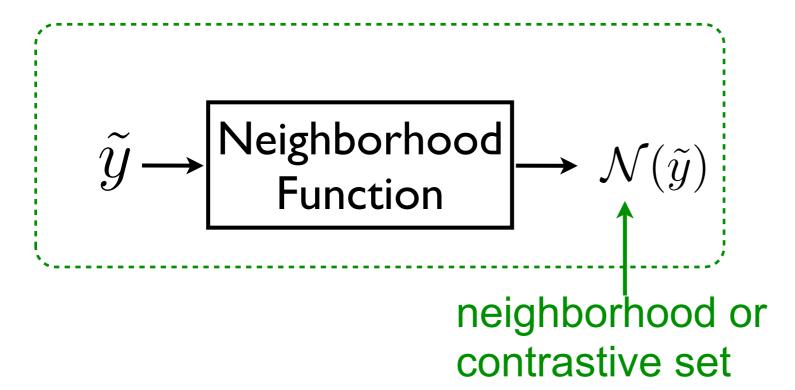
Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{Z(*)}$$

$$\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})} e^{f(y')\cdot\theta}}$$



Global Log-linear Model

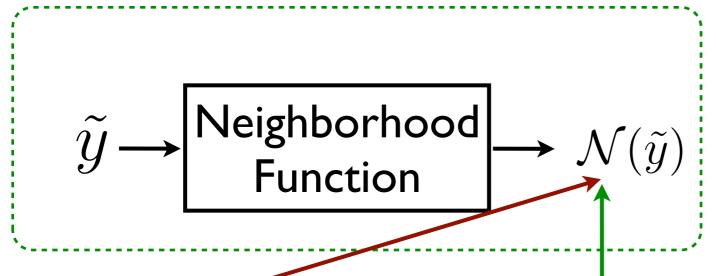
(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{Z(*)}$$

$$\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

Contrastive Estimation (CE) (Smith and Eisner, 2005)

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})} e^{f(y')\cdot\theta}}$$



a set of alternate Eng. sentences of \tilde{y} neighborhood or contrastive set

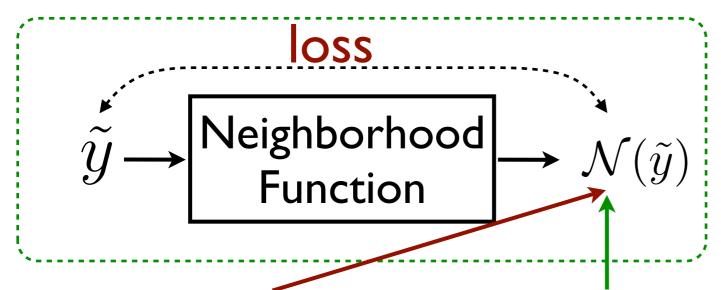
Global Log-linear Model

(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y)\cdot\theta}}{\mathbf{Z}(*)}$$
 $\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y'\in\Sigma^*} e^{f(y')\cdot\theta}$

Contrastive Estimation (CE) (Smith and Eisner, 2005)

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})} e^{f(y')\cdot\theta}}$$



a set of alternate Eng. sentences of \tilde{y} neighborhood or contrastive set

Global Log-linear Model

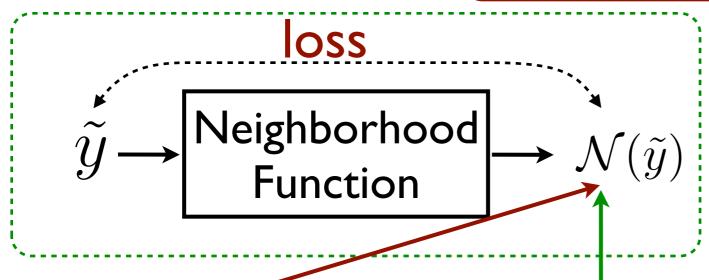
(whole-sentence maximum-entropy LM) (Rosenfeld et al., 2001)

$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{\mathbf{Z}(*)}$$

$$\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

Contrastive Estimation (CE) (Smith and Eisner, 2005)

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \underbrace{\frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})}e^{f(y')\cdot\theta}}}$$



a set of alternate Eng. sentences of \tilde{y} neighborhood or contrastive set

Global Log-linear Model

(whole-sentence maximum-entropy LM)

(Rosenfeld et al., 2001)

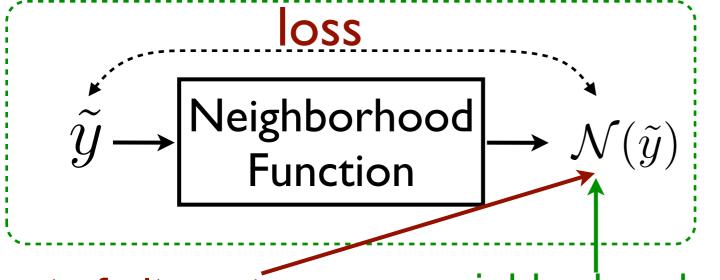
$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{\mathbf{Z}(*)}$$

$$\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

Contrastive Estimation (CE) (Smith and Eisner, 2005)

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})} e^{f(y')\cdot\theta}}$$

improve both speed and accuracy



a set of alternate Eng. sentences of \tilde{y}

neighborhood or contrastive set

Global Log-linear Model

(whole-sentence maximum-entropy LM)

(Rosenfeld et al., 2001)

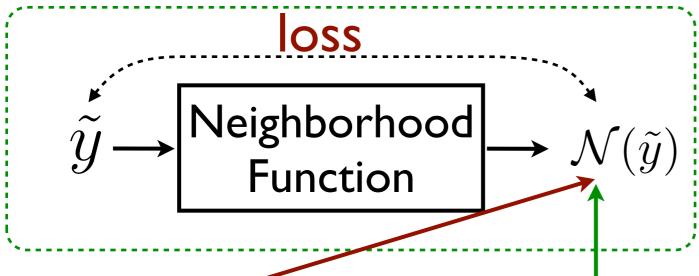
$$p_{\theta}(y) = \frac{e^{f(y) \cdot \theta}}{\mathbf{Z}(*)}$$

$$\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

Contrastive Estimation (CE) (Smith and Eisner, 2005)

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \underbrace{\frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})}e^{f(y')\cdot\theta}}}$$

improve both speed and accuracy



not proposed for language modeling

a set of alternate Eng. sentences of \tilde{y}

neighborhood or contrastive set

Global Log-linear Model

(whole-sentence maximum-entropy LM)

(Rosenfeld et al., 2001)

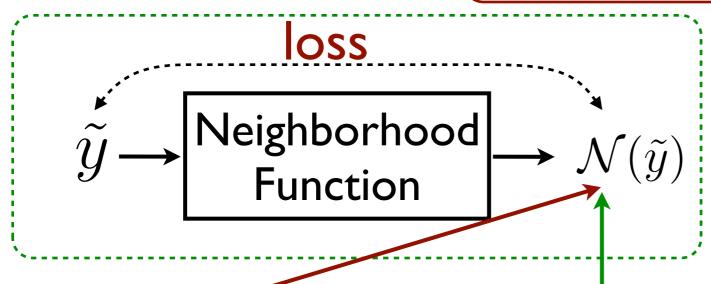
$$p_{\theta}(y) = \frac{e^{f(y)\cdot\theta}}{\mathbf{Z}(*)}$$

$$\mathbf{Z}(*) \stackrel{\text{def}}{=} \sum_{y' \in \Sigma^*} e^{f(y') \cdot \theta}$$

Contrastive Estimation (CE) (Smith and Eisner, 2005)

$$p_{\theta}(\tilde{y}) = \frac{e^{f(\tilde{y})\cdot\theta}}{\mathbf{Z}(\tilde{y})} = \underbrace{\frac{e^{f(\tilde{y})\cdot\theta}}{\sum_{y'\in\mathcal{N}(\tilde{y})}e^{f(y')\cdot\theta}}}$$

improve both speed and accuracy



not proposed for language modeling

train to recover the original English as much as possible

a set of alternate Eng. sentences of \tilde{y}

neighborhood or contrastive set

Contrastive Language Model Estimation

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

neighborhood function

Step-I: extract a confusion grammar (CG)

• an English-to-English SCFG

neighborhood function

 Step-2: for each English sentence, generate a contrastive set (or neighborhood) using the CG

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

 Step-2: for each English sentence, generate a contrastive set (or neighborhood) using the CG

• Step-3: discriminative training

neighborhood function

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

neighborhood function

Step-2: for each English sentence, generate a contrastive set (or neighborhood) using the CG

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

```
X \rightarrow \langle \text{ lead to , result in } \rangle
```

Step-2: for each English sentence, generate a contrastive set (or neighborhood) using the CG

Step-3: discriminative training

neighborhood function

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

```
X \rightarrow \langle \text{ lead to , result in } \rangle
```

neighborhood function paraphrase

Step-2: for each English sentence, generate a
 contrastive set (or neighborhood) using the CG

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

```
X \rightarrow \langle \text{ lead to }, \text{ result in } \rangle paraphrase
```

neighborhood function

 $X \rightarrow \langle X_0 \text{ at beijing , beijing 's } X_0 \rangle$

Step-2: for each English sentence, generate a contrastive set (or neighborhood) using the CG

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

```
X \rightarrow \langle \text{ lead to }, \text{ result in } \rangle paraphrase
```

neighborhood function

$$X \rightarrow \langle X_0 \text{ at beijing , beijing 's } X_0 \rangle$$

$$X \rightarrow \langle X_0 \text{ of } X_1, X_0 \text{ of the } X_1 \rangle$$

Step-2: for each English sentence, generate a contrastive set (or neighborhood) using the CG

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

```
X \rightarrow \langle \text{ lead to , result in } \rangle paraphrase
```

$$X \rightarrow \langle X_0 \text{ at beijing , beijing 's } X_0 \rangle$$

$$X \rightarrow \langle X_0 \text{ of } X_1, X_0 \text{ of the } X_1 \rangle$$

insertion

neighborhood function

Step-2: for each English sentence, generate a contrastive set (or neighborhood) using the CG

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

neighborhood function

paraphrase

$$X \rightarrow \langle \text{ lead to , result in } \rangle$$

$$X \rightarrow \langle X_0 \text{ at beijing , beijing 's } X_0 \rangle$$

$$X \rightarrow \langle X_0 \text{ of } X_1, X_0 \text{ of the } X_1 \rangle$$

insertion

$$X \rightarrow \langle X_0 \text{ 's } X_1, X_1 \text{ of } X_0 \rangle$$

Step-2: for each English sentence, generate a contrastive set (or neighborhood) using the CG

- Step-I: extract a confusion grammar (CG)
 - an English-to-English SCFG

 $X \rightarrow \langle \text{ lead to , result in } \rangle$

neighborhood function paraphrase

 $X \rightarrow \langle X_0 \text{ at beijing , beijing 's } X_0 \rangle$

 $X \rightarrow \langle X_0 \text{ of } X_1, X_0 \text{ of the } X_1 \rangle$

insertion

 $X \rightarrow \langle X_0 \text{ 's } X_1, X_1 \text{ of } X_0 \rangle$

re-ordering

Step-2: for each English sentence, generate a contrastive set (or neighborhood) using the CG

- Deriving a CG from a bilingual grammar
 - use Chinese side as pivots

- Deriving a CG from a bilingual grammar
 - use Chinese side as pivots

Bilingual Rule

- Deriving a CG from a bilingual grammar
 - use Chinese side as pivots

Bilingual Rule

$$X \rightarrow \langle \text{ mao, a cat} \rangle$$

 $X \rightarrow \langle \text{ mao, the cat} \rangle$

- Deriving a CG from a bilingual grammar
 - use Chinese side as pivots

Bilingual Rule

$$X \rightarrow \langle \text{ mao, a cat} \rangle$$

 $X \rightarrow \langle \text{ mao, the cat} \rangle$

$$X \rightarrow \langle \text{ a cat, the cat} \rangle$$

 $X \rightarrow \langle \text{ the cat, a cat} \rangle$

- Deriving a CG from a bilingual grammar
 - use Chinese side as pivots

Bilingual Rule

$$X \rightarrow \langle \text{ mao, a cat} \rangle$$

 $X \rightarrow \langle \text{ mao, the cat} \rangle$

$$X \to \langle X_0 \text{ de } X_1, X_0 \text{ on } X_1 \rangle$$

$$X \rightarrow \langle X_0 \text{ de } X_1, X_1 \text{ of } X_0 \rangle$$

$$X \rightarrow \langle a cat, the cat \rangle$$

$$X \rightarrow \langle \text{ the cat}, \text{ a cat} \rangle$$

- Deriving a CG from a bilingual grammar
 - use Chinese side as pivots

Bilingual Rule

$$X \rightarrow \langle \text{ mao, a cat} \rangle$$

 $X \rightarrow \langle \text{ mao, the cat} \rangle$

$$X \to \langle X_0 \text{ de } X_1, X_0 \text{ on } X_1 \rangle$$

$$X \to \langle X_0 \text{ de } X_1, X_1 \text{ of } X_0 \rangle$$

$$X \rightarrow \langle a \operatorname{cat}, \operatorname{the cat} \rangle$$

$$X \rightarrow \langle \text{ the cat}, \text{ a cat} \rangle$$

$$X \to \langle X_0 \text{ on } X_1, X_1 \text{ of } X_0 \rangle$$

$$X \to \langle X_0 \text{ of } X_1, X_1 \text{ on } X_0 \rangle$$

- Deriving a CG from a bilingual grammar
 - use Chinese side as pivots

Bilingual Rule

$$X \rightarrow \langle \text{ mao, a cat} \rangle$$

 $X \rightarrow \langle \text{ mao, the cat} \rangle$

$$X \to \langle X_0 \text{ de } X_1, X_0 \text{ on } X_1 \rangle$$

 $X \to \langle X_0 \text{ de } X_1, X_1 \text{ of } X_0 \rangle$

Confusion Rule

$$X o \langle$$
 a cat, the cat \rangle $X o \langle$ the cat, a cat \rangle $X o \langle X_0 \text{ on } X_1, X_1 \text{ of } X_0 \rangle$ $X o \langle X_0 \text{ of } X_1, X_1 \text{ on } X_0 \rangle$

CG captures the confusion an MT system will have when translating an input.

- Deriving a CG from a bilingual grammar
 - use Chinese side as pivots

Bilingual Rule

$$X \rightarrow \langle \text{ mao, a cat} \rangle$$

 $X \rightarrow \langle \text{ mao, the cat} \rangle$

$$X \to \langle X_0 \text{ de } X_1, X_0 \text{ on } X_1 \rangle$$

 $X \to \langle X_0 \text{ de } X_1, X_1 \text{ of } X_0 \rangle$

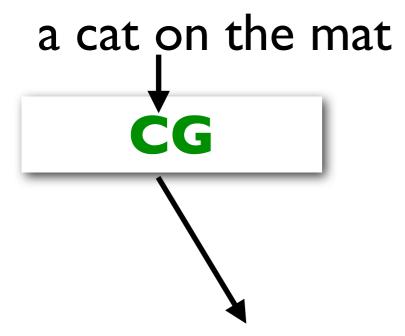
Confusion Rule

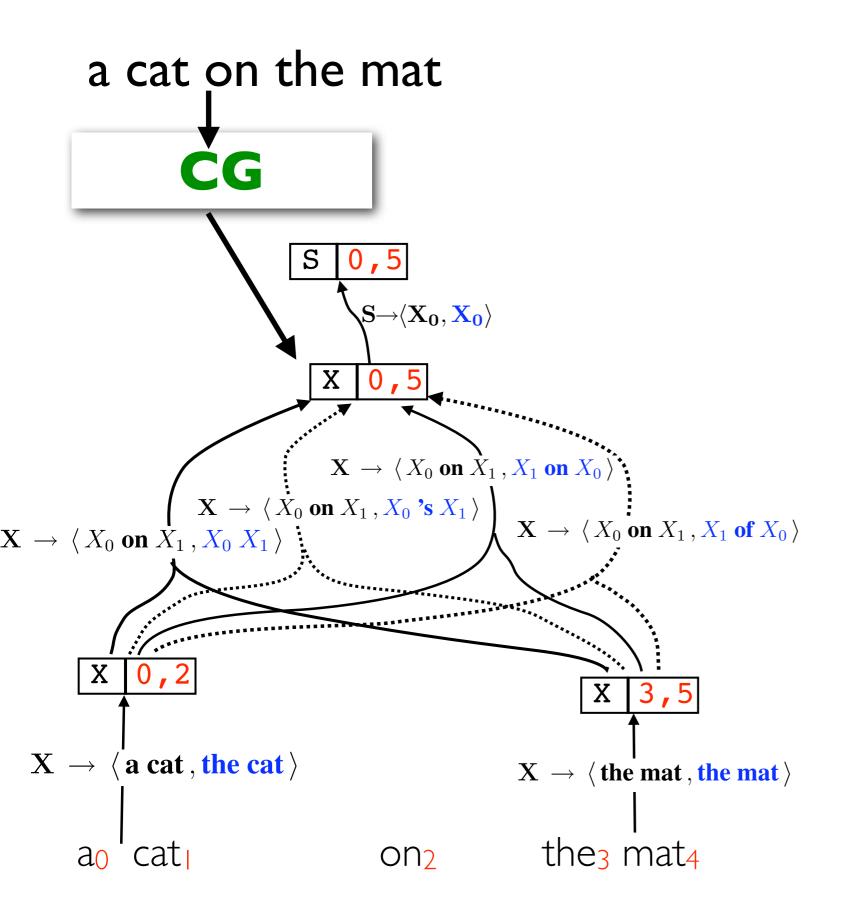
$$X \rightarrow \langle \text{ a cat, the cat} \rangle$$
 $X \rightarrow \langle \text{ the cat, a cat} \rangle$
 $X \rightarrow \langle X_0 \text{ on } X_1, X_1 \text{ of } X_0 \rangle$
 $X \rightarrow \langle X_0 \text{ of } X_1, X_1 \text{ on } X_0 \rangle$

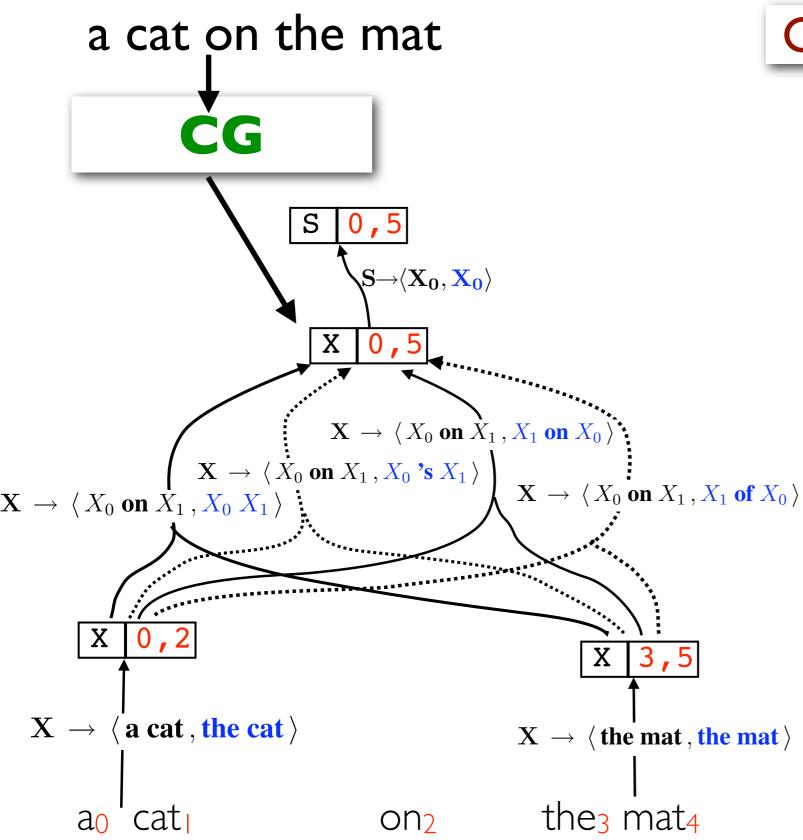
CG captures the confusion an MT system will have when translating an input.

Our neighborhood function is **learned** and **MT-specific**.

a cat on the mat

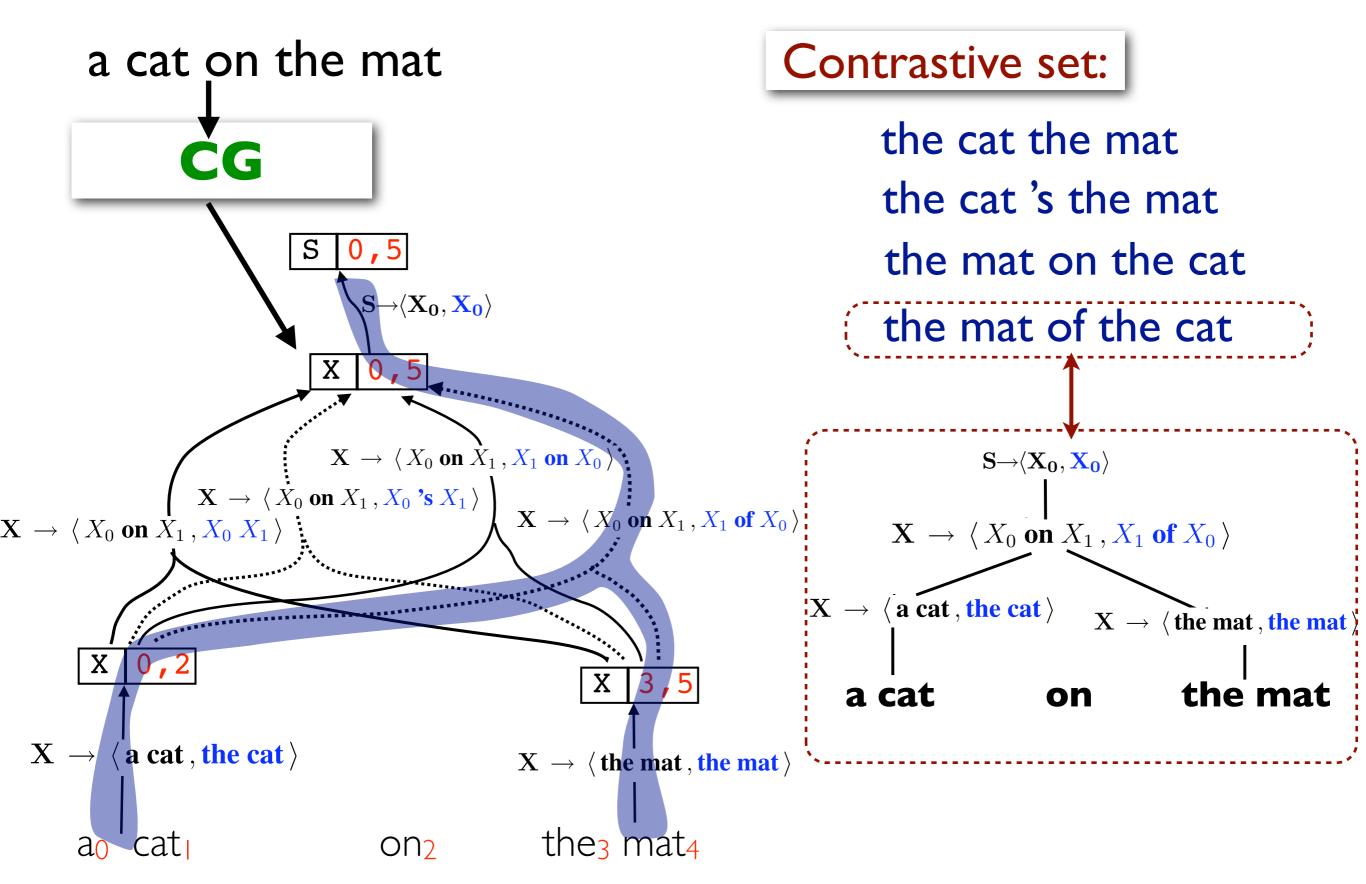


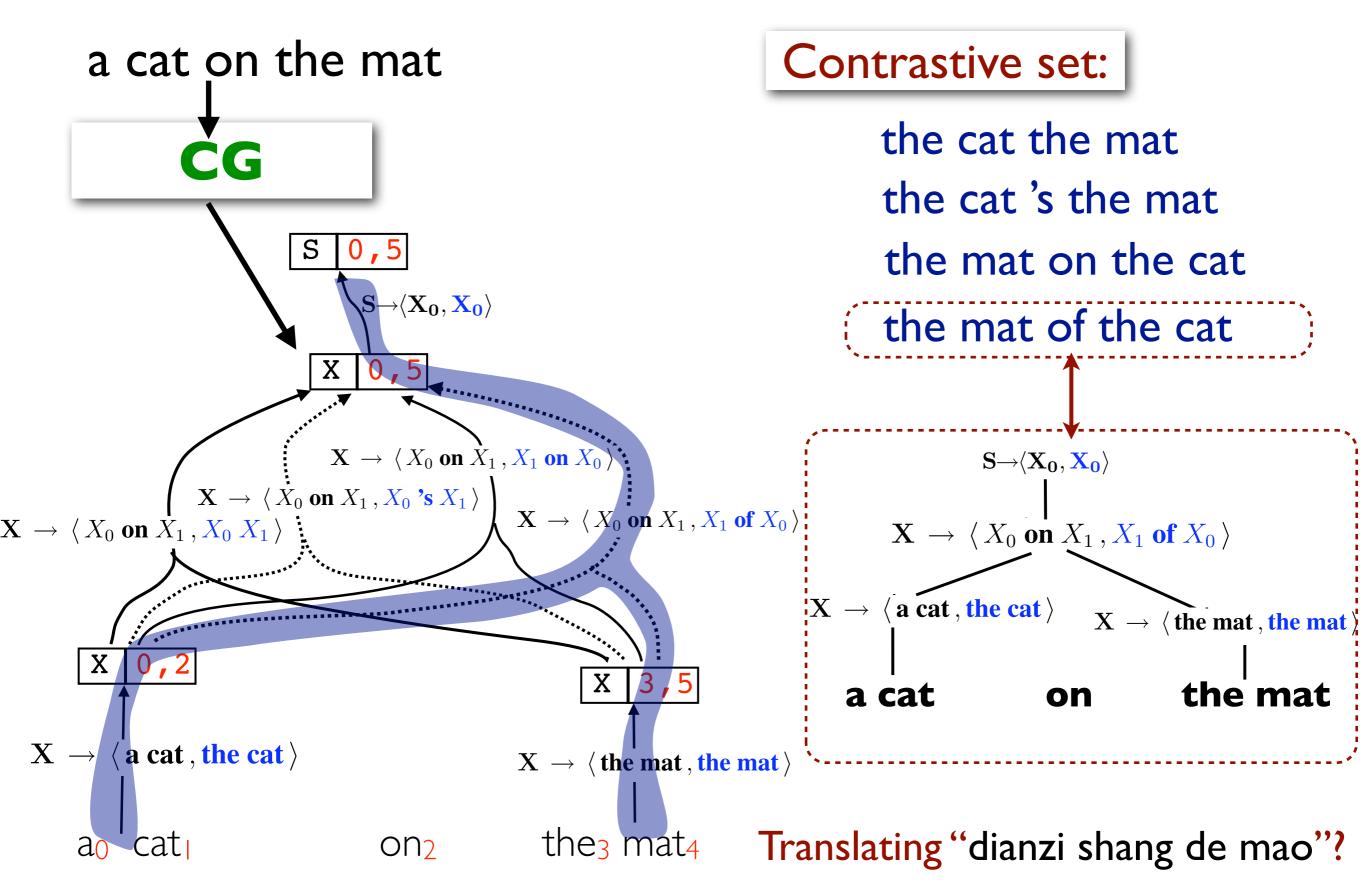




Contrastive set:

the cat the mat
the cat 's the mat
the mat on the cat
the mat of the cat





Training Objective

$$\theta^* = \arg\min_{\theta} \sum_{i} \sum_{y \in \mathcal{N}(\tilde{y}_i)} L(y, \tilde{y}_i) p_{\theta}(y \mid \tilde{y}_i)$$

Training Objective

Training Objective

$$\theta^* = \arg\min_{\theta} \sum_{i} \sum_{y \in \mathcal{N}(\tilde{y}_i) \leftarrow \cdots } L(y, \tilde{y}_i) p_{\theta}(y \mid \tilde{y}_i)$$

expected loss

Training Objective

$$\theta^* = \arg\min_{\theta} \sum_{i} \underbrace{\sum_{y \in \mathcal{N}(\tilde{y}_i)} L(y, \tilde{y}_i) p_{\theta}(y \mid \tilde{y}_i)}_{y \in \mathcal{N}(\tilde{y}_i) \leftarrow \cdots \leftarrow \text{contrastive set}}$$

CE maximizes the conditional likelihood

expected loss

Training Objective

$$\theta^* = \arg\min_{\theta} \sum_{i} \underbrace{\sum_{y \in \mathcal{N}(\tilde{y}_i)} L(y, \tilde{y}_i) p_{\theta}(y \mid \tilde{y}_i)}_{y \in \mathcal{N}(\tilde{y}_i)}$$
 contrastive set

CE maximizes the conditional likelihood

expected loss

- Iterative Training
 - Step-2: for each English sentence, generate a contrastive set (or neighborhood) using the CG
 - Step-3: discriminative training

Applying the Contrastive Model

Applying the Contrastive Model

 We can use the contrastive model as a regular language model

Applying the Contrastive Model

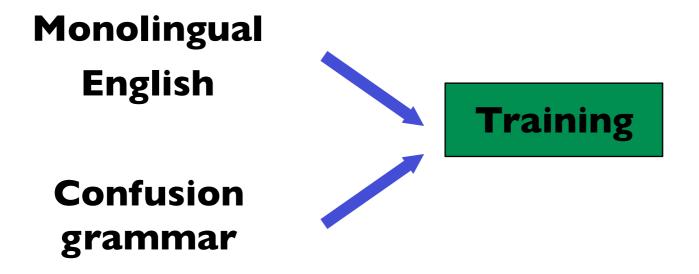
- We can use the contrastive model as a regular language model
- We can incorporate the contrastive model into an end-to-end MT system as a feature

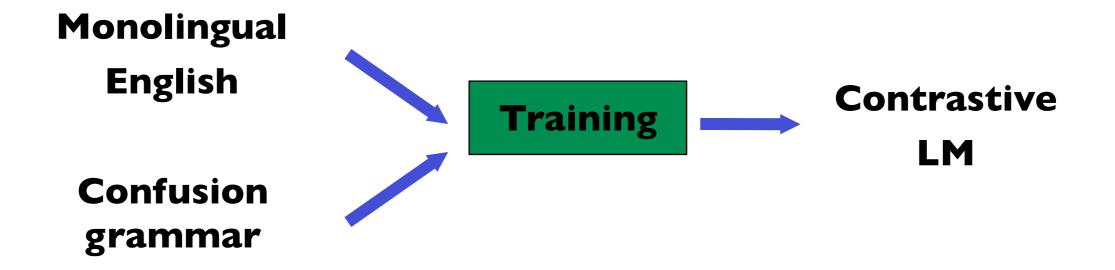
Applying the Contrastive Model

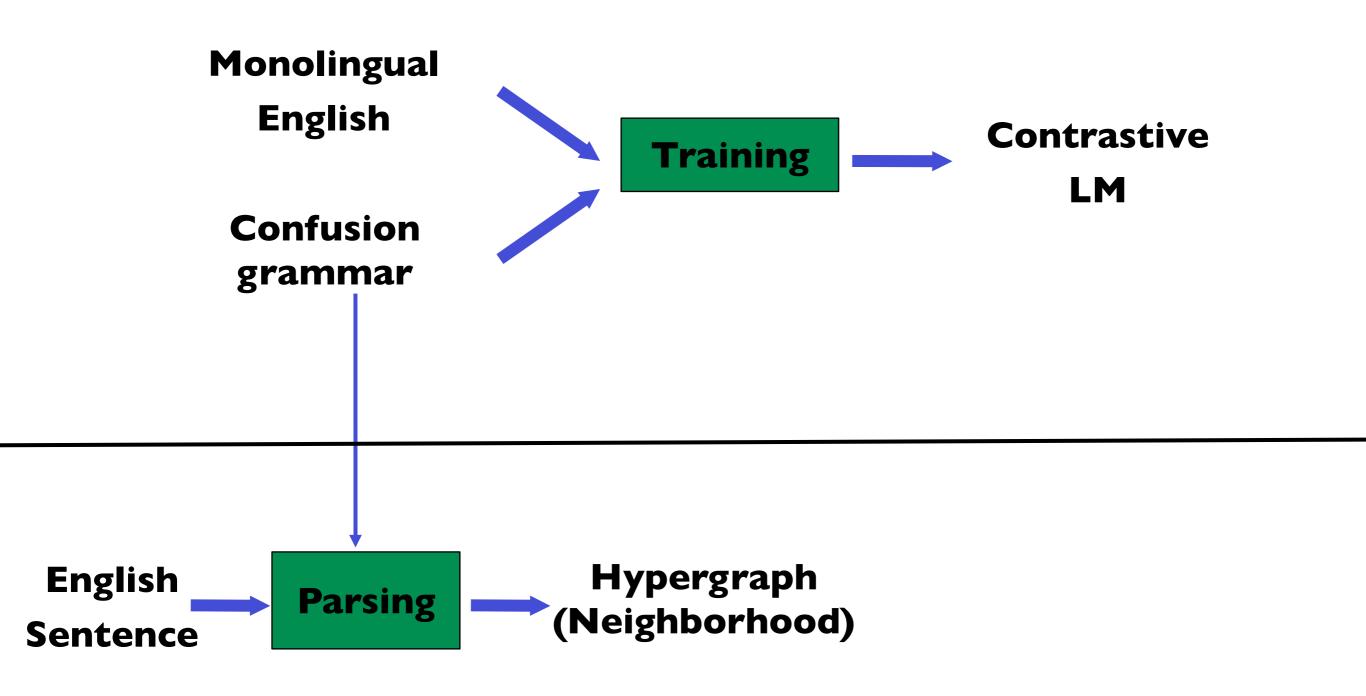
- We can use the contrastive model as a regular language model
- We can incorporate the contrastive model into an end-to-end MT system as a feature
- We may also use the contrastive model to generate paraphrase sentences (if the loss function measures semantic similarity)
 - the rules in CG are symmetric

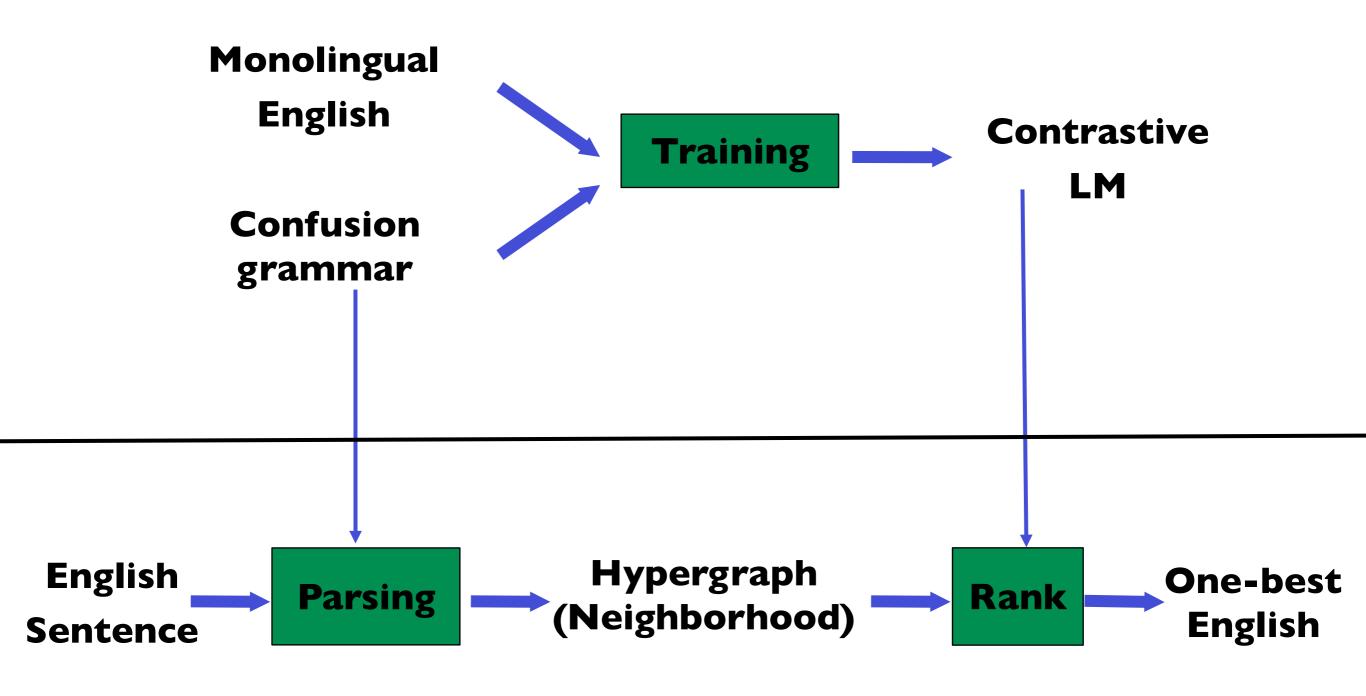
Monolingual English

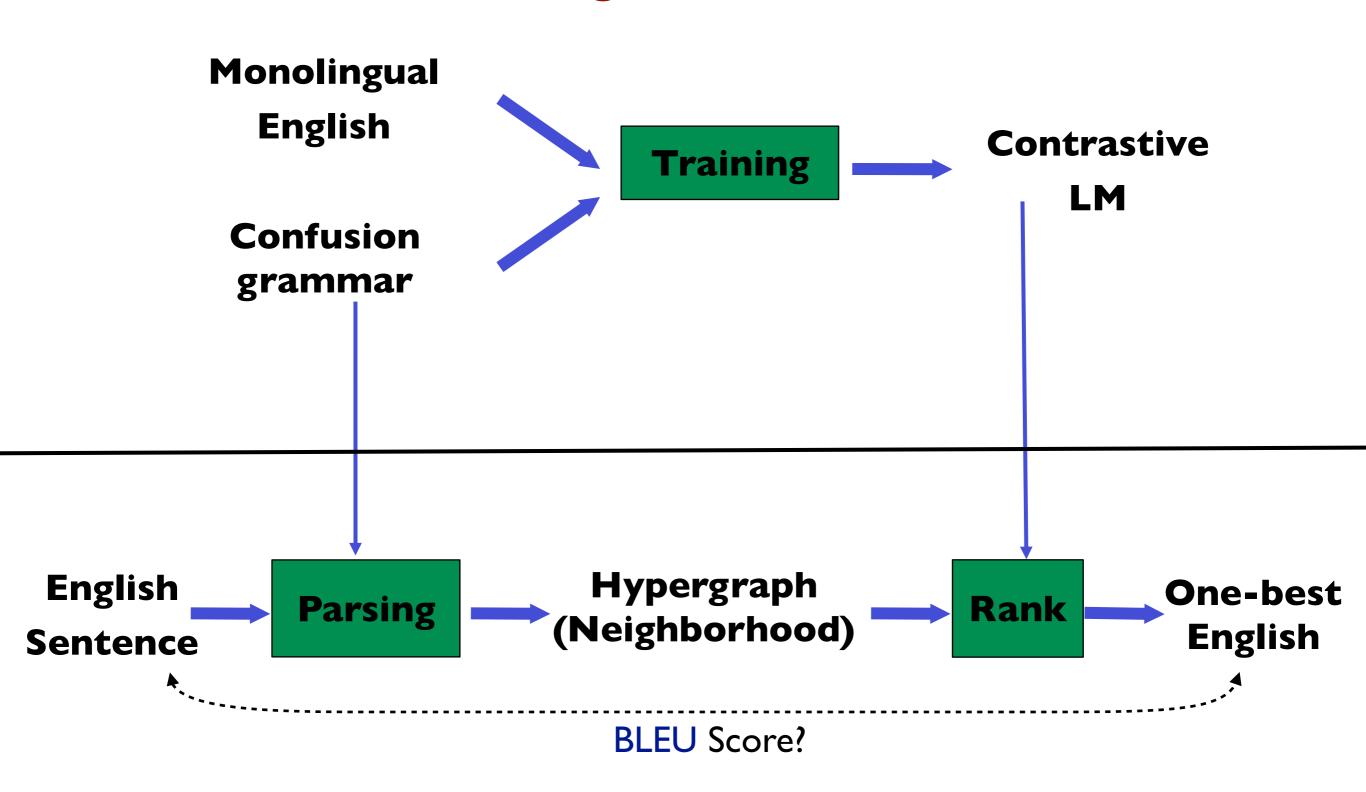
Confusion grammar

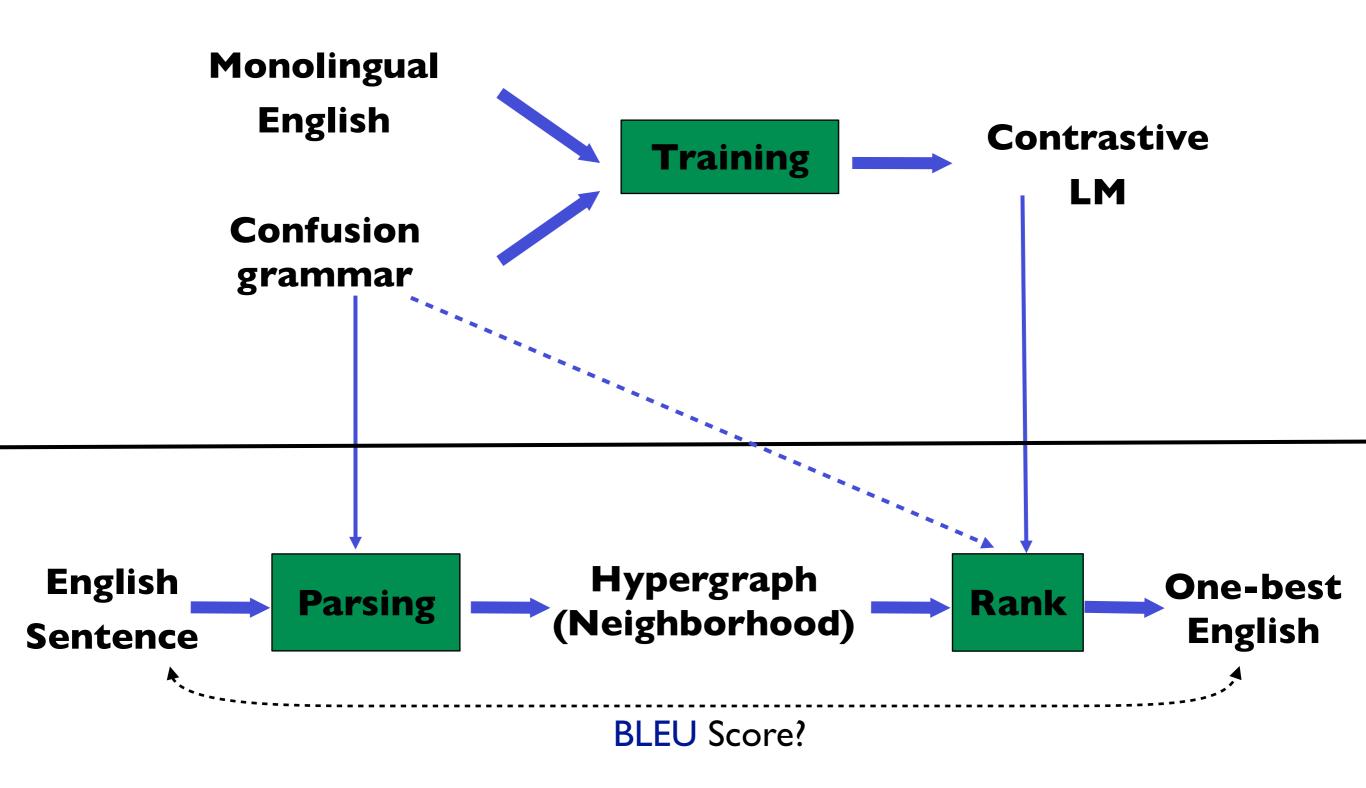


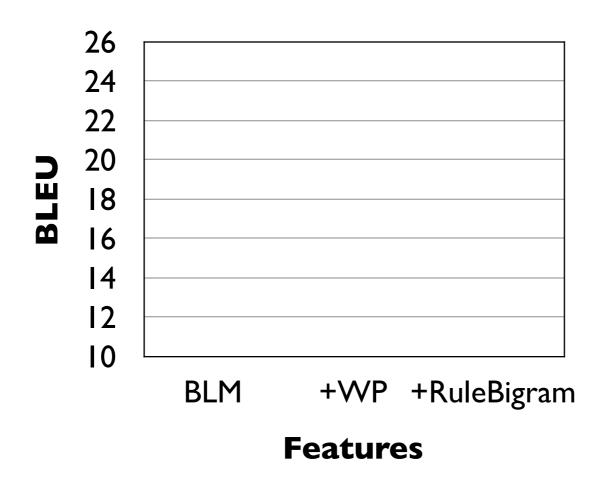


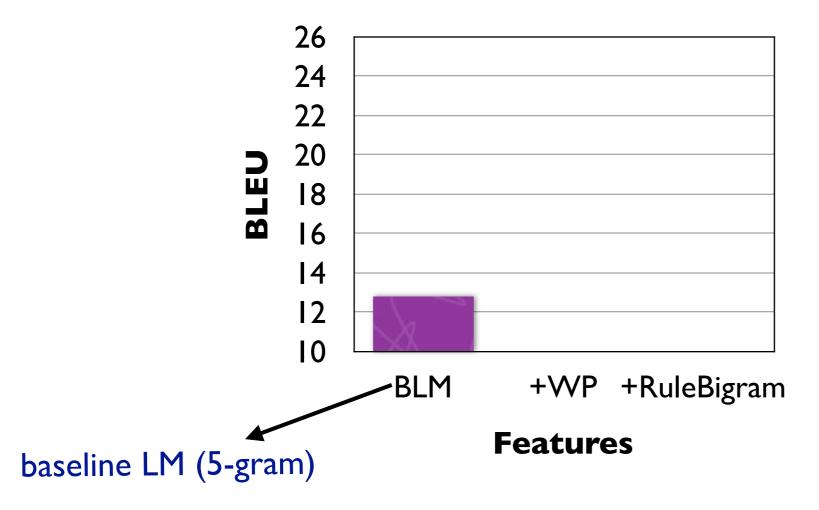


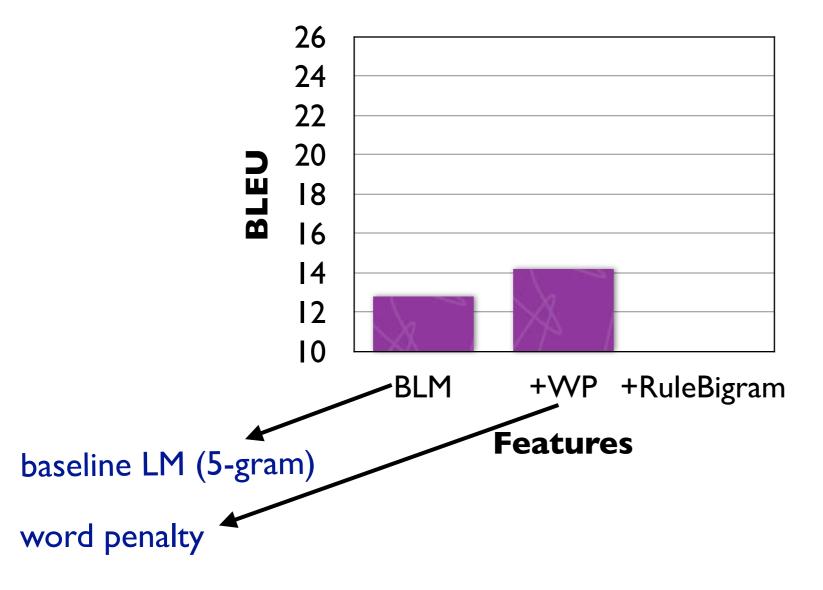


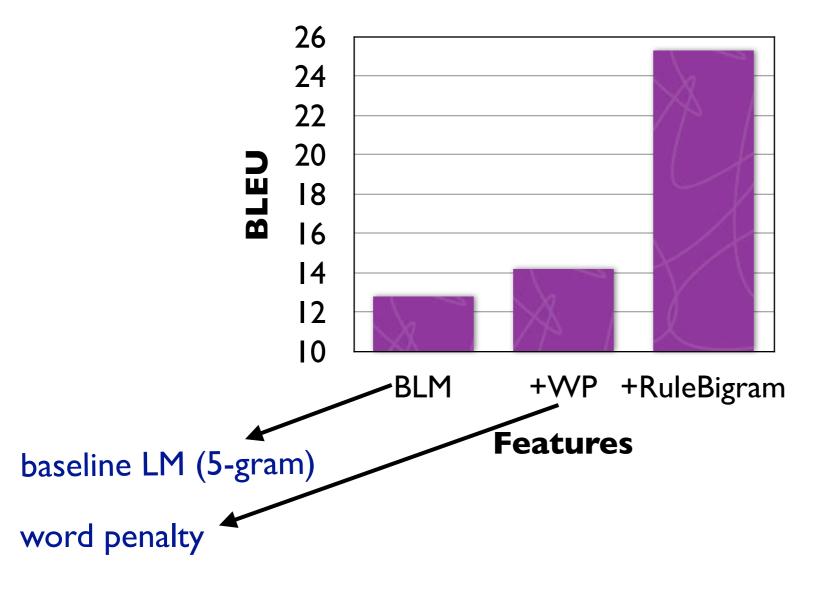


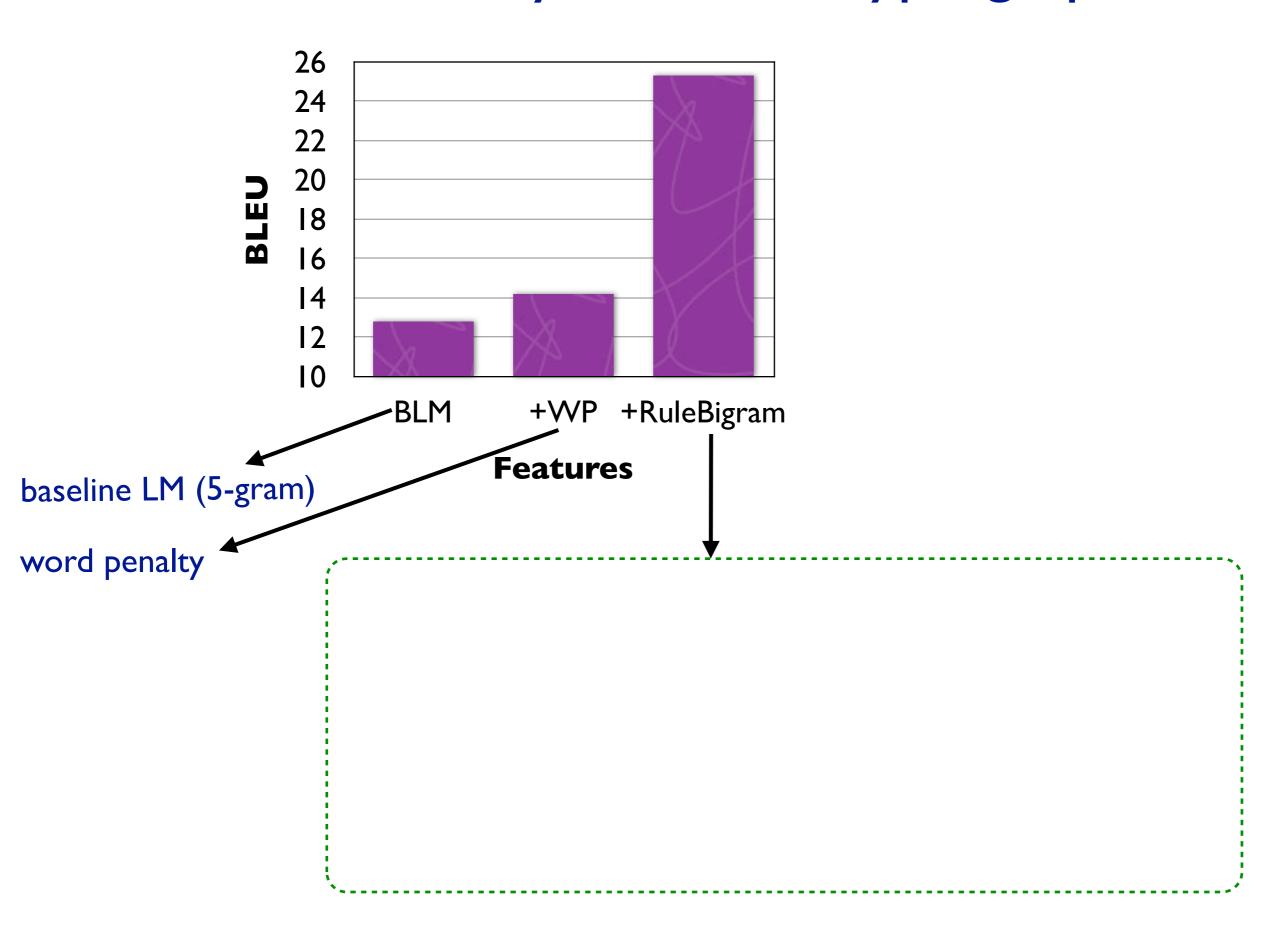


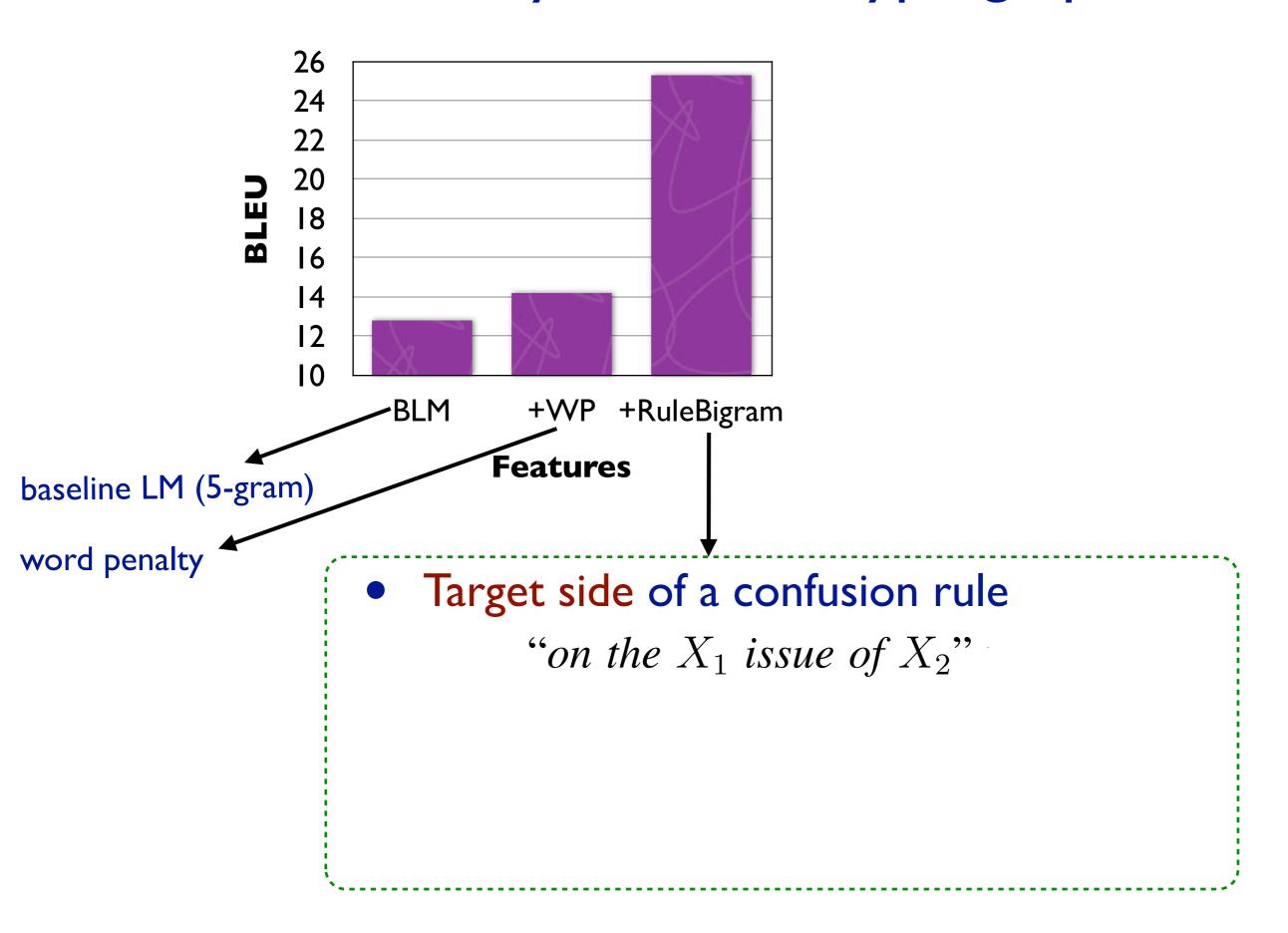


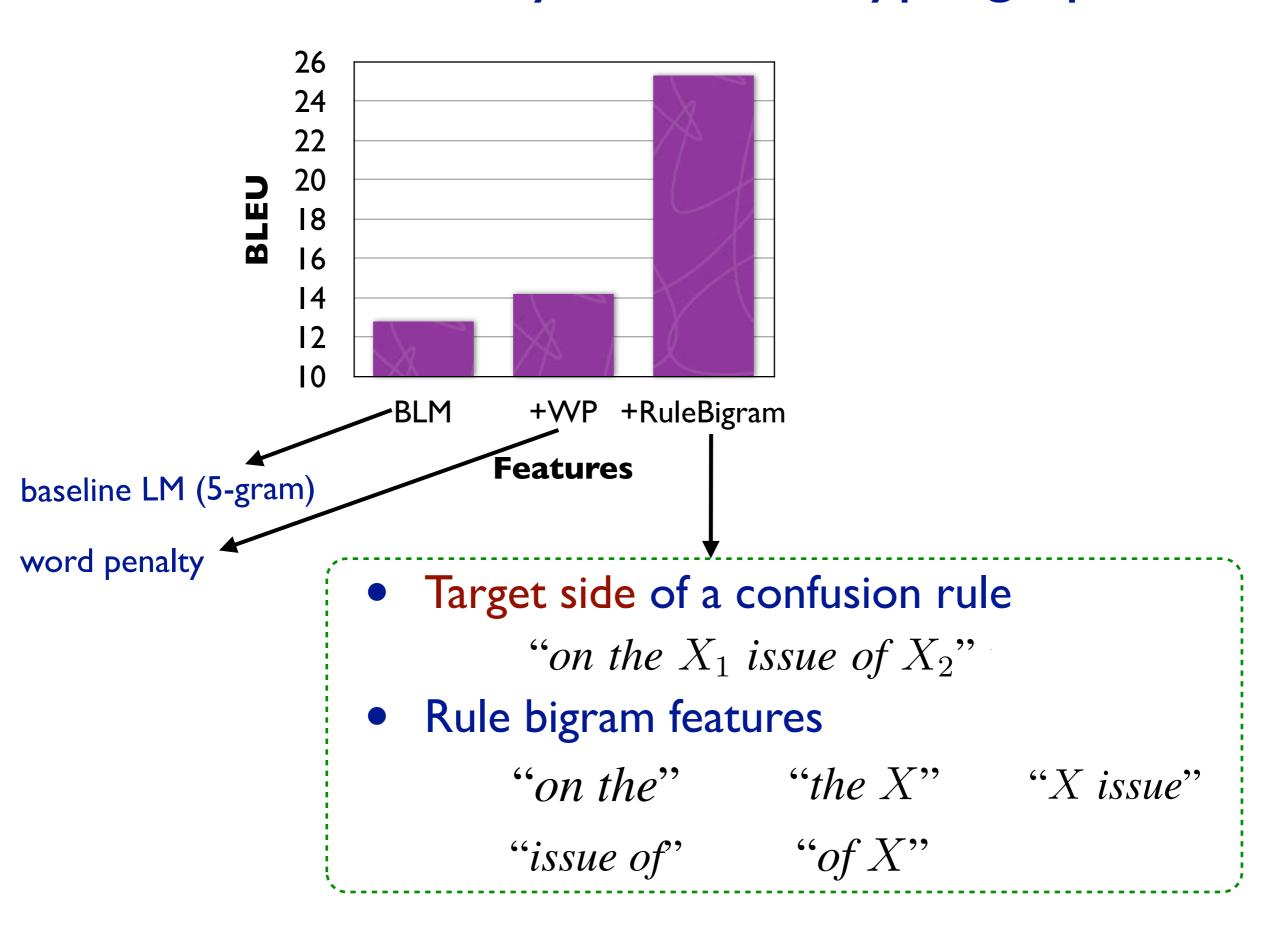


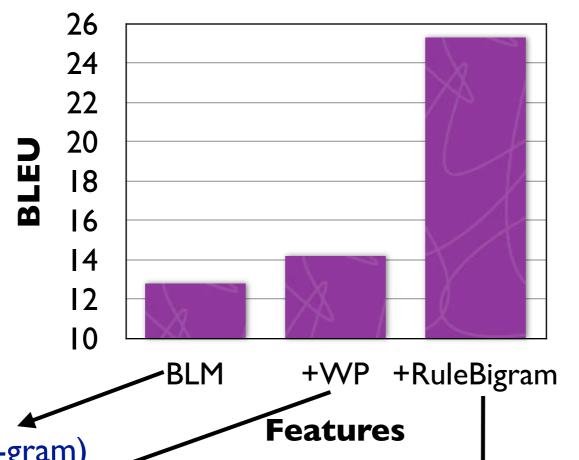












The contrastive LM better recovers the original English than a regular n-gram LM.

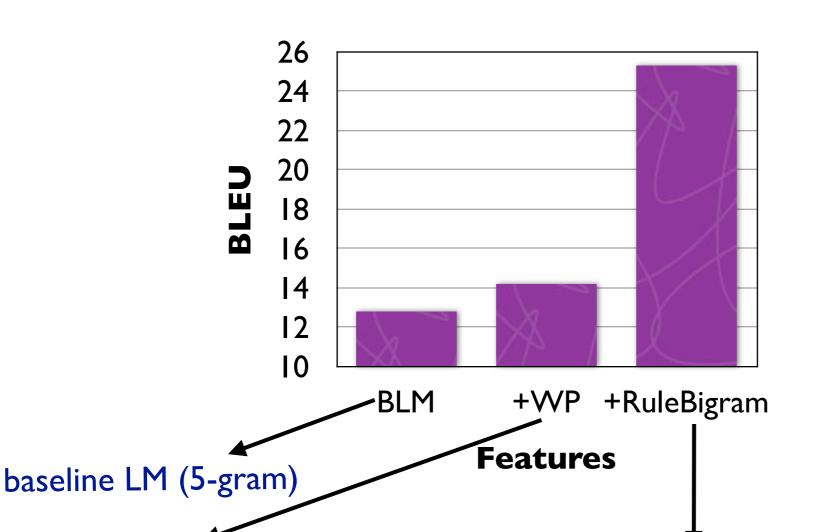
baseline LM (5-gram)

word penalty

- Target side of a confusion rule
 - "on the X_1 issue of X_2 "
 - Rule bigram features

"on the" "the X" "X issue"

"issue of" "of X"



The contrastive LM better recovers the original English than a regular n-gram LM.

All the features look at only the target sides of confusion rules

word penalty

Target side of a confusion rule

"on the X_1 issue of X_2 "

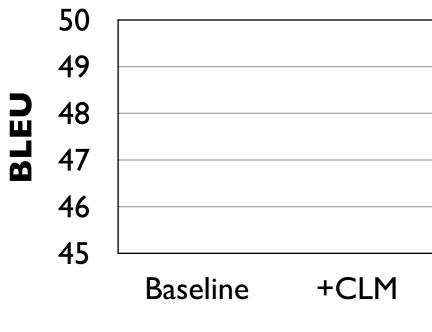
Rule bigram features

"on the"

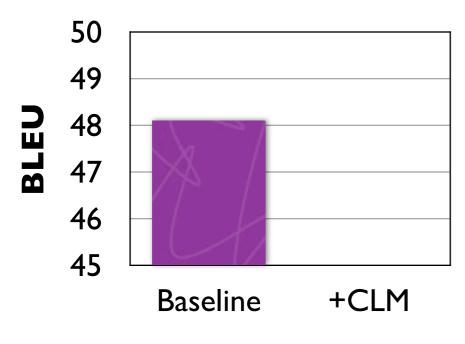
"the X"

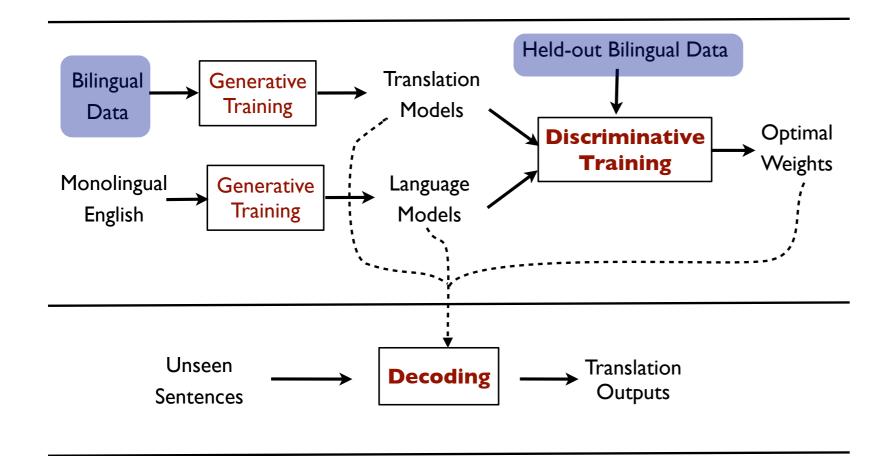
"X issue"

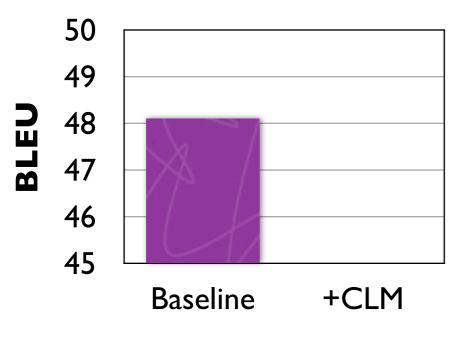
"issue of" "of X"



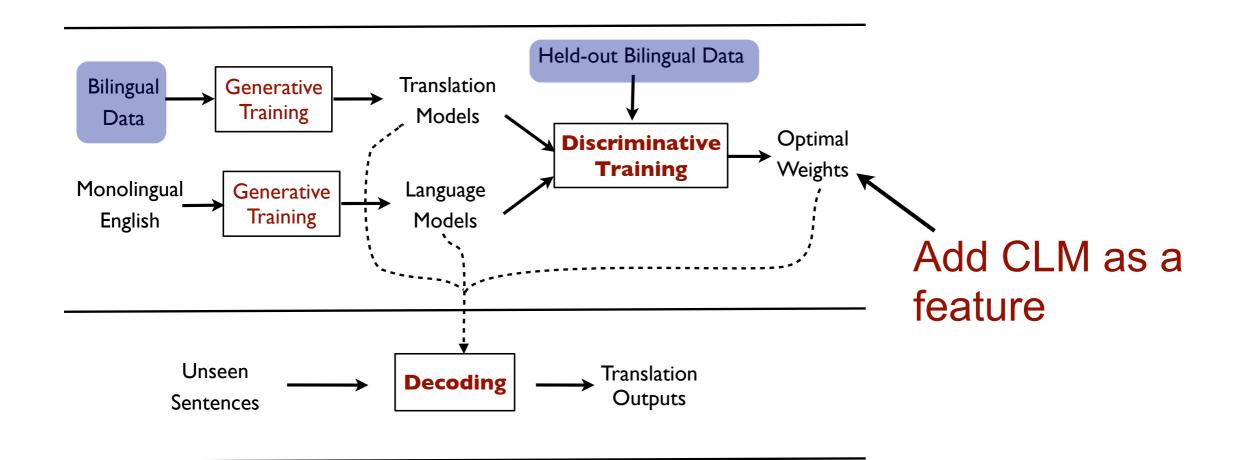
Features

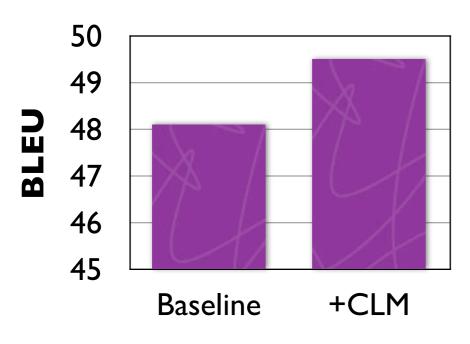




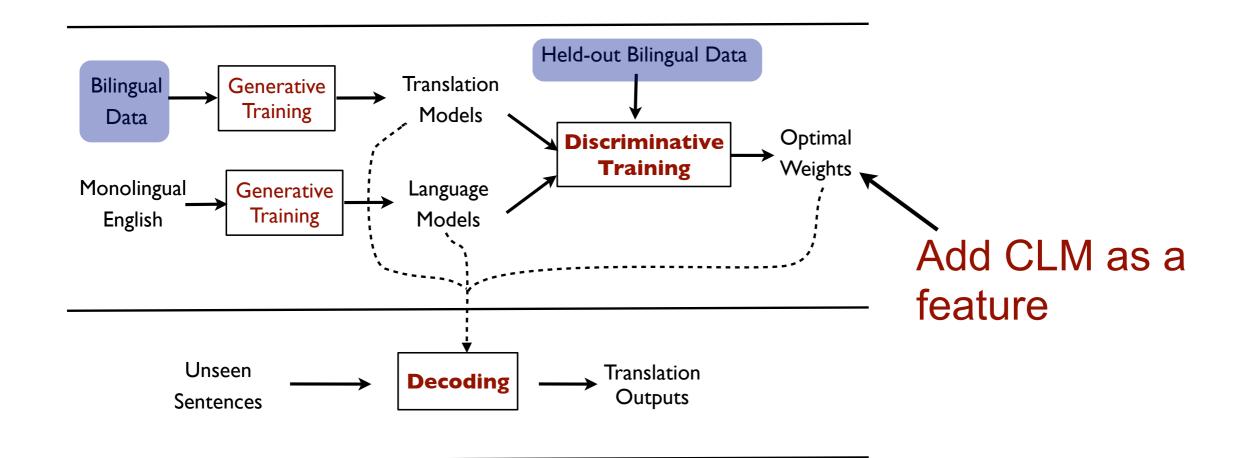


Features





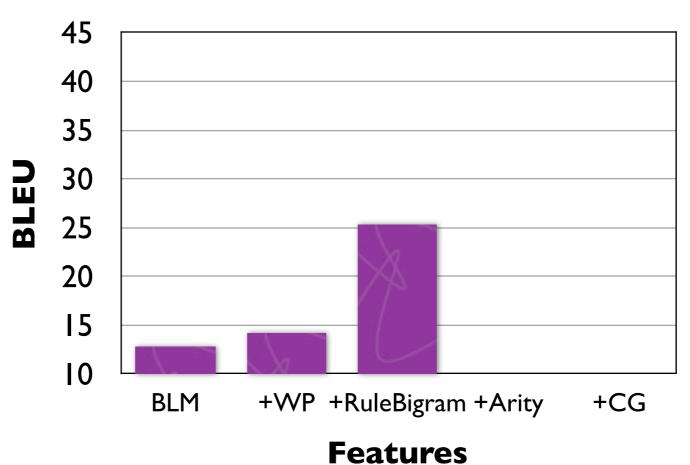
The contrastive LM helps to improve MT performance.



On English Set

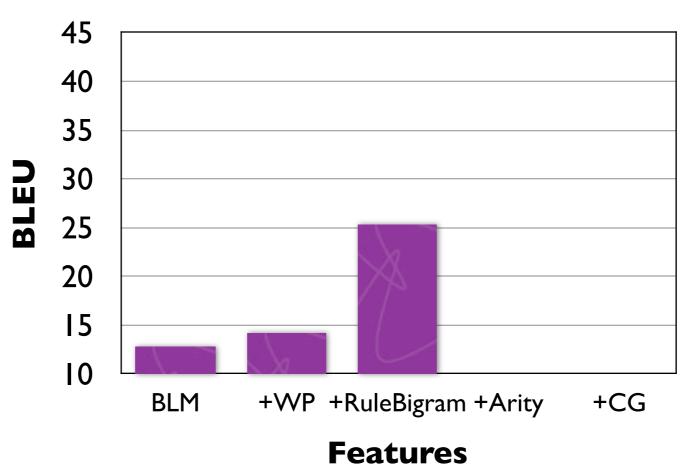
On MT Set

On English Set

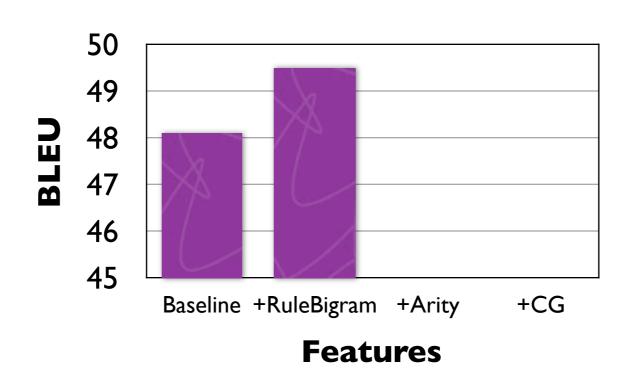


On MT Set

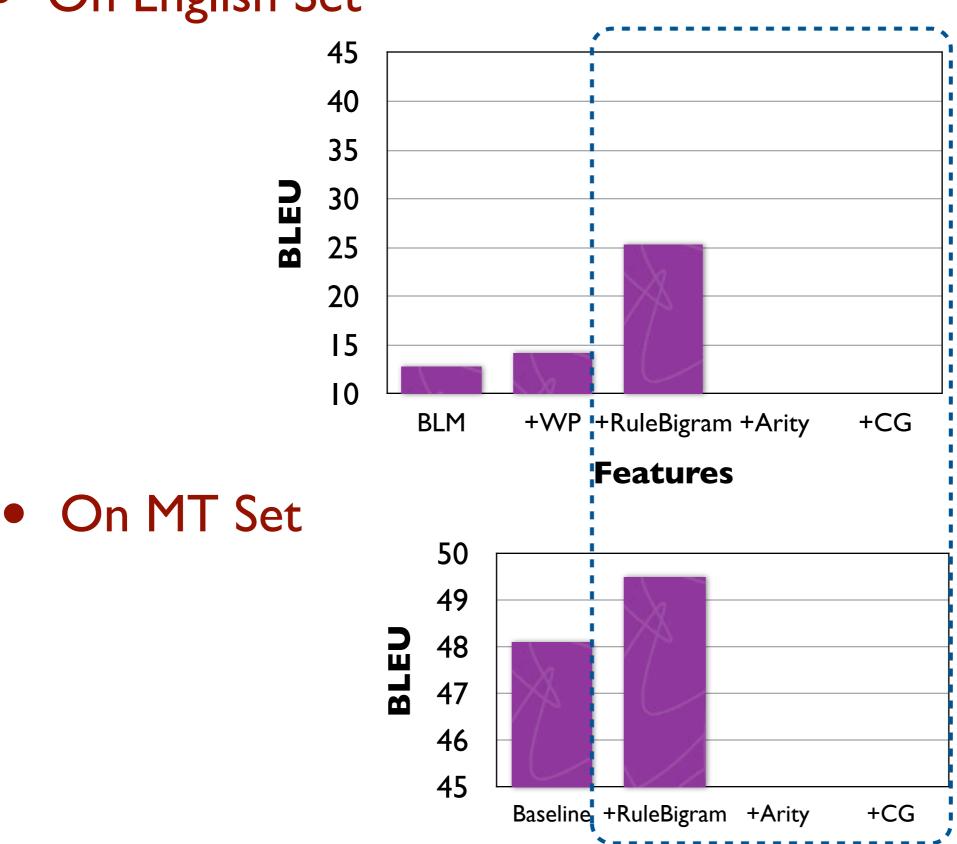
On English Set



On MT Set

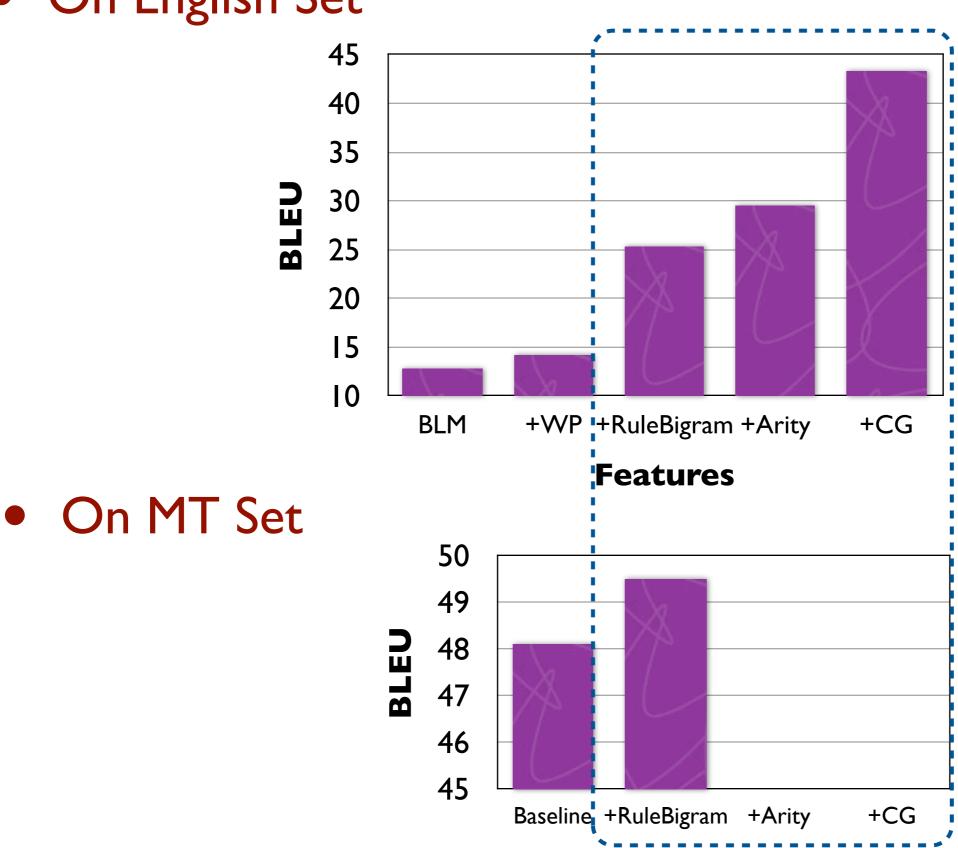


On English Set



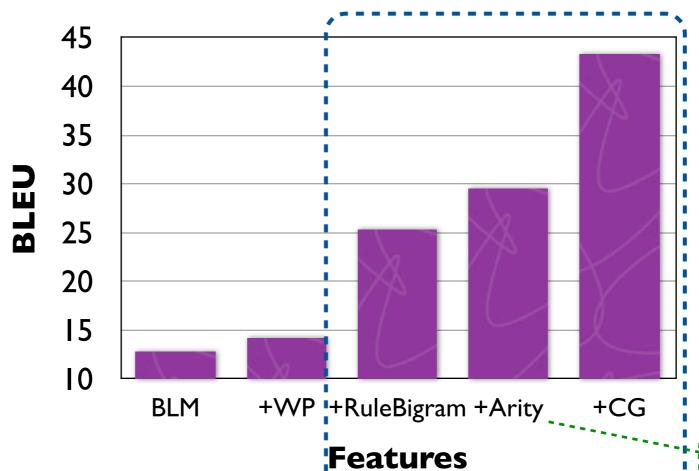
Features

On English Set

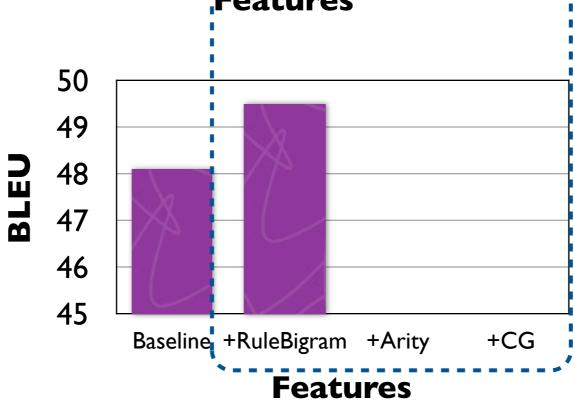


Features

On English Set



On MT Set

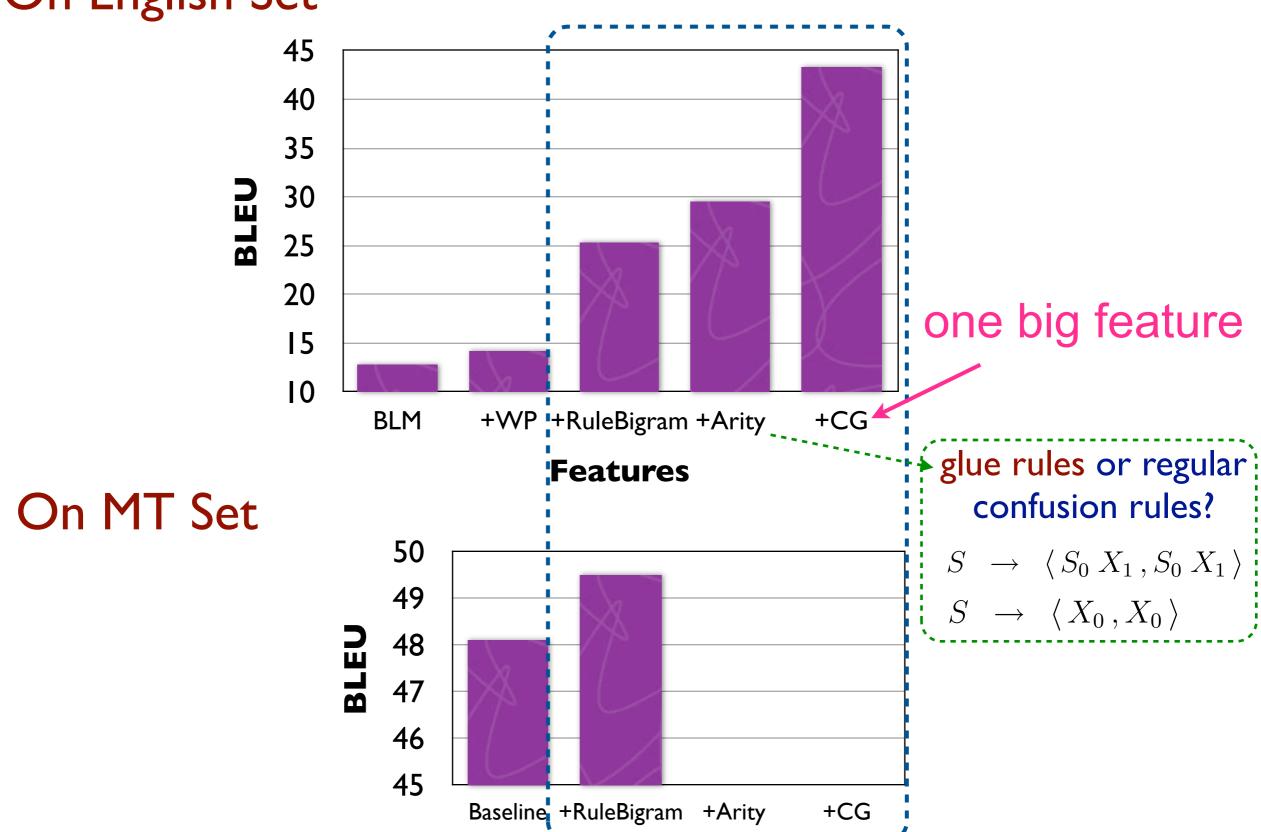


glue rules or regular confusion rules?

$$S \rightarrow \langle S_0 X_1, S_0 X_1 \rangle$$

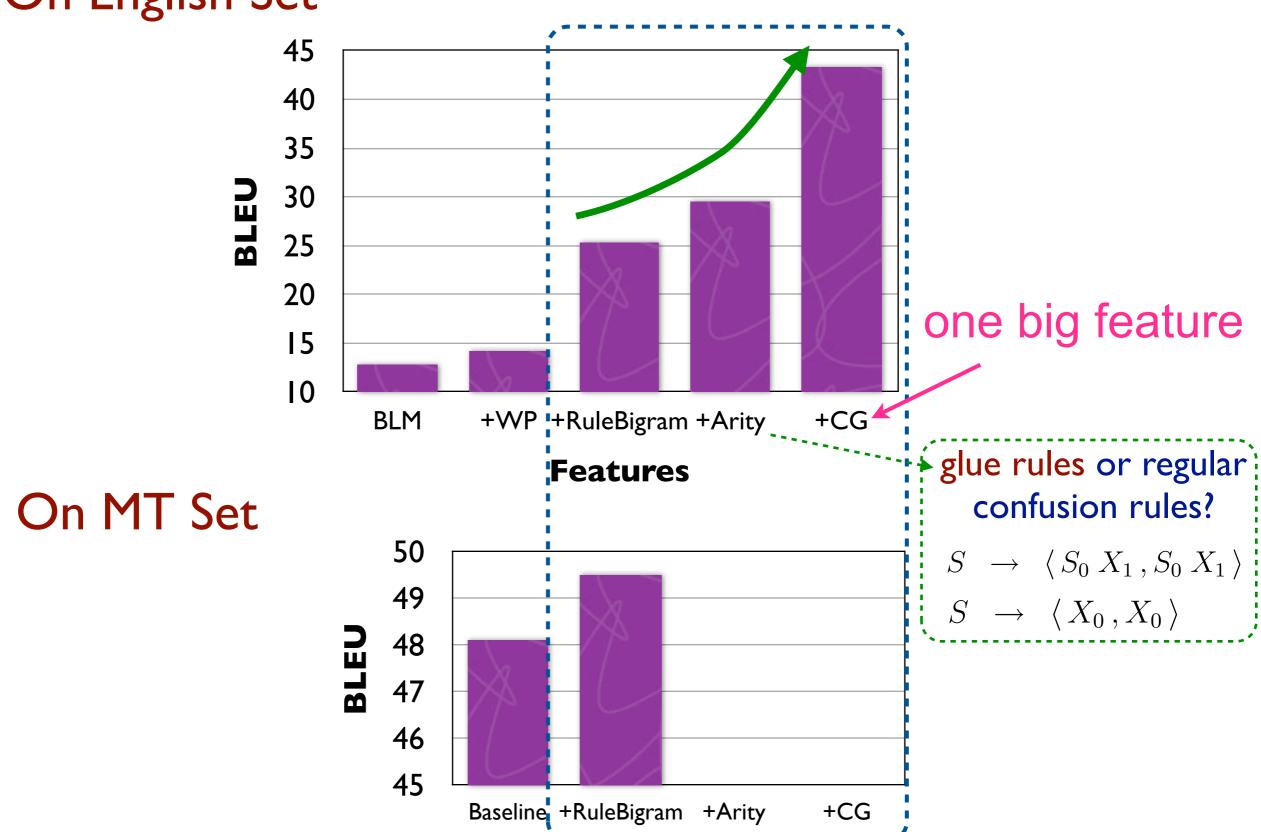
$$S \rightarrow \langle X_0, X_0 \rangle$$

On English Set



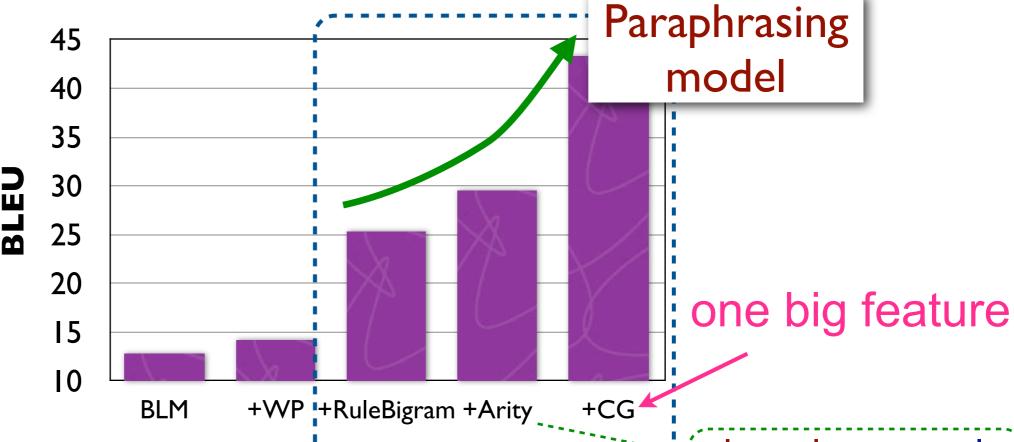
Features

On English Set

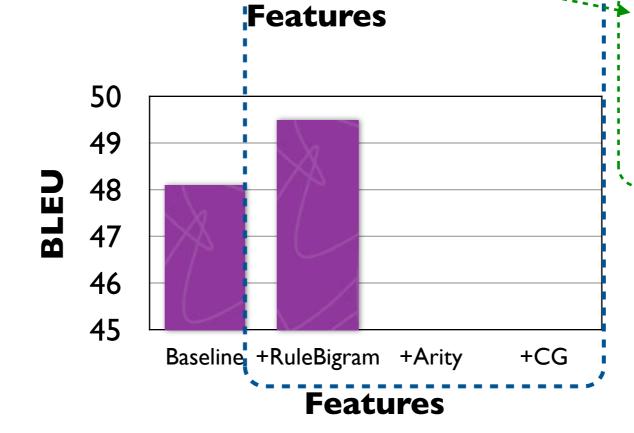


Features

On English Set



On MT Set

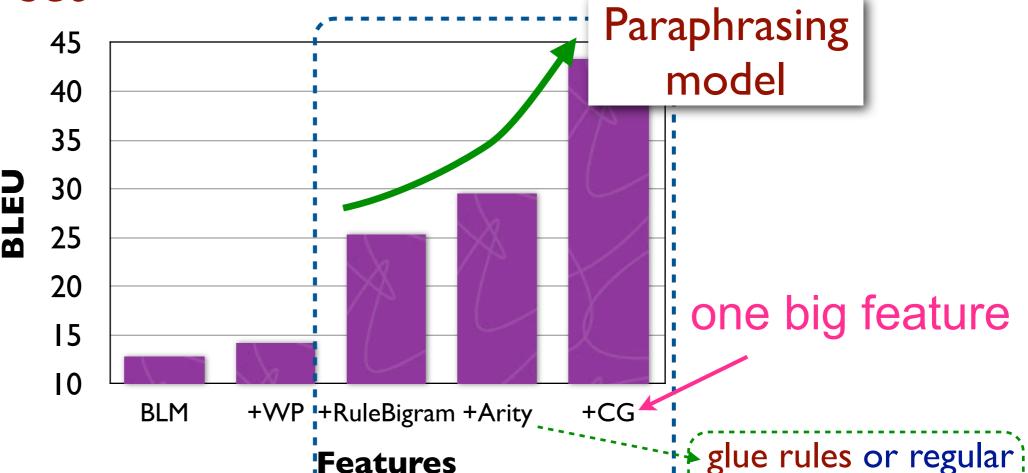


glue rules or regular confusion rules?

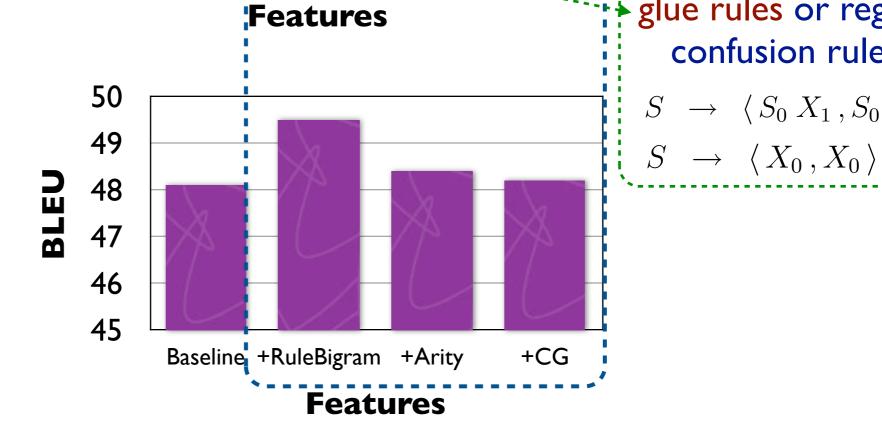
$$S \rightarrow \langle S_0 X_1, S_0 X_1 \rangle$$

$$S \rightarrow \langle X_0, X_0 \rangle$$

On English Set



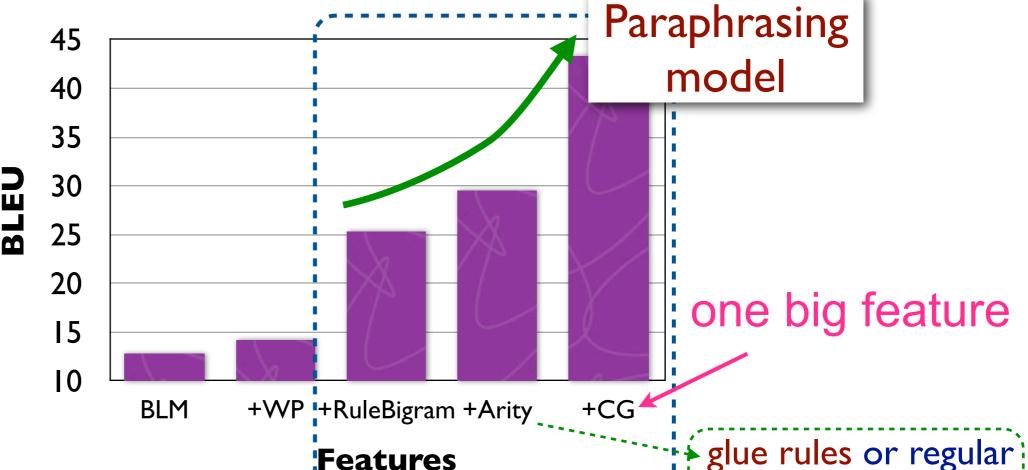
On MT Set



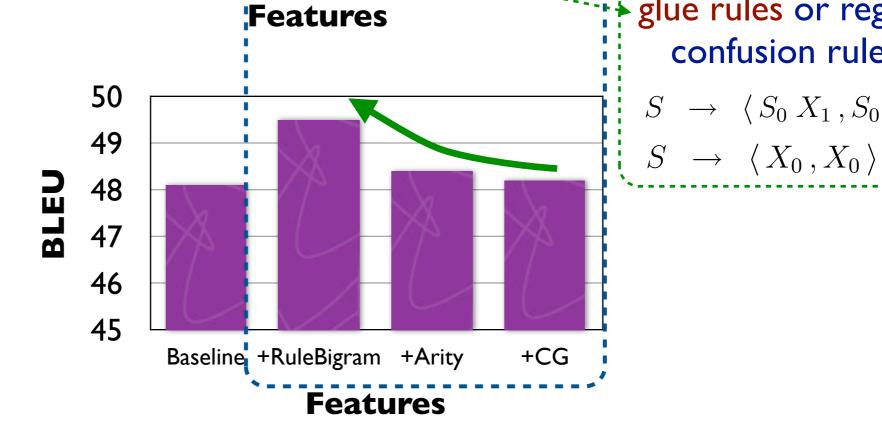
confusion rules?

 $S \rightarrow \langle S_0 X_1, S_0 X_1 \rangle$

On English Set



On MT Set

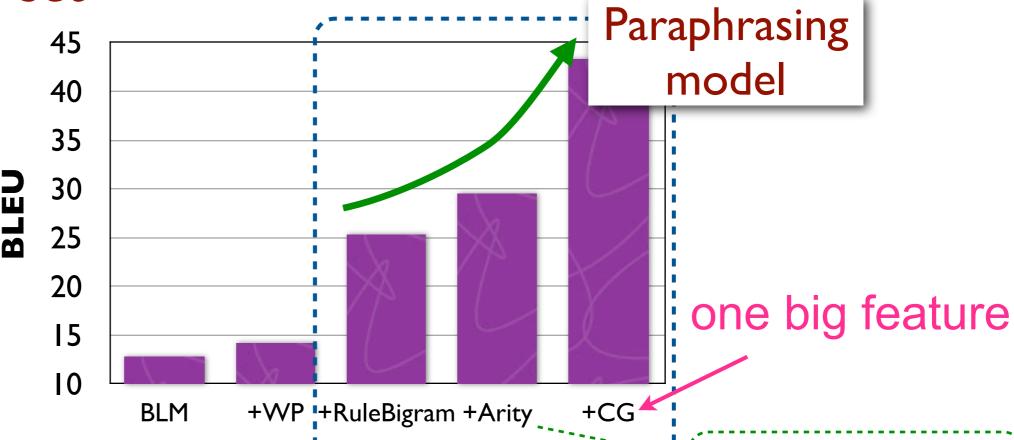


confusion rules?

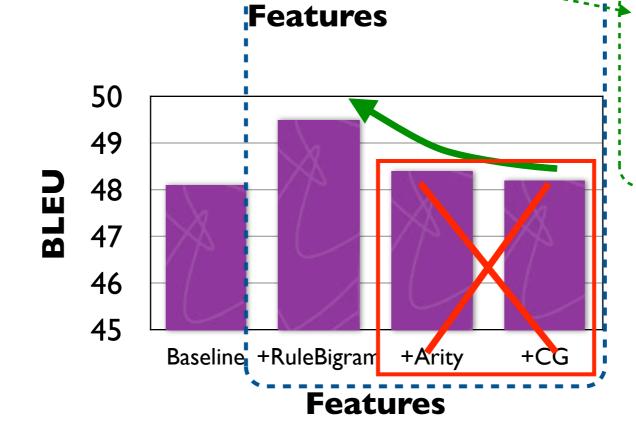
 $S \rightarrow \langle S_0 X_1, S_0 X_1 \rangle$

Adding Features on the CG itself

On English Set



On MT Set



glue rules or regular confusion rules?

$$S \rightarrow \langle S_0 X_1, S_0 X_1 \rangle$$

$$S \rightarrow \langle X_0, X_0 \rangle$$

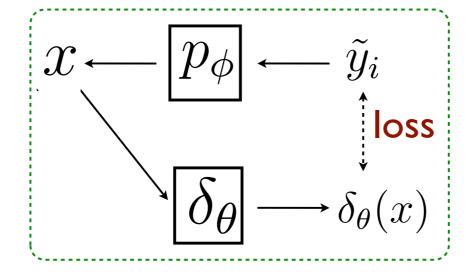
Supervised: Minimum Empirical Risk

require bitext

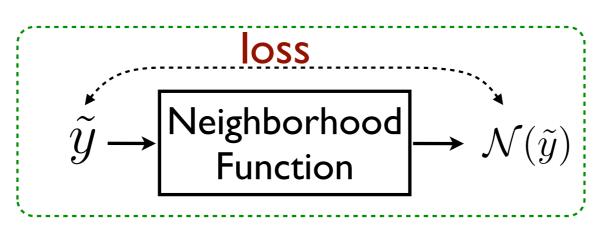
$$\mathbf{x} \longrightarrow \delta_{\theta} \longrightarrow \delta_{\theta}(x) \stackrel{\mathbf{loss}}{\longleftrightarrow} \mathbf{y}$$

Unsupervised: Minimum Imputed Risk

require monolingual English

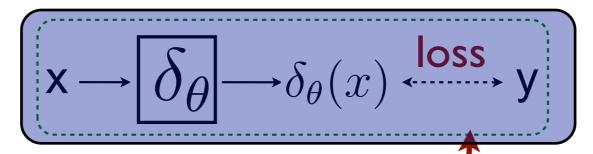


Unsupervised: Contrastive LM Estimation



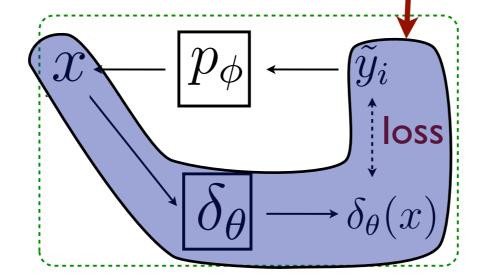
Supervised: Minimum Empirical Risk

require bitext

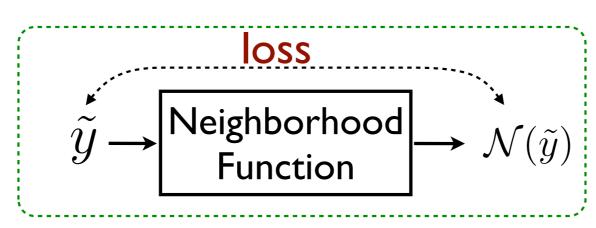


Unsupervised: Minimum Imputed Risk

require monolingual English



Unsupervised: Contrastive LM Estimation



Supervised Training

require bitext

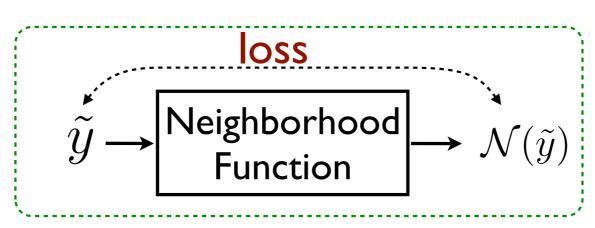
$$\mathbf{x} \longrightarrow \delta_{\theta}(x) \stackrel{\mathbf{loss}}{\longleftrightarrow} \mathbf{y}$$

Unsupervised: Minimum Imputed Risk

require monolingual English

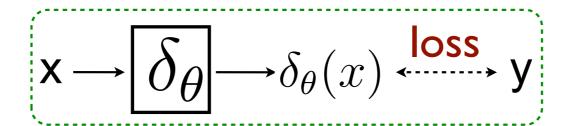


Unsupervised: Contrastive LM Estimation



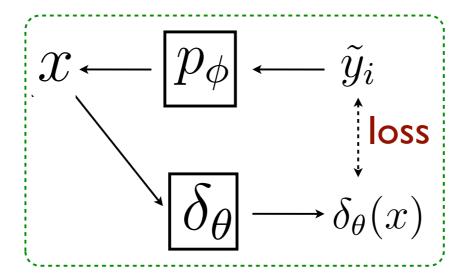
Supervised Training

require bitext



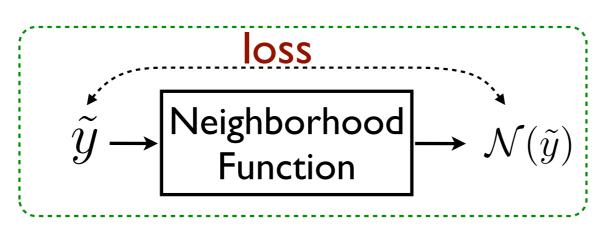
Unsupervised: Minimum Imputed Risk

require monolingual English



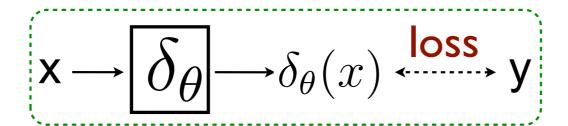
require a reverse model

Unsupervised: Contrastive LM Estimation



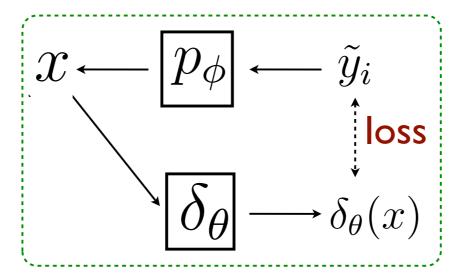
Supervised Training

require bitext



Unsupervised: Minimum Imputed Risk

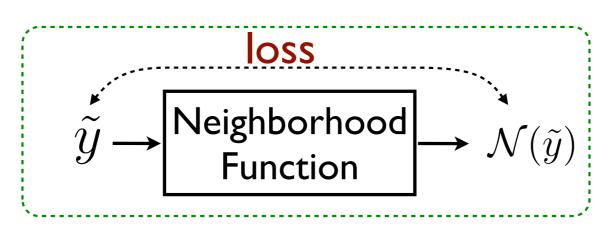
require monolingual English



require a reverse model

can have both TM and LM features

Unsupervised: Contrastive LM Estimation



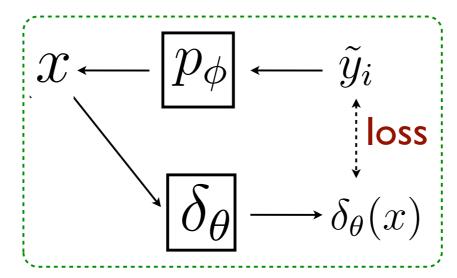
Supervised Training

require bitext

$$\mathbf{x} \longrightarrow \delta_{\theta}(x) \stackrel{\mathbf{loss}}{\longleftrightarrow} \mathbf{y}$$

Unsupervised: Minimum Imputed Risk

require monolingual English

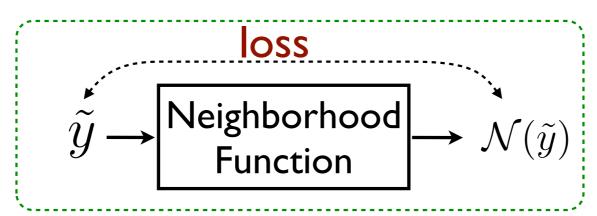


require a reverse model

can have both TM and LM features

Unsupervised: Contrastive LM Estimation

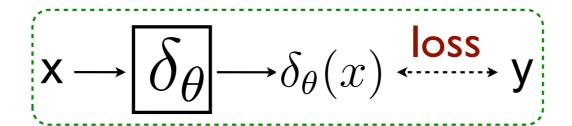
require monolingual English



can have LM features only

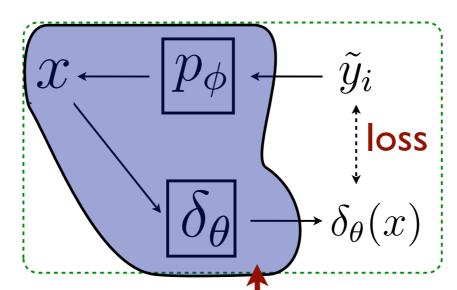
Supervised Training

require bitext



Unsupervised: Minimum Imputed Risk

require monolingual English

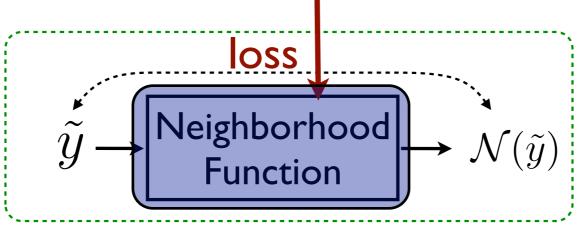


require a reverse model

can have both TM and LM features

Unsupervised: Contrastive LM Estimation

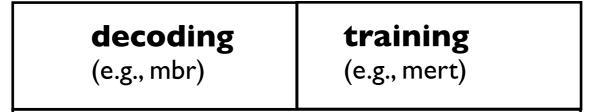
require monolingual English



can have LM features only

Outline

- Hypergraph as Hypothesis Space
- Unsupervised Discriminative Training
 - minimum imputed risk
 - contrastive language model estimation
- Variational Decoding
- First- and Second-order Expectation Semirings



atomic inference operations

(e.g., finding one-best, k-best or expectation, inference can be exact or approximate)

• We want to do inference under p, but it is intractable

• We want to do inference under p, but it is intractable

Instead, we derive a simpler distribution q*

• We want to do inference under p, but it is intractable

Instead, we derive a simpler distribution q*

• We want to do inference under p, but it is intractable intractable MAP decoding

Instead, we derive a simpler distribution q*

• We want to do inference under p, but it is intractable intractable MAP decoding

$$y^* = \underset{y}{\operatorname{arg\,max}} p(y \mid x)$$

Instead, we derive a simpler distribution q*

• We want to do inference under p, but it is intractable intractable MAP decoding

$$y^* = \underset{y}{\operatorname{arg max}} p(y \mid x) = \underset{y}{\operatorname{arg max}} \sum_{d \in D(x,y)} p(d \mid x)$$

Instead, we derive a simpler distribution q*

We want to do inference under p, but it is intractable
 intractable MAP decoding (Sima'an 1996)

$$y^* = \underset{y}{\operatorname{arg max}} p(y \mid x) = \underset{d \in D(x,y)}{\operatorname{arg max}} \sum_{d \in D(x,y)} p(d \mid x)$$

• Instead, we derive a simpler distribution q*

We want to do inference under p, but it is intractable
 intractable MAP decoding (Sima'an 1996)

$$y^* = \underset{y}{\operatorname{arg max}} p(y \mid x) = \underset{y}{\operatorname{arg max}} \sum_{d \in D(x,y)} p(d \mid x)$$

Instead, we derive a simpler distribution q*

tractable estimation

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$

We want to do inference under p, but it is intractable
 intractable MAP decoding (Sima'an 1996)

$$y^* = \underset{y}{\operatorname{arg max}} p(y \mid x) = \underset{d \in D(x,y)}{\operatorname{arg max}} \sum_{d \in D(x,y)} p(d \mid x)$$

Instead, we derive a simpler distribution q*

tractable estimation

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$

We want to do inference under p, but it is intractable
 intractable MAP decoding (Sima'an 1996)

$$y^* = \underset{y}{\operatorname{arg max}} p(y \mid x) = \underset{d \in D(x,y)}{\operatorname{arg max}} \sum_{d \in D(x,y)} p(d \mid x)$$

Instead, we derive a simpler distribution q*

tractable estimation

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$

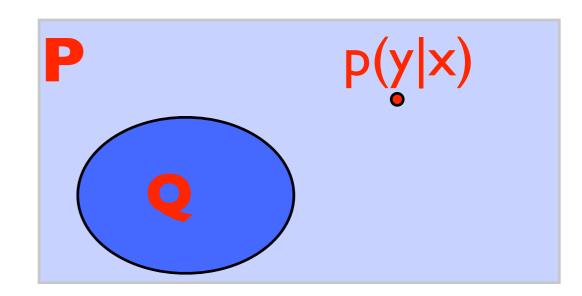
• We want to do inference under p, but it is intractable intractable MAP decoding (Sima'an 1996)

$$y^* = \underset{y}{\operatorname{arg max}} p(y \mid x) = \underset{d \in D(x,y)}{\operatorname{arg max}} \sum_{d \in D(x,y)} p(d \mid x)$$

Instead, we derive a simpler distribution q*

tractable estimation

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$



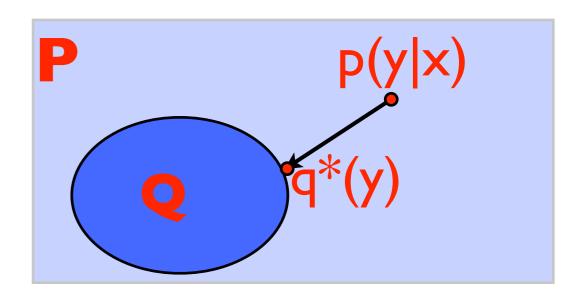
• We want to do inference under p, but it is intractable intractable MAP decoding (Sima'an 1996)

$$y^* = \underset{y}{\operatorname{arg max}} p(y \mid x) = \underset{d \in D(x,y)}{\operatorname{arg max}} \sum_{d \in D(x,y)} p(d \mid x)$$

Instead, we derive a simpler distribution q*

tractable estimation

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$



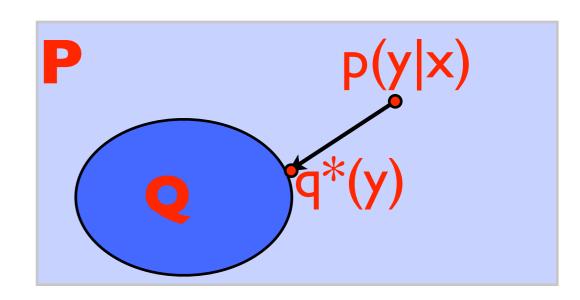
• We want to do inference under p, but it is intractable intractable MAP decoding (Sima'an 1996)

$$y^* = \underset{y}{\operatorname{arg max}} p(y \mid x) = \underset{d \in D(x,y)}{\operatorname{arg max}} \sum_{d \in D(x,y)} p(d \mid x)$$

Instead, we derive a simpler distribution q*

tractable estimation

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$



• Then, we will use q* as a surrogate for p in inference tractable decoding

$$y^* = \arg\max_{y} q^*(y \mid x)$$

Sentence-specific decoding

Sentence-specific decoding

Three steps:

Sentence-specific decoding

Three steps:

1

Generate a hypergraph for the foreign sentence

Sentence-specific decoding

Three steps:

1

Generate a hypergraph for the foreign sentence

Foreign sentence x

Sentence-specific decoding

Three steps:

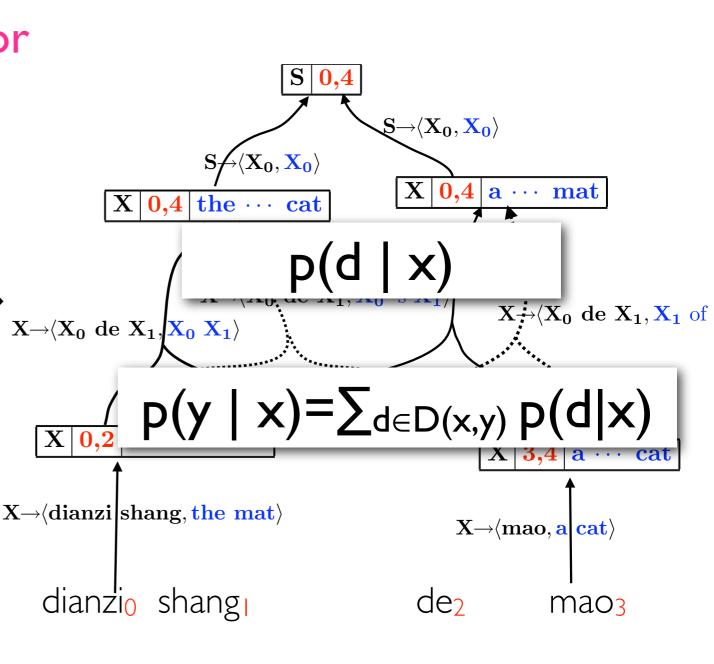
Foreign

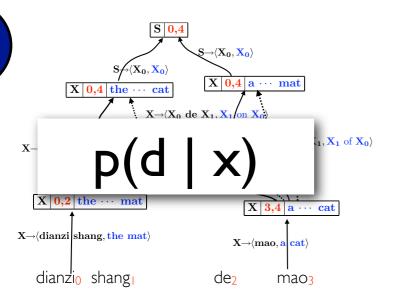
sentence x

the foreign sentence

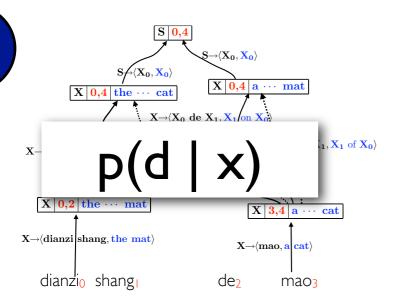
Generate a hypergraph for

MAP decoding under P is intractable

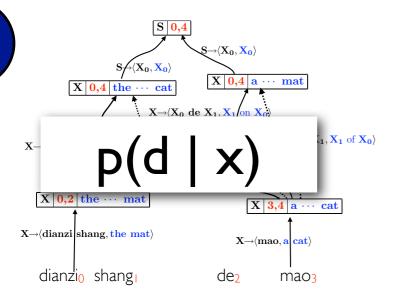


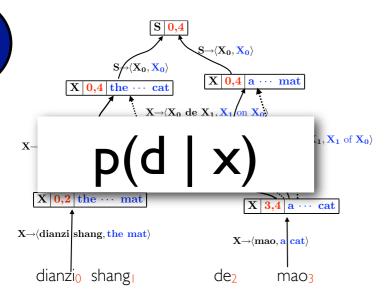


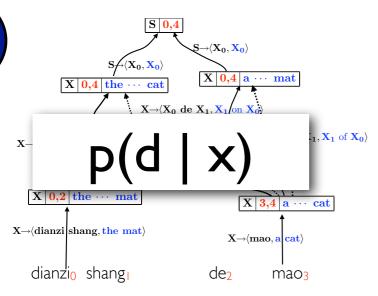
Generate a hypergraph

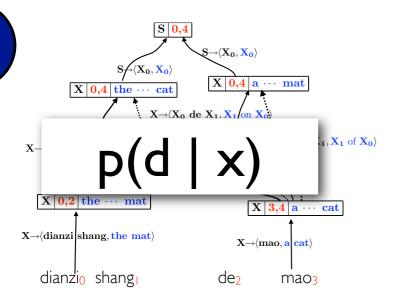


Generate a hypergraph

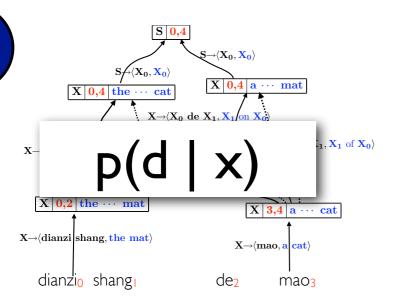








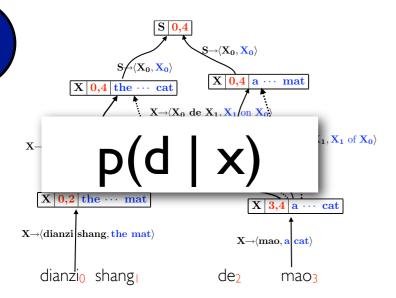
2



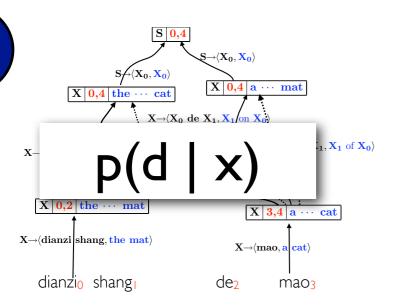
Estimate a model from the hypergraph by minimizing KL

q* is an n-gram model over output strings.

$$q^*(y \mid x)$$



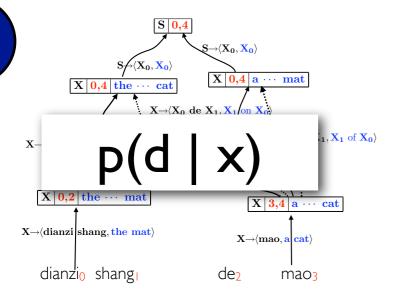
2



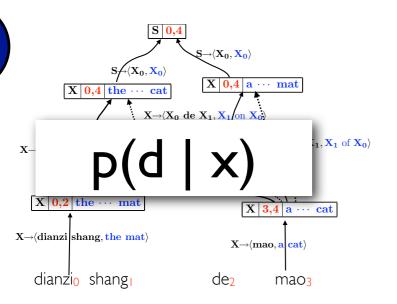
Estimate a model from the hypergraph by minimizing KL

q* is an n-gram model over output strings.

$$\approx \sum_{d \in D(x,y)} p(d|x)$$



2

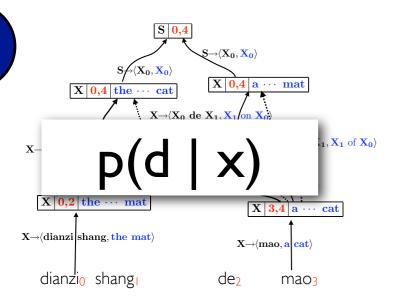


Estimate a model from the hypergraph by minimizing KL

q* is an n-gram model over output strings.

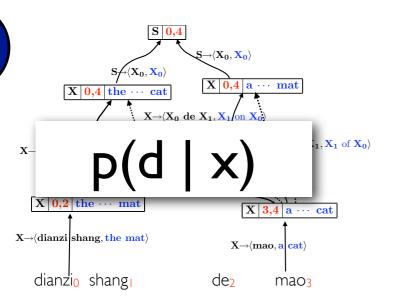
$$q^*(y \mid x)$$

$$\approx \sum_{d \in D(x,y)} p(d|x)$$



Generate a hypergraph

2



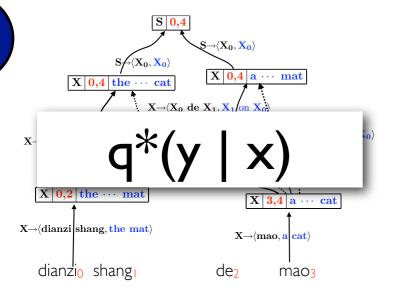
Estimate a model from the hypergraph by minimizing KL

q* is an n-gram model over output strings.

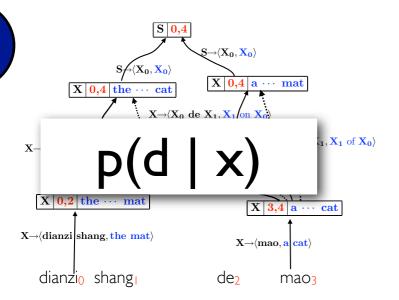
$$q^*(y \mid x)$$

$$\approx \sum_{d \in D(x,y)} p(d|x)$$

3

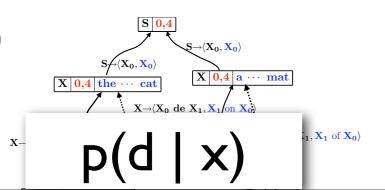


Decode using q* on the hypergraph



Generate a hypergraph

2



Estimate a model from the hypergraph by minimizing KL

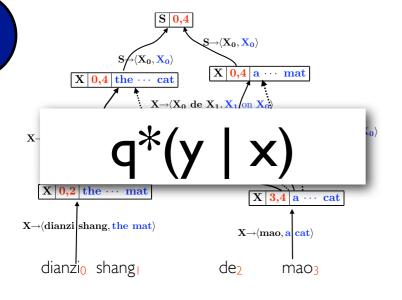
q* is an n-gram model over output strings.

$$q^*(y \mid x)$$

Approximate a hypergraph with a lattice!

 $\approx \sum_{d \in D(x,y)} p(d|x)$

3



Decode using q* on the hypergraph

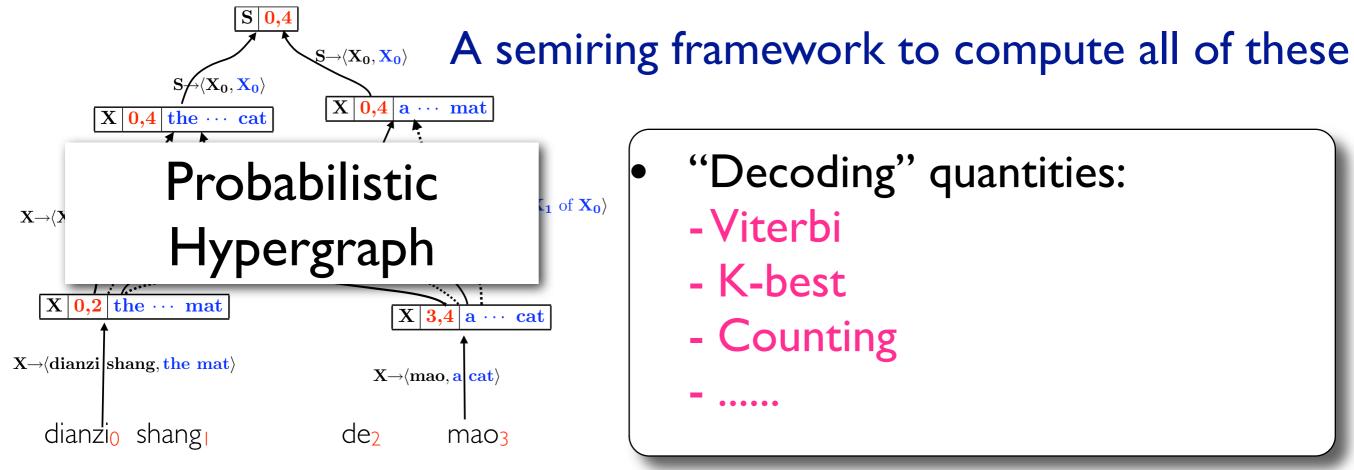
Outline

- Hypergraph as Hypothesis Space
- Unsupervised Discriminative Training
 - minimum imputed risk
 - contrastive language model estimation
- Variational Decoding
- First- and Second-order Expectation Semirings

decoding (e.g., mbr) training (e.g., mert)

atomic inference operations

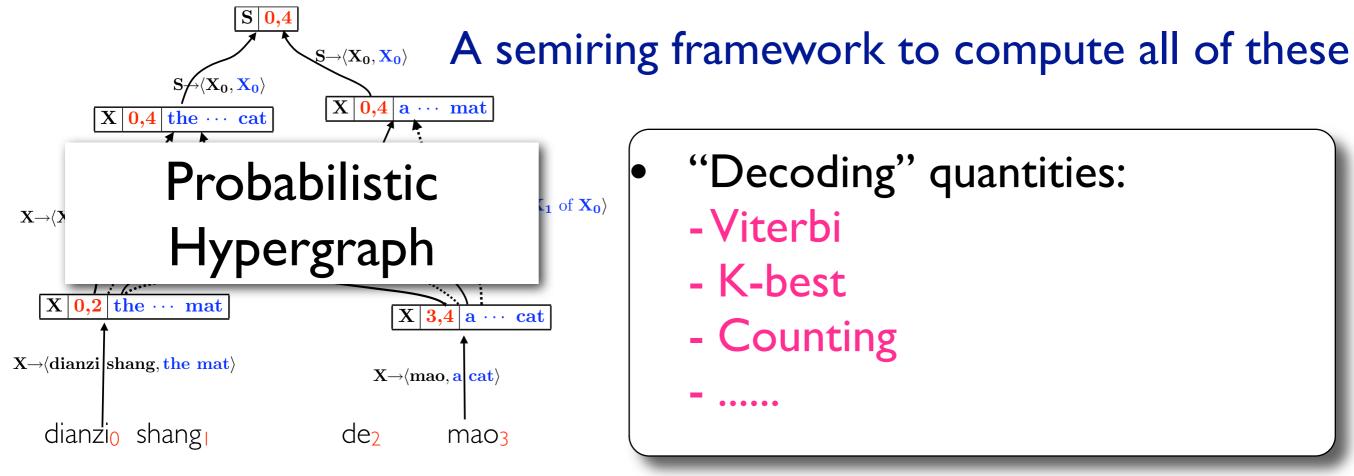
(e.g., finding one-best, k-best or expectation, inference can be exact or approximate)



- "Decoding" quantities:
 - Viterbi
 - K-best
 - Counting

- First-order expectations:
 - expectation
 - entropy
 - expected loss
 - cross-entropy
 - KL divergence
 - feature expectations
 - first-order gradient of Z

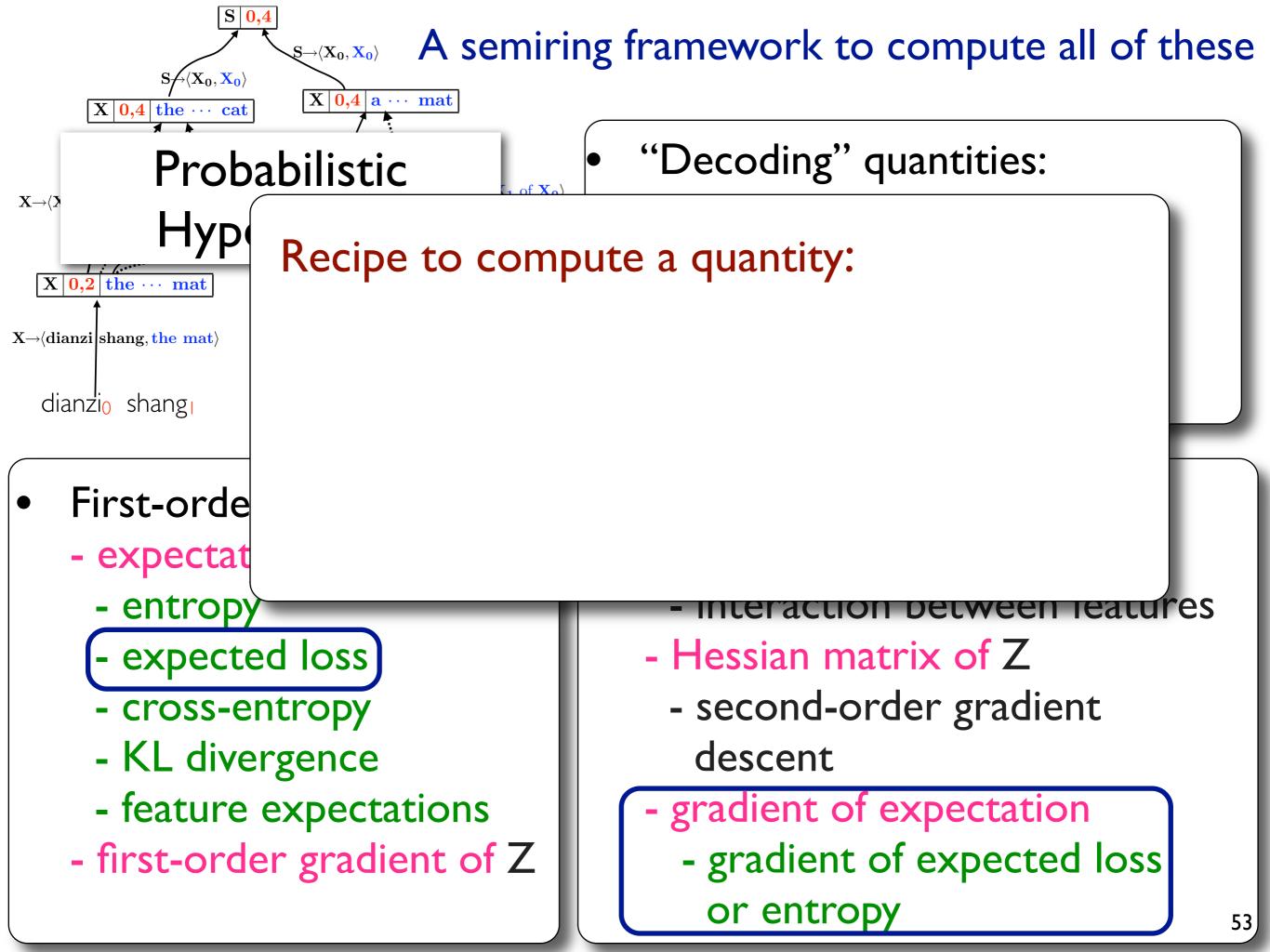
- Second-order expectations:
 - expectation over product
 - interaction between features
 - Hessian matrix of Z
 - second-order gradient descent
 - gradient of expectation
 - gradient of expected loss or entropy

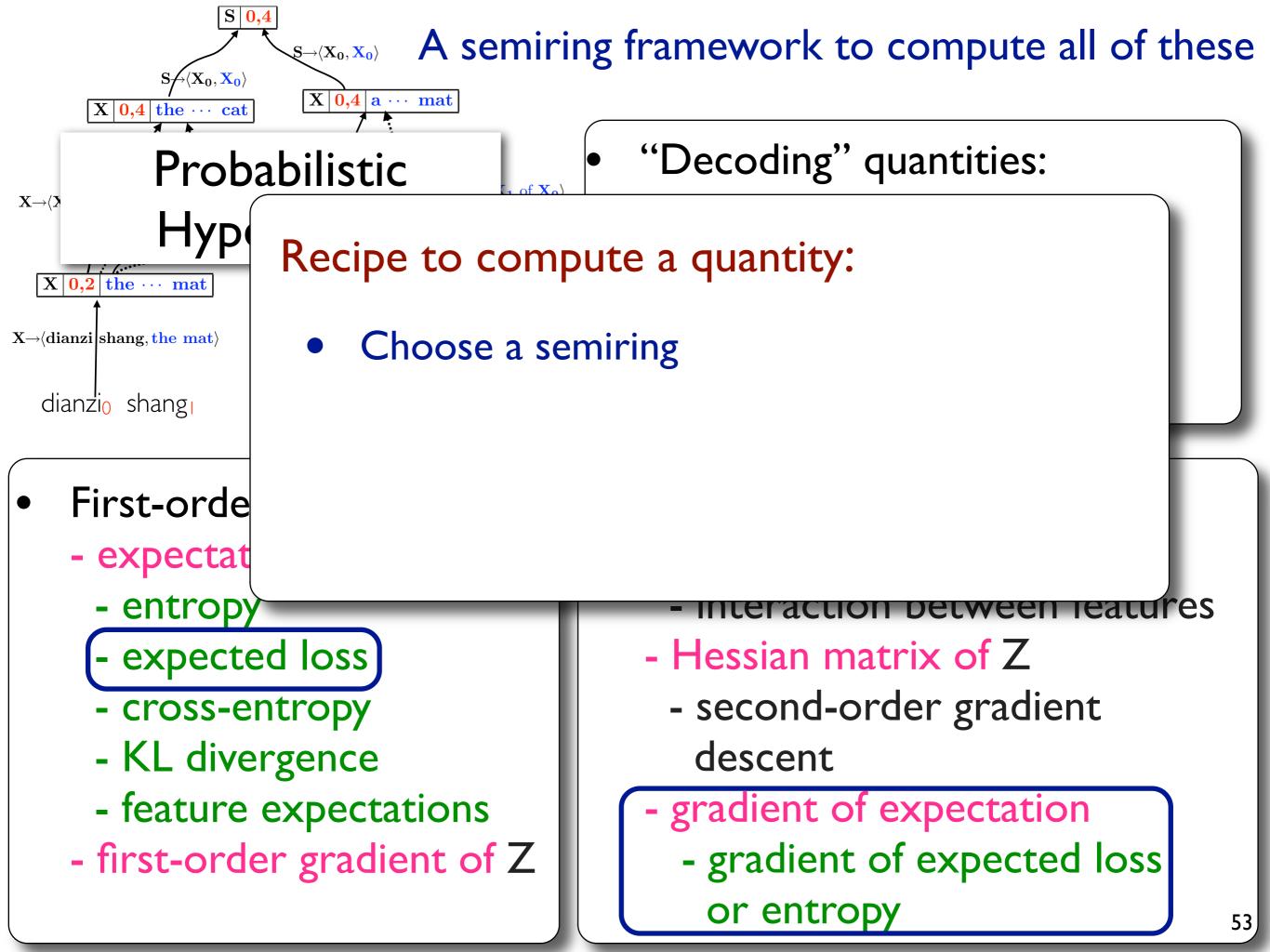


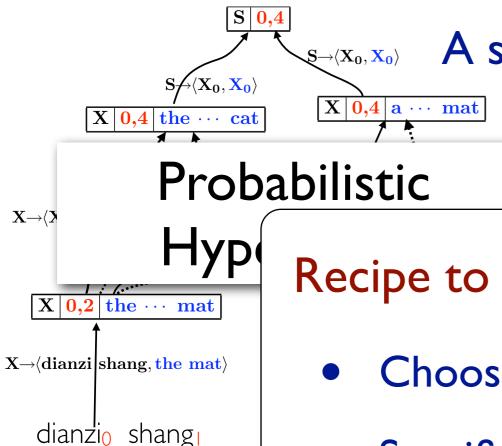
- "Decoding" quantities:
 - Viterbi
 - K-best
 - Counting

- First-order expectations:
 - expectation
 - entropy
 - expected loss
 - cross-entropy
 - KL divergence
 - feature expectations
 - first-order gradient of Z

- Second-order expectations:
 - expectation over product
 - interaction between features
 - Hessian matrix of Z
 - second-order gradient descent
 - gradient of expectation
 - gradient of expected loss or entropy







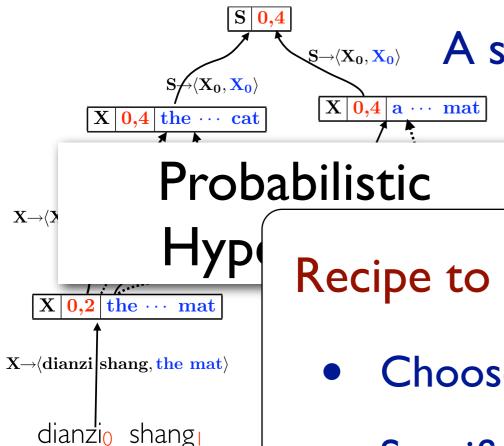
A semiring framework to compute all of these

"Decoding" quantities:

Recipe to compute a quantity:

- Choose a semiring
- Specific a semiring weight for each hyperedge
- First-orde
 - expectat
 - entropy
 - expected loss
 - cross-entropy
 - KL divergence
 - feature expectations
 - first-order gradient of Z

- interaction between leatures
- Hessian matrix of Z
 - second-order gradient descent
- gradient of expectation
 - gradient of expected loss or entropy



A semiring framework to compute all of these

"Decoding" quantities:

Recipe to compute a quantity:

- Choose a semiring
- Specific a semiring weight for each hyperedge
- Run the inside algorithm
- expectat

First-orde

- entropy
- expected loss
- cross-entropy
- KL divergence
- feature expectations
- first-order gradient of Z

- interaction between leatures
- Hessian matrix of Z
 - second-order gradient descent
- gradient of expectation
 - gradient of expected loss or entropy

Applications of Expectation Semirings: a Summary

Quantity	k_e	$k_{ m root}$	Final
Expectation	$\langle p_e, p_e r_e \rangle$	$\langle Z, \overline{r} \rangle$	\overline{r}/Z
Entropy	$r_e \stackrel{\text{def}}{=} \log p_e$, so $k_e = \langle p_e, p_e \log p_e \rangle$	$\langle Z, \overline{r} \rangle$	$\log Z - \overline{r}/Z$
Cross-	$\langle q_e angle$	$\langle Z_q \rangle$	$\log Z_q - \overline{r}/Z_p$
entropy	$r_e \stackrel{\text{def}}{=} \log q_e$, so $k_e = \langle p_e, p_e \log q_e \rangle$	$\langle Z_p, \overline{r} \rangle$	$\left \begin{array}{ccc} \log Z_q & r/Z_p \\ \end{array}\right $
Bayes risk	$r_e \stackrel{\text{def}}{=} L_e$, so $k_e = \langle p_e, p_e L_e \rangle$	$\langle Z, \overline{r} \rangle$	\overline{r}/Z
First-order	$\langle p_e, \nabla p_e \rangle$	$\langle Z, \nabla Z \rangle$	∇Z
gradient			
Covariance	$\langle p_e, p_e r_e, p_e s_e, p_e r_e s_e \rangle$	$\langle Z, \overline{r}, \overline{s}, \overline{t} \rangle$	$rac{ar{t}}{Z}-rac{ar{r}ar{s}^{\mathbf{T}}}{Z^2}$
matrix			
Hessian	$\langle p_e, \nabla p_e, \nabla p_e, \nabla^2 p_e \rangle$	$\Big \langle Z, abla Z, abla Z, abla^2 Z \Big angle$	$ abla^2 Z$
matrix			
Gradient of	$\langle p_e, p_e r_e, \nabla p_e, (\nabla p_e) r_e + p_e(\nabla r_e) \rangle$	$\langle Z, \overline{r}, \nabla Z, \nabla \overline{r} \rangle$	$\frac{Z\nabla \overline{r} - \overline{r}\nabla Z}{Z^2}$
expectation			
Gradient of	$\langle p_e, p_e \log p_e, \nabla p_e, (1 + \log p_e) \nabla p_e \rangle$	$\langle Z, \overline{r}, \nabla Z, \nabla \overline{r} \rangle$	$\left \frac{\nabla Z}{Z} - \frac{Z\nabla \overline{r} - \overline{r}\nabla Z}{Z^2} \right $
entropy			
Gradient of	$\langle p_e, p_e L_e, \nabla p_e, L_e \nabla p_e \rangle$	$\langle Z, \overline{r}, \nabla Z, \nabla \overline{r} \rangle$	$\frac{Z\nabla\overline{r} - \overline{r}\nabla Z}{Z^2}$
risk			

Inference, Training and Decoding on Hypergraphs

- Unsupervised Discriminative Training
 - minimum imputed risk (In Preparation)
 - contrastive language model estimation (In Preparation)
- Variational Decoding (Li et al., ACL 2009)
- First- and Second-order Expectation Semirings (Li and Eisner, EMNLP 2009)

My Other MT Research

Training methods (supervised)

- Discriminative forest reranking with Perceptron (Li and Khudanpur, GALE book chapter 2009)
- Discriminative n-gram language models (Li and Khudanpur, AMTA 2008)

Algorithms

- Oracle extraction from hypergraphs (Li and Khudanpur, NAACL 2009)
- Efficient intersection between n-gram LM and CFG (Li and Khudanpur, ACL SSST 2008)

Others

- System combination (Smith et al., GALE book chapter 2009)
- Unsupervised translation induction for Chinese abbreviations (Li and Yarowsky, ACL 2008)

Research other than MT

Information extraction

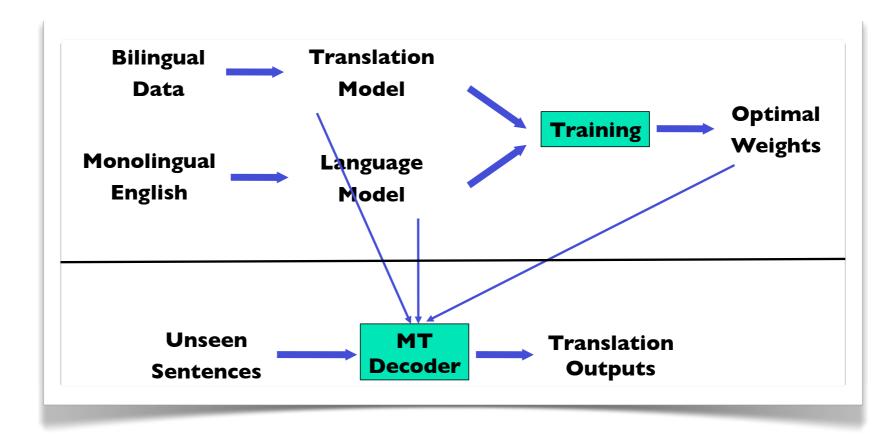
 Relation extraction between formal and informal phrases (Li and Yarowsky, EMNLP 2008)

Spoken dialog management

 Optimal dialog in consumer-rating systems using a POMDP (Li et al., SIGDial 2008)

Joshua project

- An open-source parsing-based MT toolkit (Li et al. 2009)
 - support Hiero (Chiang, 2007) and SAMT (Venugopal et al., 2007)
- Team members
 - **Zhifei Li**, Chris Callison-Burch, Chris Dyer, Sanjeev Khudanpur, Wren Thornton, Jonathan Weese, Juri Ganitkevitch, Lane Schwartz, and Omar Zaidan

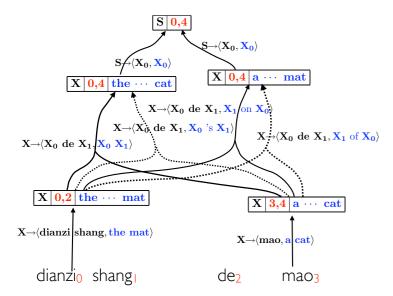


Only rely on word-aligner and SRI LM!

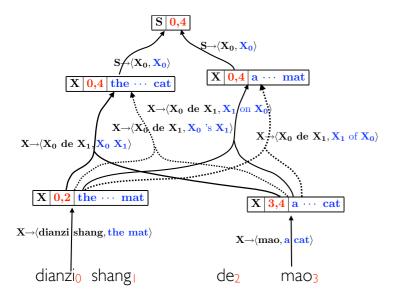
All the methods presented have been implemented in Joshua!

Thank you! XieXie! 谢谢!

Decoding over a hypergraph



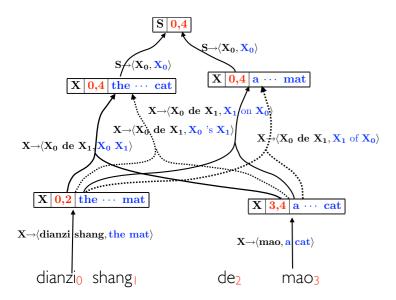
Decoding over a hypergraph



Given a hypergraph of possible translations

(generated for a given foreign sentence by already-trained model)

Decoding over a hypergraph



Given a hypergraph of possible translations

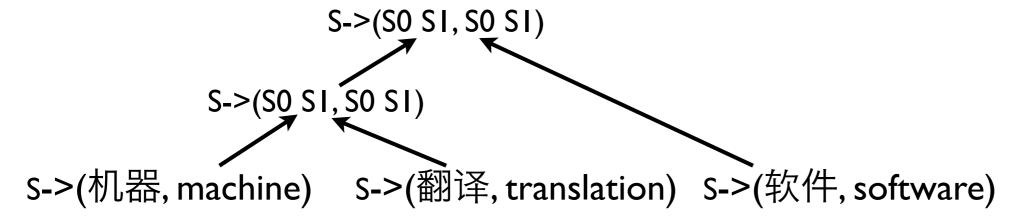
(generated for a given foreign sentence by already-trained model)

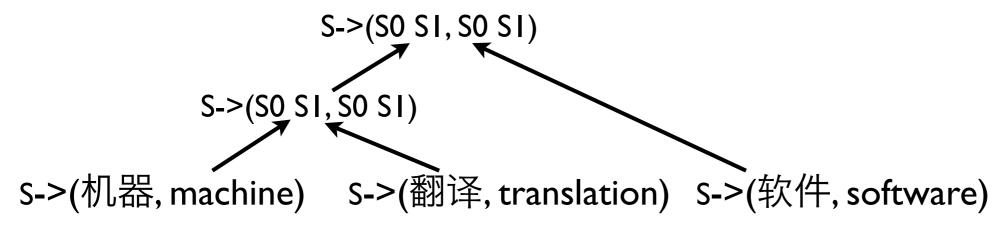
Pick a single translation to output

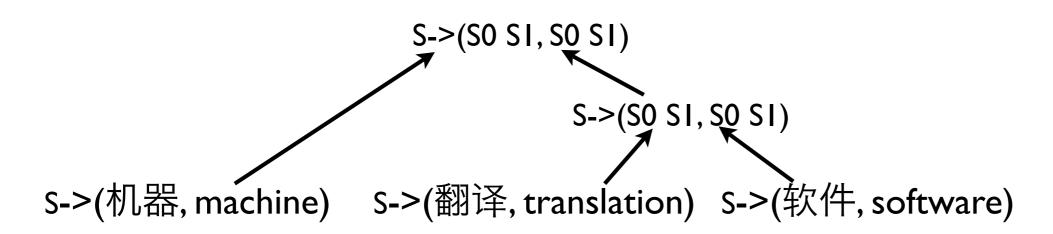
(why not just pick the tree with the highest weight?)

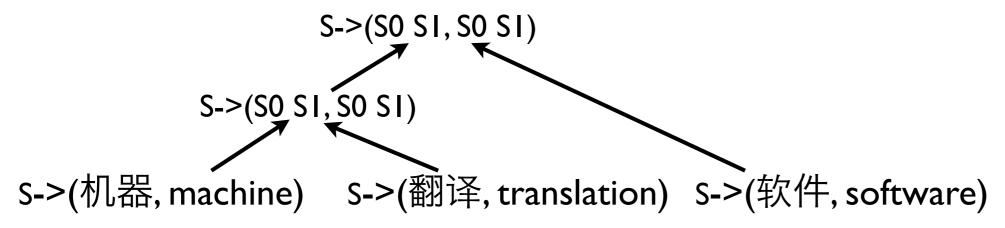
Spurious Ambiguity

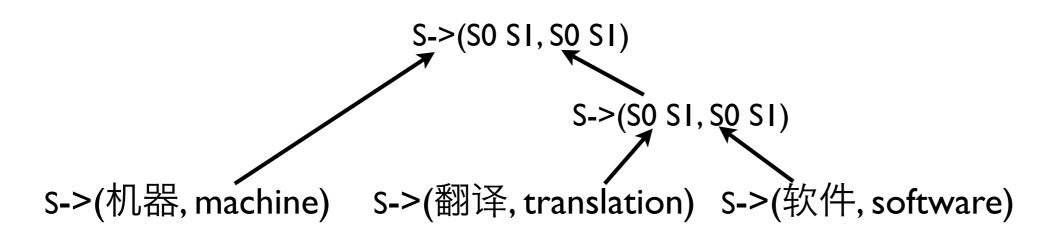
- Statistical models in MT exhibit spurious ambiguity
 - Many different derivations (e.g., trees or segmentations) generate the same translation string
- Tree-based MT systems
 - derivation tree ambiguity
- Regular phrase-based MT systems
 - phrase segmentation ambiguity

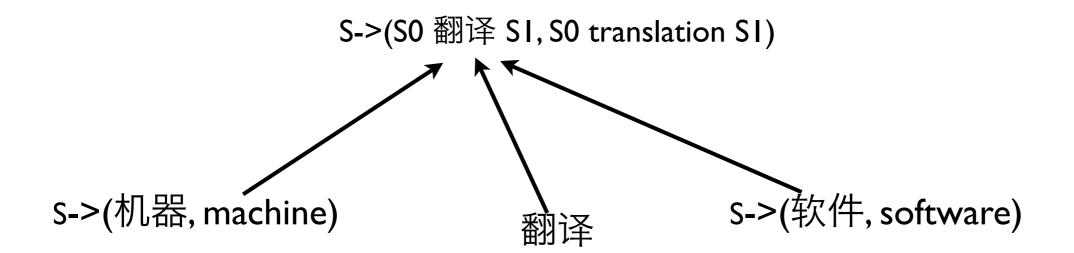




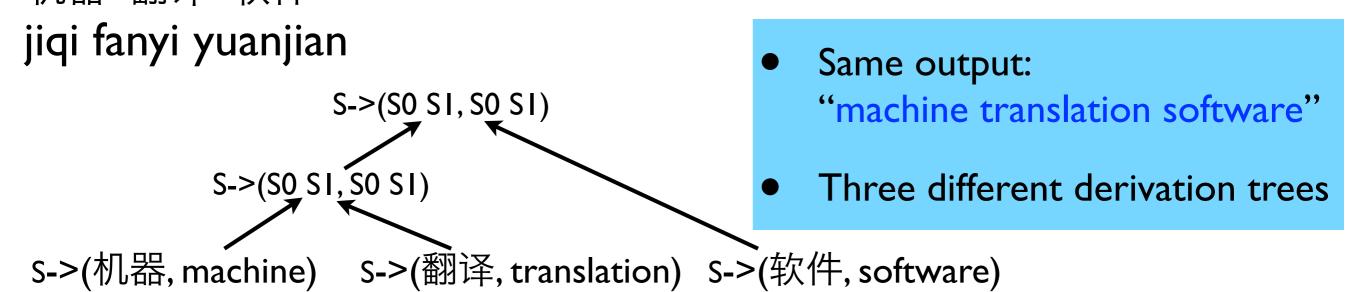


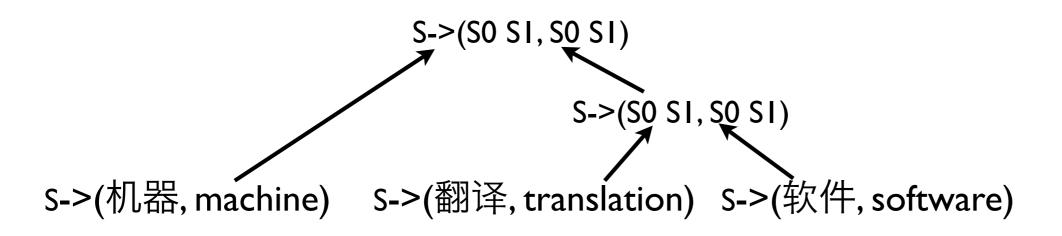


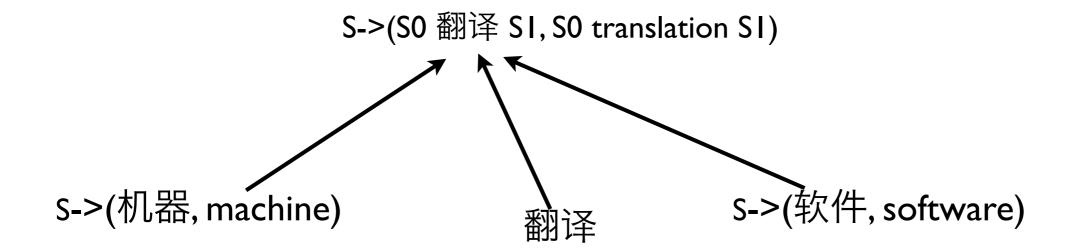




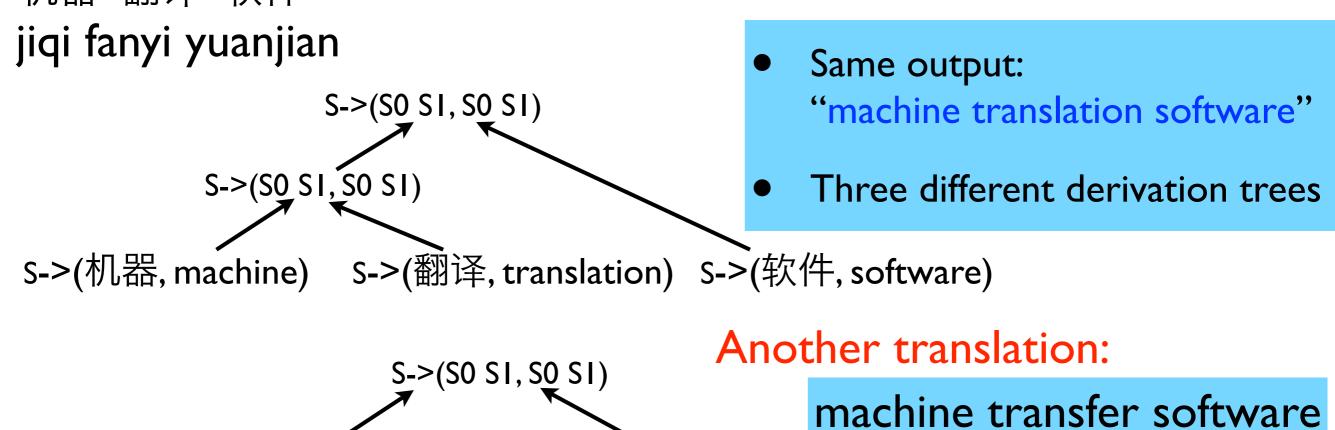
机器 翻译 软件 machine translation software

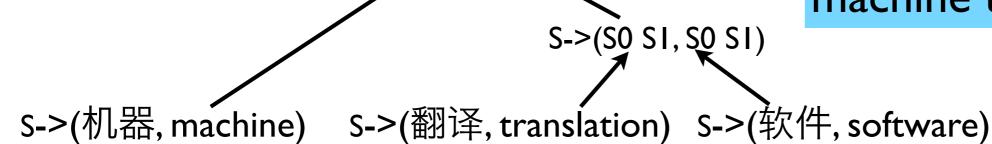


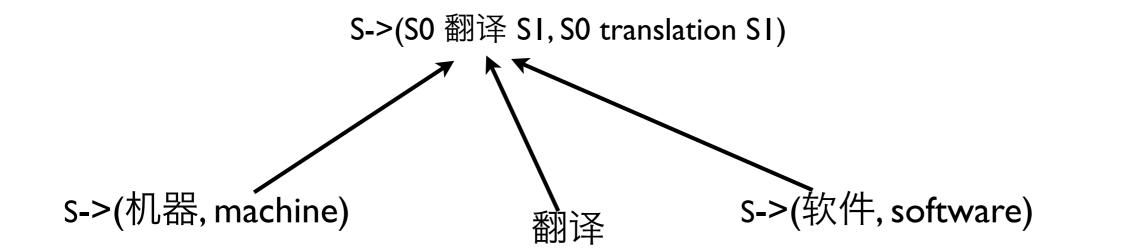




机器 翻译 软件 machine translation software







Exact MAP decoding

$$y^* = \arg \max_{y \in \text{Trans}(x)} p(y|x)$$
$$= \arg \max_{y \in \text{Trans}(x)} \sum_{d \in D(x,y)} p(y,d|x)$$

Exact MAP decoding

$$y^* = \arg\max_{y \in \operatorname{Trans}(x)} p(y|x)$$
 NP-hard (Sima'an 1996)
$$= \arg\max_{y \in \operatorname{Trans}(x)} \sum_{d \in \operatorname{D}(x,y)} p(y,d|x)$$

Exact MAP decoding

$$y^* = \arg\max_{y \in \operatorname{Trans}(x)} p(y|x)$$
 NP-hard (Sima'an 1996)
$$= \arg\max_{y \in \operatorname{Trans}(x)} \sum_{d \in \operatorname{D}(x,y)} p(y,d|x)$$

Viterbi approximation

$$y^* = \arg \max_{y \in \text{Trans}(x)} \max_{d \in D(x,y)} p(y,d|x)$$

Exact MAP decoding

$$y^* = \arg\max_{y \in \operatorname{Trans}(x)} p(y|x)$$
 NP-hard (Sima'an 1996)
$$= \arg\max_{y \in \operatorname{Trans}(x)} \sum_{d \in \operatorname{D}(x,y)} p(y,d|x)$$

Viterbi approximation

$$y^* = \arg \max_{y \in \text{Trans}(x)} \max_{d \in D(x,y)} p(y,d|x)$$
$$= Y(\arg \max_{d \in D(x)} p(y,d|x))$$

Exact MAP decoding

$$y^* = \arg\max_{y \in \operatorname{Trans}(x)} p(y|x) \qquad \text{NP-hard (Sima'an 1996)}$$

$$= \arg\max_{y \in \operatorname{Trans}(x)} \sum_{d \in \operatorname{D}(x,y)} p(y,d|x)$$
 • Viterbi approximation

$$y^* = \arg \max_{y \in \text{Trans}(x)} \max_{d \in D(x,y)} p(y,d|x)$$
$$= Y(\arg \max_{d \in D(x)} p(y,d|x))$$

Exact MAP decoding

$$y^* = \arg\max_{y \in \operatorname{Trans}(x)} p(y|x)$$
 NP-hard (Sima'an 1996)
$$= \arg\max_{y \in \operatorname{Trans}(x)} \sum_{d \in \operatorname{D}(x,y)} p(y,d|x)$$

Viterbi approximation

$$y^* = \arg \max_{y \in \text{Trans}(x)} \max_{d \in D(x,y)} p(y,d|x)$$
$$= Y(\arg \max_{d \in D(x)} p(y,d|x))$$

MAP, Viterbi and N-best Approximations

Exact MAP decoding

$$y^* = \arg\max_{y \in \operatorname{Trans}(x)} p(y|x)$$
 NP-hard (Sima'an 1996)
$$= \arg\max_{y \in \operatorname{Trans}(x)} \sum_{d \in \operatorname{D}(x,y)} p(y,d|x)$$

Viterbi approximation

$$y^* = \arg \max_{y \in \text{Trans}(x)} \max_{d \in D(x,y)} p(y,d|x)$$
$$= Y(\arg \max_{d \in D(x)} p(y,d|x))$$

 N-best approximation (crunching) (May and Knight 2006)

$$y^* = \arg \max_{y \in \text{Trans}(x)} \sum_{d \in D(x,y) \cap \text{ND}(x)} p(y,d|x)$$

MAP, Viterbi and N-best Approximations

Exact MAP decoding

$$y^* = \arg\max_{y \in \operatorname{Trans}(x)} p(y|x)$$
 NP-hard (Sima'an 1996)
$$= \arg\max_{y \in \operatorname{Trans}(x)} \sum_{d \in \operatorname{D}(x,y)} p(y,d|x)$$

Viterbi approximation

$$y^* = \arg \max_{y \in \text{Trans}(x)} \max_{d \in D(x,y)} p(y,d|x)$$
$$= Y(\arg \max_{d \in D(x)} p(y,d|x))$$

 N-best approximation (crunching) (May and Knight 2006)

$$y^* = \arg\max_{y \in \text{Trans}(x)} \sum_{\substack{d \in D(x,y) \cap \text{ND}(x)}} p(y,d|x)$$

MAP, Viterbi and N-best Approximations

Exact MAP decoding

$$y^* = \arg\max_{y \in \operatorname{Trans}(x)} p(y|x)$$
 NP-hard (Sima'an 1996)
$$= \arg\max_{y \in \operatorname{Trans}(x)} \sum_{d \in \operatorname{D}(x,y)} p(y,d|x)$$

Viterbi approximation

$$y^* = \arg \max_{y \in \text{Trans}(x)} \max_{d \in D(x,y)} p(y,d|x)$$
$$= Y(\arg \max_{d \in D(x)} p(y,d|x))$$

 N-best approximation (crunching) (May and Knight 2006)

$$y^* = \arg \max_{y \in \text{Trans}(x)} \sum_{d \in D(x,y) \cap \text{ND}(x)} p(y,d|x)$$

translation string	MAP	Viterbi	4-best crunching	derivation	probability
red translation	0.28	0.16	0.16		0.16
					0.14
blue translation	0.28	0.14	0.28		0.14
green translation	0.44	0.13	0.13		0.13
8					0.12
					0.11
					0.10
					0.10

translation string	MAP	Viterbi	4-best crunching	derivation	probability
red translation	0.20		•		0.16
red translation	0.28	0.16	0.16		0.14
blue translation	0.28	0.14	0.28		0.14
green translation	0.44	0.13	0.13		0.13
green translation	0.11	0.15	0.15		0.12
					0.11
					0.10
					0.10

• Exact MAP decoding under spurious ambiguity is intractable on HG

translation string	MAP	Viterbi	4-best crunching	derivation	probabilit
red translation	0.28	0.16	0.16		0.16
	0.20	0.10	0.10		0.14
blue translation	0.28	0.14	0.28		0.14
green translation	0.44	0.13	0.13		0.13
green translation	0.44	0.13	0.13		0.12
					0.11
					0.10
					0.10

- Exact MAP decoding under spurious ambiguity is intractable on HG
- Viterbi and crunching are efficient, but ignore most derivations

translation string	MAP	Viterbi	4-best crunching	derivation	probabilit
red translation	0.28	0.16	0.16		0.16
	0.20				0.14
blue translation	0.28	0.14	0.28		0.14
green translation	0.44	0.13	0.13		0.13
green translation	0.44	0.13	0.13		0.12
					0.11
					0.10
					0.10

- Exact MAP decoding under spurious ambiguity is intractable on HG
- Viterbi and crunching are efficient, but ignore most derivations
- Our goal: develop an approximation that considers all the derivations but still allows tractable decoding

Variational Decoding

Variational Decoding

Decoding using Variational approximation

Decoding using a sentence-specific approximate distribution

Sentence-specific decoding

Sentence-specific decoding

Three steps:

Sentence-specific decoding

Three steps:

1

Generate a hypergraph for the foreign sentence

Sentence-specific decoding

Three steps:

1

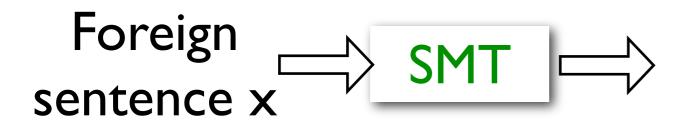
Generate a hypergraph for the foreign sentence

Foreign sentence x

Sentence-specific decoding

Three steps:

Generate a hypergraph for the foreign sentence



Sentence-specific decoding

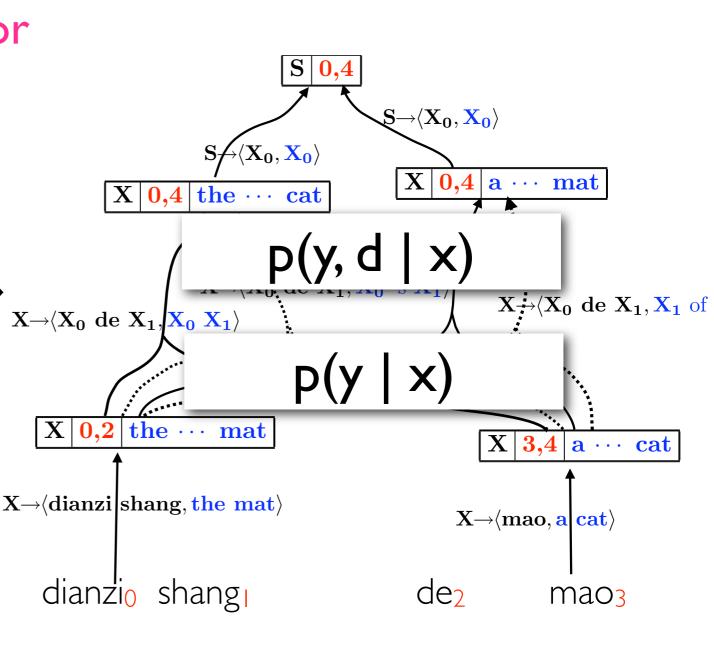
Three steps:

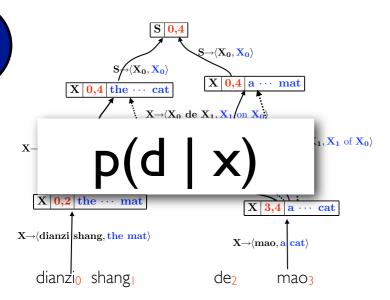
Foreign

sentence x

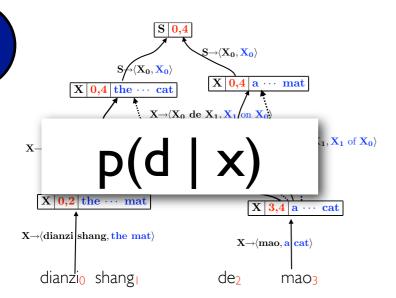
Generate a hypergraph for the foreign sentence

MAP decoding under P is intractable

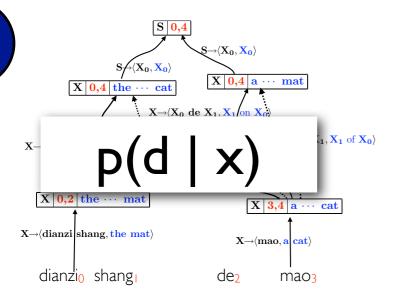


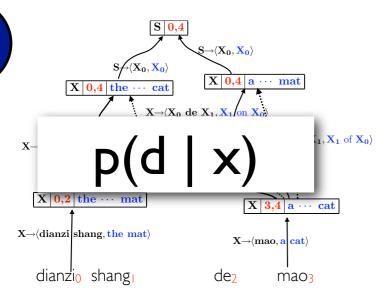


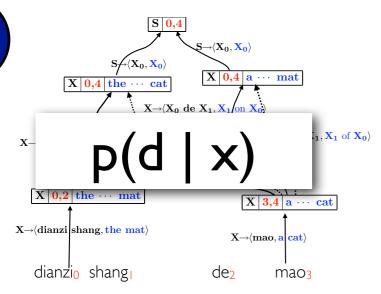
Generate a hypergraph

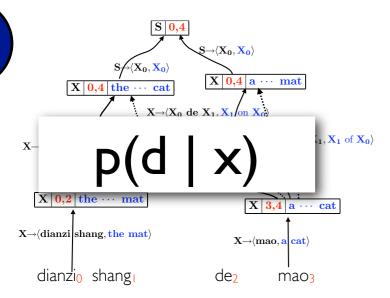


Generate a hypergraph

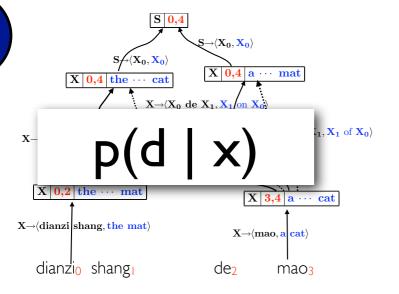








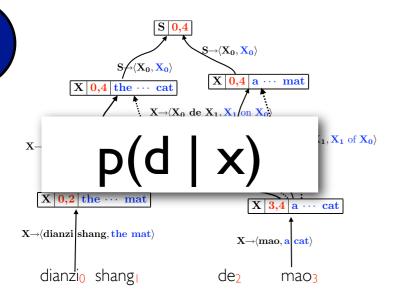
2



Estimate a model from the hypergraph

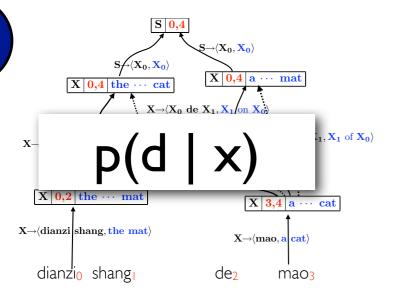
 $q^*(y \mid x)$

1



Generate a hypergraph

2

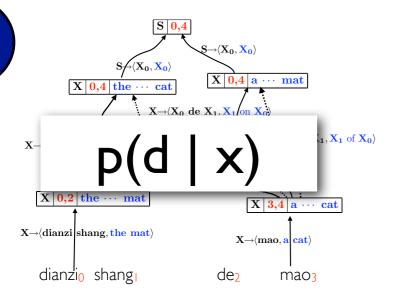


Estimate a model from the hypergraph

q* is an n-gram model over output strings.

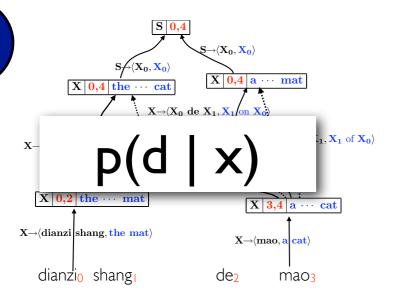
$$q^*(y \mid x)$$

1



Generate a hypergraph

2

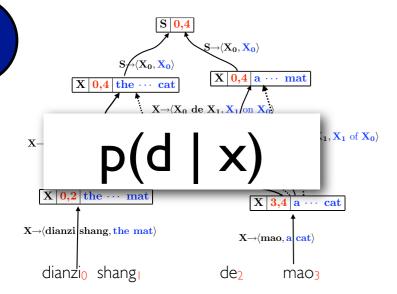


Estimate a model from the hypergraph

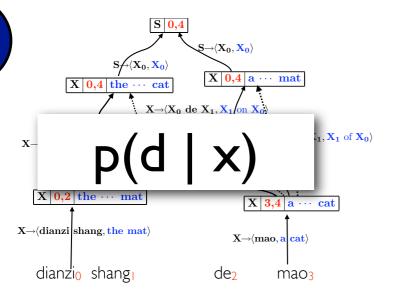
q* is an n-gram model over output strings.

$$q^*(y \mid x)$$

$$\approx \sum_{d \in D(x,y)} p(d|x)$$



2

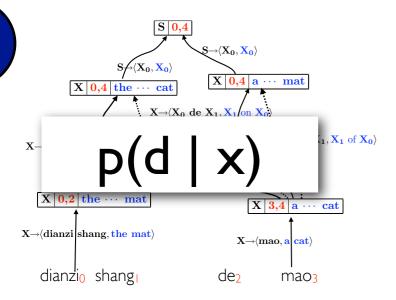


Estimate a model from the hypergraph

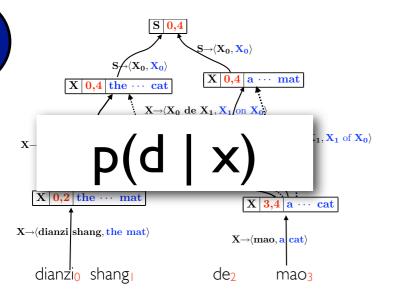
q* is an n-gram model over output strings.

$$q^*(y \mid x)$$

$$\approx \sum_{d \in D(x,y)} p(d|x)$$



2



Estimate a model from the hypergraph

q* is an n-gram model over output strings.

$$q^*(y \mid x)$$

$$\approx \sum_{d \in D(x,y)} p(d|x)$$

dianzio shang

 $X \rightarrow \langle mao, a | cat \rangle$

mao₃

de₂

Decode using q* on the hypergraph

• We want to do inference under p, but it is intractable

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$

$$y^* = \arg\max_{y} q^*(y \mid x)$$

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$

P

$$y^* = \arg\max_{y} q^*(y \mid x)$$

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$

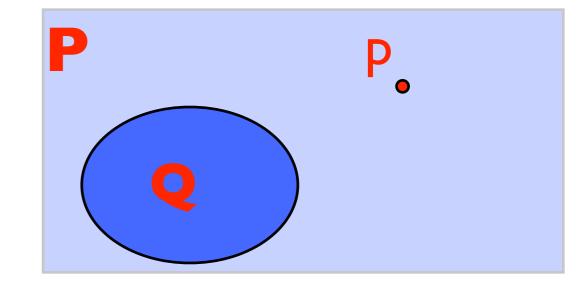
$$y^* = \arg\max_{y} q^*(y \mid x)$$

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$



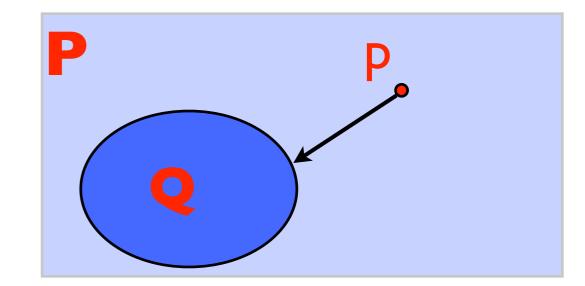
$$y^* = \arg\max_{y} q^*(y \mid x)$$

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$



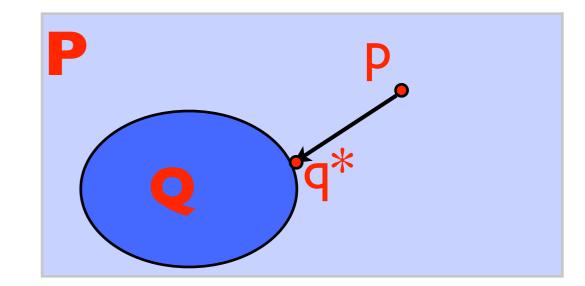
$$y^* = \arg\max_{y} q^*(y \mid x)$$

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$



$$y^* = \arg\max_{y} q^*(y \mid x)$$

$$q^* = \underset{q \in Q}{\arg\min} \underbrace{\mathrm{KL}(p||q)}$$
 a family of distributions

$$\begin{array}{ll} q^* & = & \displaystyle \arg\min_{q \in Q} \mathrm{KL}(p||q) \\ & = & \displaystyle \arg\min_{q \in Q} \sum_{y \in \mathrm{Trans}(x)} p \mathrm{log} \frac{p}{q} \end{array}$$

$$\begin{array}{ll} q^* & = & \displaystyle \arg\min_{q \in Q} \operatorname{KL}(p||q) \\ & = & \displaystyle \arg\min_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log \frac{p}{q} \\ & = & \displaystyle \arg\min_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} (p \log p - p \log q) \end{array}$$

$$q^* = \arg\min_{q \in Q} \operatorname{KL}(p||q) \quad \text{a family of distributions}$$

$$= \arg\min_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log \frac{p}{q}$$

$$= \arg\min_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} (p \log p) - p \log q) \quad \text{constant}$$

$$\begin{array}{ll} q^* & = & \displaystyle \mathop{\arg\min}_{q \in Q} \operatorname{KL}(p||q) \\ & = & \displaystyle \mathop{\arg\min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log \frac{p}{q} \\ \\ & = & \displaystyle \mathop{\arg\min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} (p \log p - p \log q) \\ \\ & = & \displaystyle \mathop{\arg\max}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log q \end{array} \qquad \begin{array}{c} \text{constant} \\ \end{array}$$

• q*: an approximation having minimum distance to p

$$\begin{array}{ll} q^* & = & \displaystyle \mathop{\arg\min}_{q \in Q} \operatorname{KL}(p||q) \\ & = & \displaystyle \mathop{\arg\min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log \frac{p}{q} \\ \\ & = & \displaystyle \mathop{\arg\min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} (p \log p - p \log q) \\ \\ & = & \displaystyle \mathop{\arg\max}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log q \end{array} \qquad \begin{array}{c} \text{constant} \\ \end{array}$$

Three questions

$$\begin{array}{ll} q^* & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \operatorname{KL}(p||q) \\ & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log \frac{p}{q} \\ \\ & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} (p \log p - p \log q) \\ \\ & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log q \end{array} \qquad \begin{array}{c} \text{constant} \\ \end{array}$$

- Three questions
 - how to parameterize q?

$$\begin{array}{ll} q^* & = & \displaystyle \mathop{\arg\min}_{q \in Q} \operatorname{KL}(p||q) \\ & = & \displaystyle \mathop{\arg\min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log \frac{p}{q} \\ \\ & = & \displaystyle \mathop{\arg\min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} (p \log p - p \log q) \\ \\ & = & \displaystyle \mathop{\arg\max}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log q \end{array} \quad \begin{array}{c} \text{constant} \\ \end{array}$$

- Three questions
 - how to parameterize q?
 - how to estimate q*?

$$\begin{array}{ll} q^* & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \operatorname{KL}(p||q) \\ & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log \frac{p}{q} \\ \\ & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} (p \log p - p \log q) \\ \\ & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log q \end{array} \qquad \begin{array}{c} \text{constant} \\ \end{array}$$

- Three questions
 - how to parameterize q?
 - how to estimate q*?
 - how to use q* for decoding?

• q*: an approximation having minimum distance to p

$$\begin{array}{ll} q^* & = & \displaystyle \arg\min_{q \in Q} \operatorname{KL}(p||q) \\ & = & \displaystyle \arg\min_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log \frac{p}{q} \\ \\ & = & \displaystyle \arg\min_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} (p \log p - p \log q) \\ \\ & = & \displaystyle \arg\max_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log q \end{array} \qquad \begin{array}{l} \text{constant} \\ \end{array}$$

- Three questions
 - how to parameterize q?

an n-gram model

- how to estimate q*?
- how to use q* for decoding?

• q*: an approximation having minimum distance to p

$$\begin{array}{ll} q^* & = & \displaystyle \arg\min_{q \in Q} \operatorname{KL}(p||q) \\ & = & \displaystyle \arg\min_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log \frac{p}{q} \\ \\ & = & \displaystyle \arg\min_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} (p \log p - p \log q) \\ \\ & = & \displaystyle \arg\max_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log q \end{array} \qquad \begin{array}{l} \text{constant} \\ \end{array}$$

- Three questions
 - how to parameterize q?
 - how to estimate q*?
 - how to use q* for decoding?

an n-gram model

compute expected n-gram counts and normalize

• q*: an approximation having minimum distance to p

$$\begin{array}{ll} q^* & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \operatorname{KL}(p||q) \\ & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log \frac{p}{q} \\ \\ & = & \displaystyle \operatorname*{arg\, min}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} (p \log p - p \log q) \\ \\ & = & \displaystyle \operatorname*{arg\, max}_{q \in Q} \sum_{y \in \operatorname{Trans}(x)} p \log q \end{array} \qquad \begin{array}{c} \text{constant} \\ \end{array}$$

- Three questions
 - how to parameterize q?
 - how to estimate q*?
 - how to use q* for decoding?

an n-gram model

compute expected n-gram counts and normalize

score the hypergraph with the n-gram model

KL divergences under different variational models

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q) = \mathrm{H}(p,q) - \mathrm{H}(p)$$

KL divergences under different variational models

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q) = \mathrm{H}(p,q) - \mathrm{H}(p)$$

Measure	$\overline{\mathrm{H}}(p)$	$\overline{ \mathrm{KL}(p \cdot)}$			
bits/word		q_1^*	q_2^*	q_3^*	q_4^*
MT'04	1.36	0.97	0.32	0.21	0.17
MT'05	1.37	0.94	0.32	0.21	0.17

KL divergences under different variational models

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q) = \mathrm{H}(p,q) - \mathrm{H}(p)$$

Measure	$\overline{\mathrm{H}}(p)$	$\overline{\mathrm{KL}}(p \cdot)$			
bits/word		q_1^*	q_2^*	q_3^*	q_4^*
MT'04	1.36	0.97	0.32	0.21	0.17
MT'05	1.37	0.94	0.32	0.21	0.17

- Larger n ==> better approximation q_n ==> smaller KL divergence from p
- The reduction of KL divergence happens mostly when switching from unigram to bigram

BLEU Results on Chinese-English NIST MT 2004 Tasks

	Decoding scheme	BLEU
	Viterbi	35.4
(Kumar and Byrne, 2004)	MBR $(K=1000)$	35.8
(May and Knight, 2006)	Crunching $(N=10000)$	35.7
	Crunching+MBR $(N=10000)$	35.8
New!	Variational (1to4gram+wp+vt)	36.6

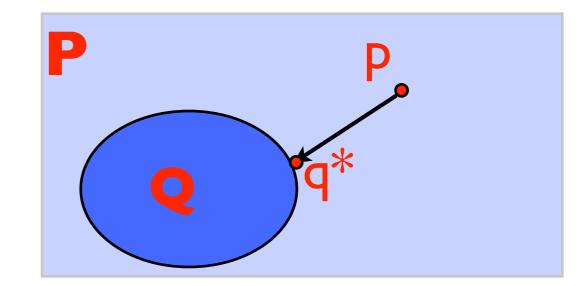
variational decoding improves over Viterbi, MBR, and crunching

• We want to do inference under p, but it is intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$



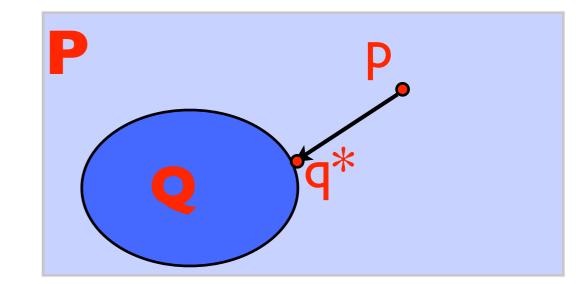
$$y^* = \arg\max_{y} q^*(y \mid x)$$

We want to do inference under p, but it is intractable intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$



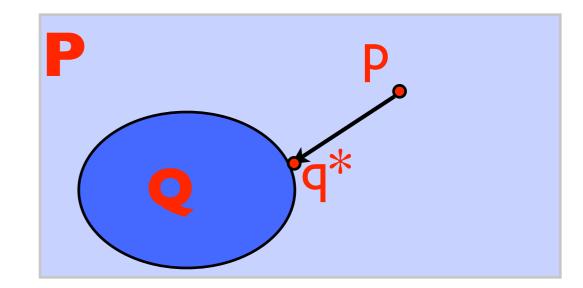
$$y^* = \arg\max_{y} q^*(y \mid x)$$

 We want to do inference under p, but it is intractable intractable

$$y^* = \arg\max_{y} p(y|x)$$

Instead, we derive a simpler distribution q*

tractable
$$q^* = \arg\min_{q \in Q} \mathrm{KL}(p||q)$$



tractable
$$y^* = \underset{y}{\operatorname{arg}} \max_{y} q^*(y \mid x)$$

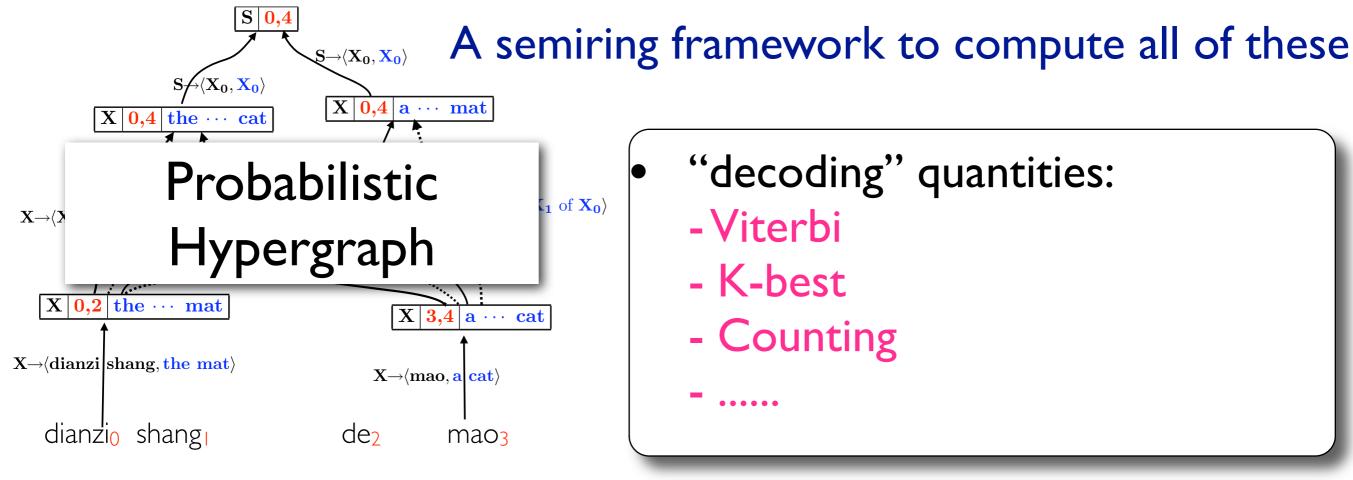
Outline

- Hypergraph as Hypothesis Space
- Unsupervised Discriminative Training
 - minimum imputed risk
 - contrastive language model estimation
- Variational Decoding
- First- and Second-order Expectation Semirings

decoding (e.g., mbr) training (e.g., mert)

atomic inference operations

(e.g., finding one-best, k-best or expectation, inference can be exact or approximate)

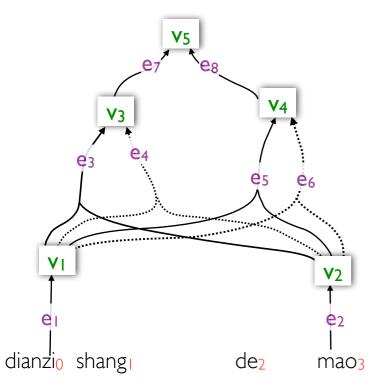


- "decoding" quantities:
 - Viterbi
 - K-best
 - Counting

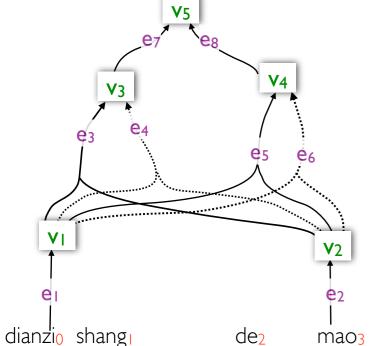
- First-order quantities:
 - expectation
 - entropy
 - Bayes risk
 - cross-entropy
 - KL divergence
 - feature expectations
 - first-order gradient of Z

- Second-order quantities:
 - expectation over product
 - interaction between features
 - Hessian matrix of Z
 - second-order gradient descent
 - gradient of expectation
 - gradient of entropy or Bayes risk

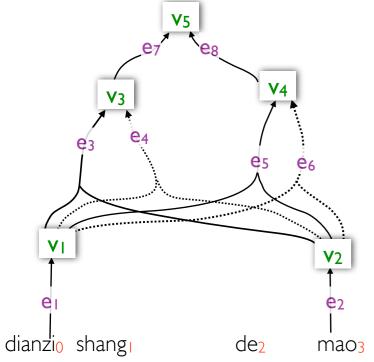
- Semiring-weighted inside algorithm
 - three steps:



- Semiring-weighted inside algorithm
 - three steps:

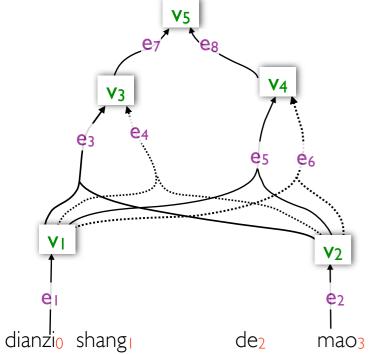


- Semiring-weighted inside algorithm
 - three steps:
 - choose a semiring



specify a weight for each hyperedge

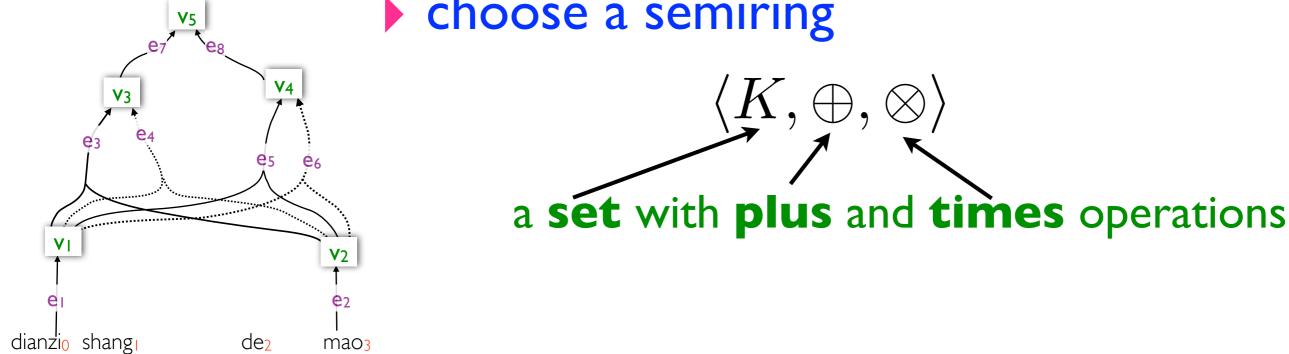
- Semiring-weighted inside algorithm
 - three steps:
 - choose a semiring



specify a weight for each hyperedge

run the inside algorithm

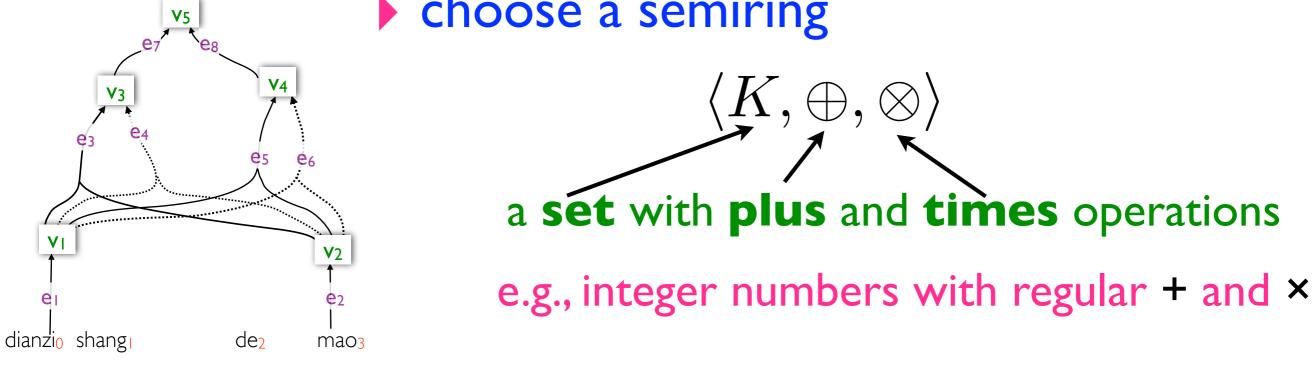
- Semiring-weighted inside algorithm
 - three steps:
 - choose a semiring



specify a weight for each hyperedge

run the inside algorithm

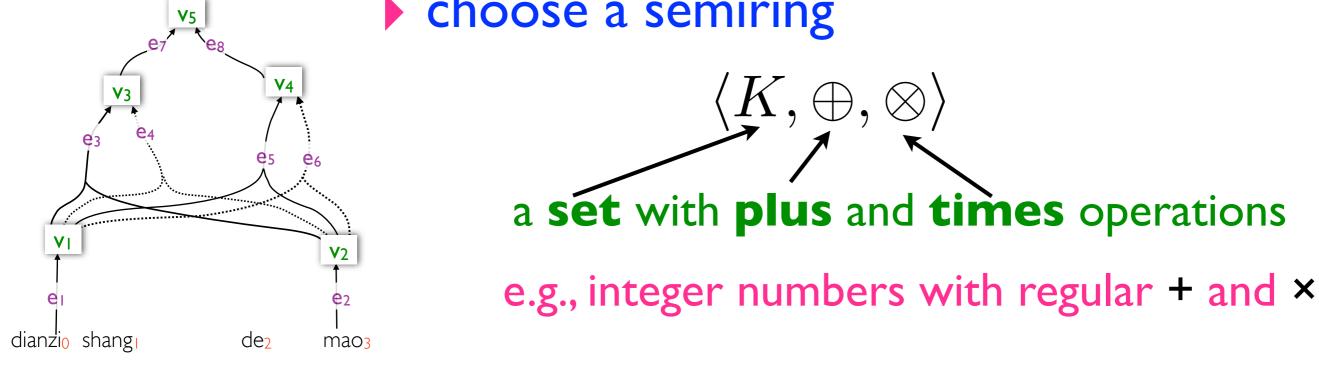
- Semiring-weighted inside algorithm
 - three steps:
 - choose a semiring



specify a weight for each hyperedge

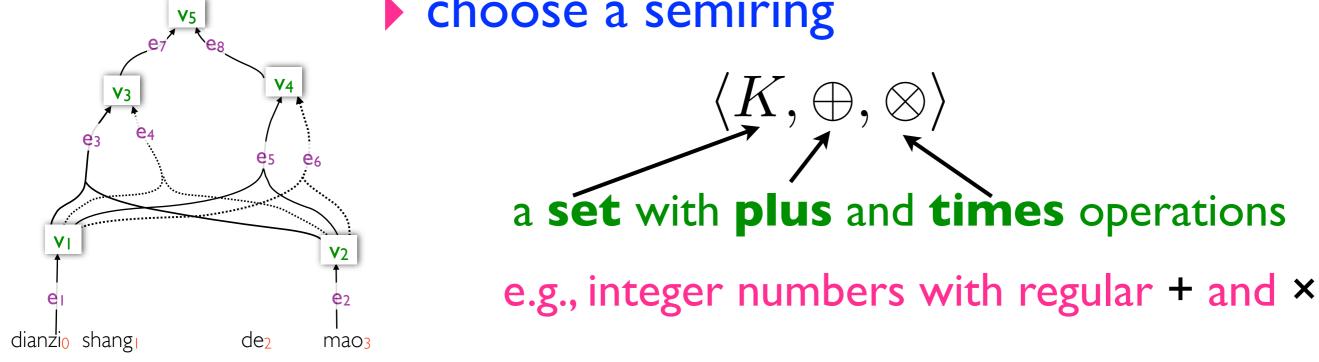
run the inside algorithm

- Semiring-weighted inside algorithm
 - three steps:
 - choose a semiring



- specify a weight for each hyperedge each weight is a semiring member
- run the inside algorithm

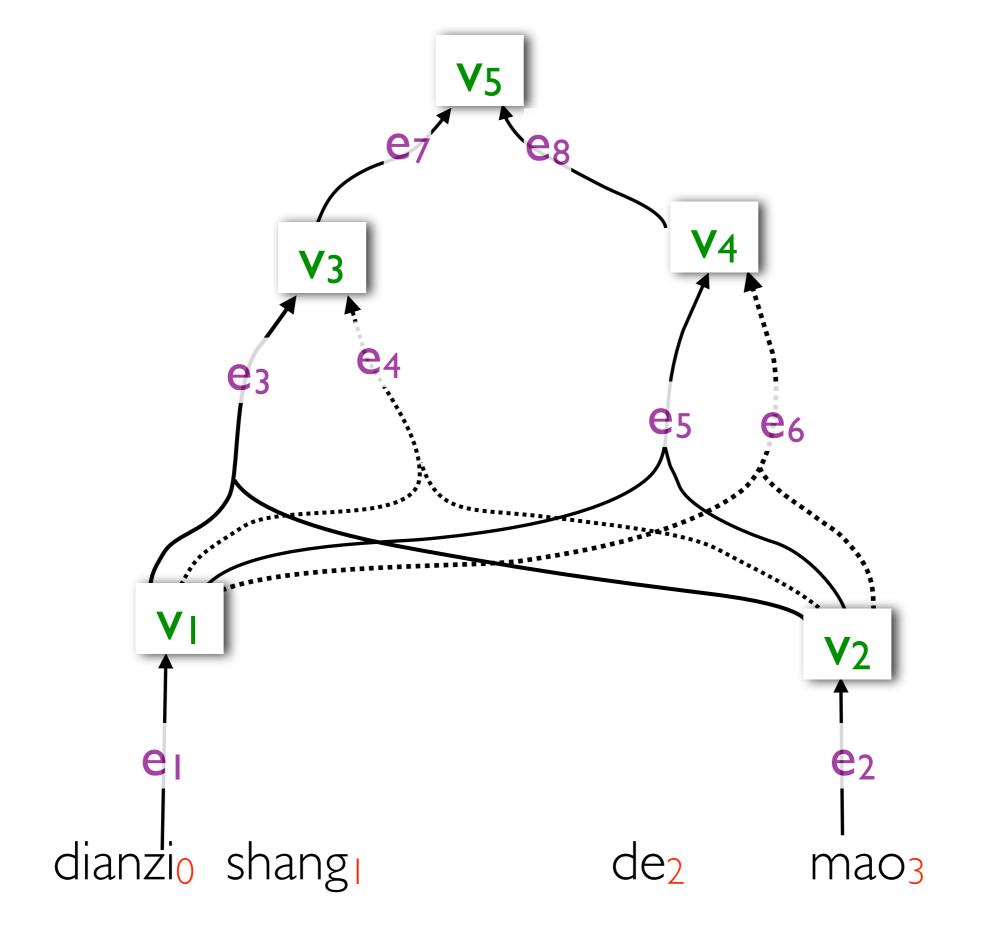
- Semiring-weighted inside algorithm
 - three steps:
 - choose a semiring

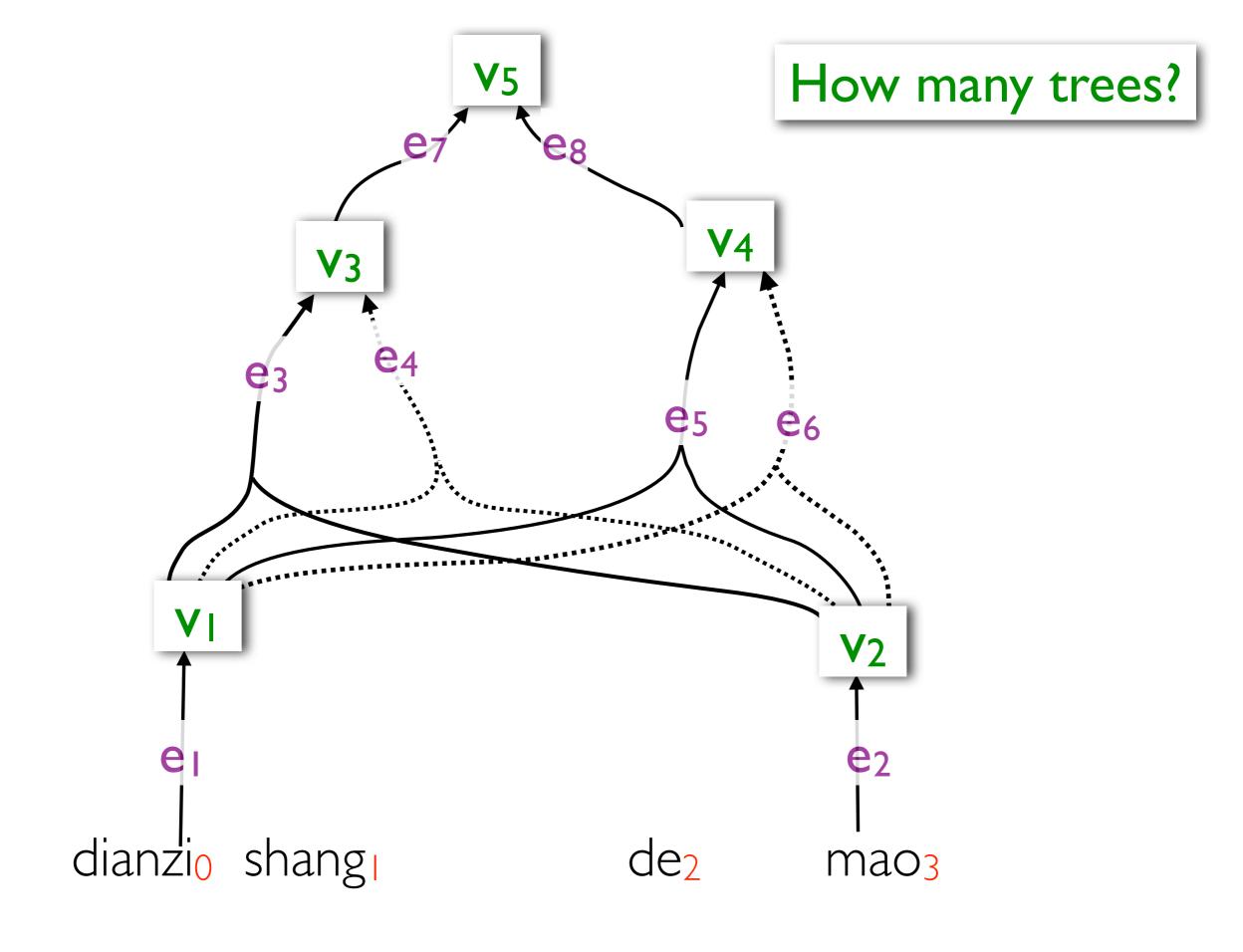


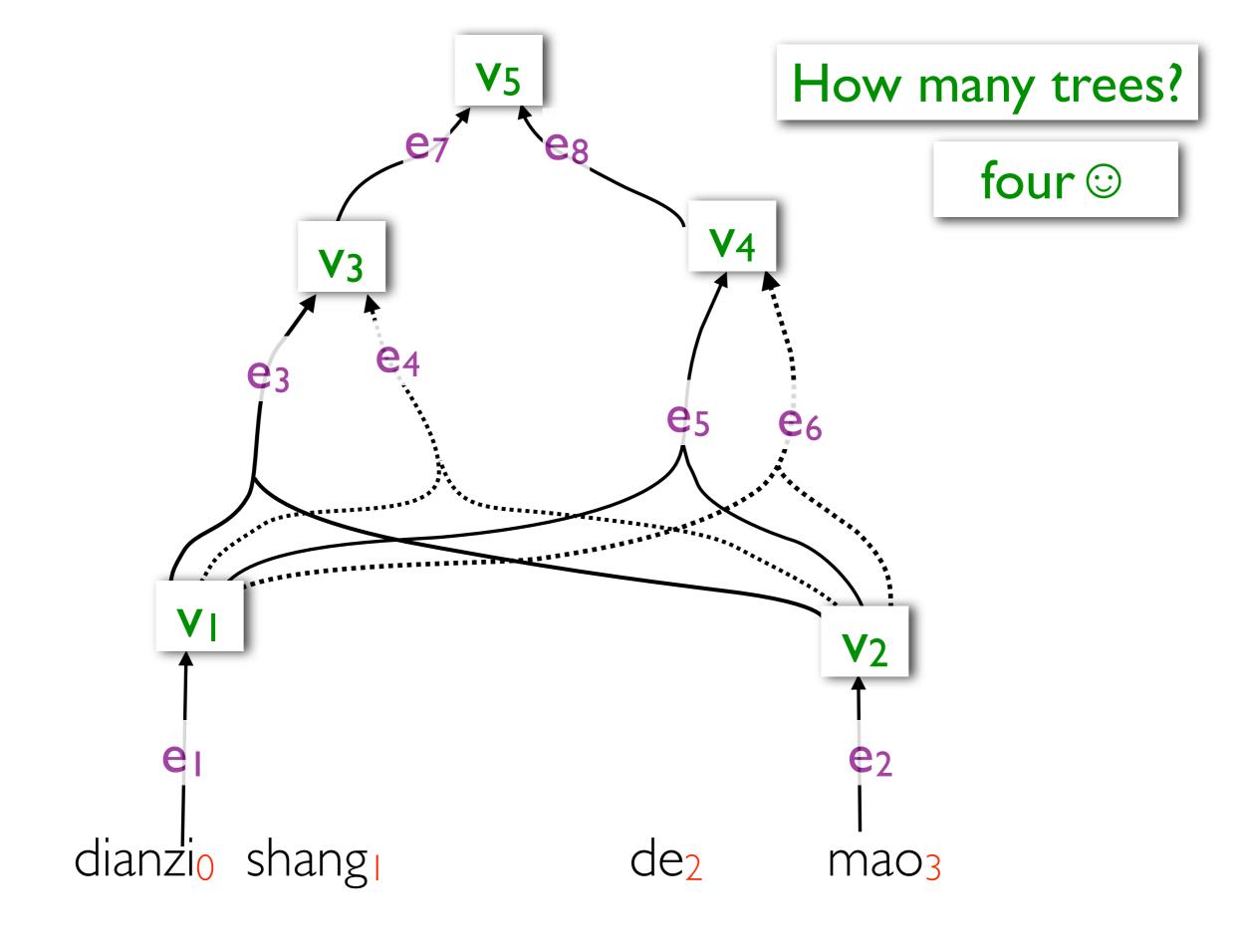
- specify a weight for each hyperedge each weight is a semiring member
- run the inside algorithm complexity is O(hypergraph size)

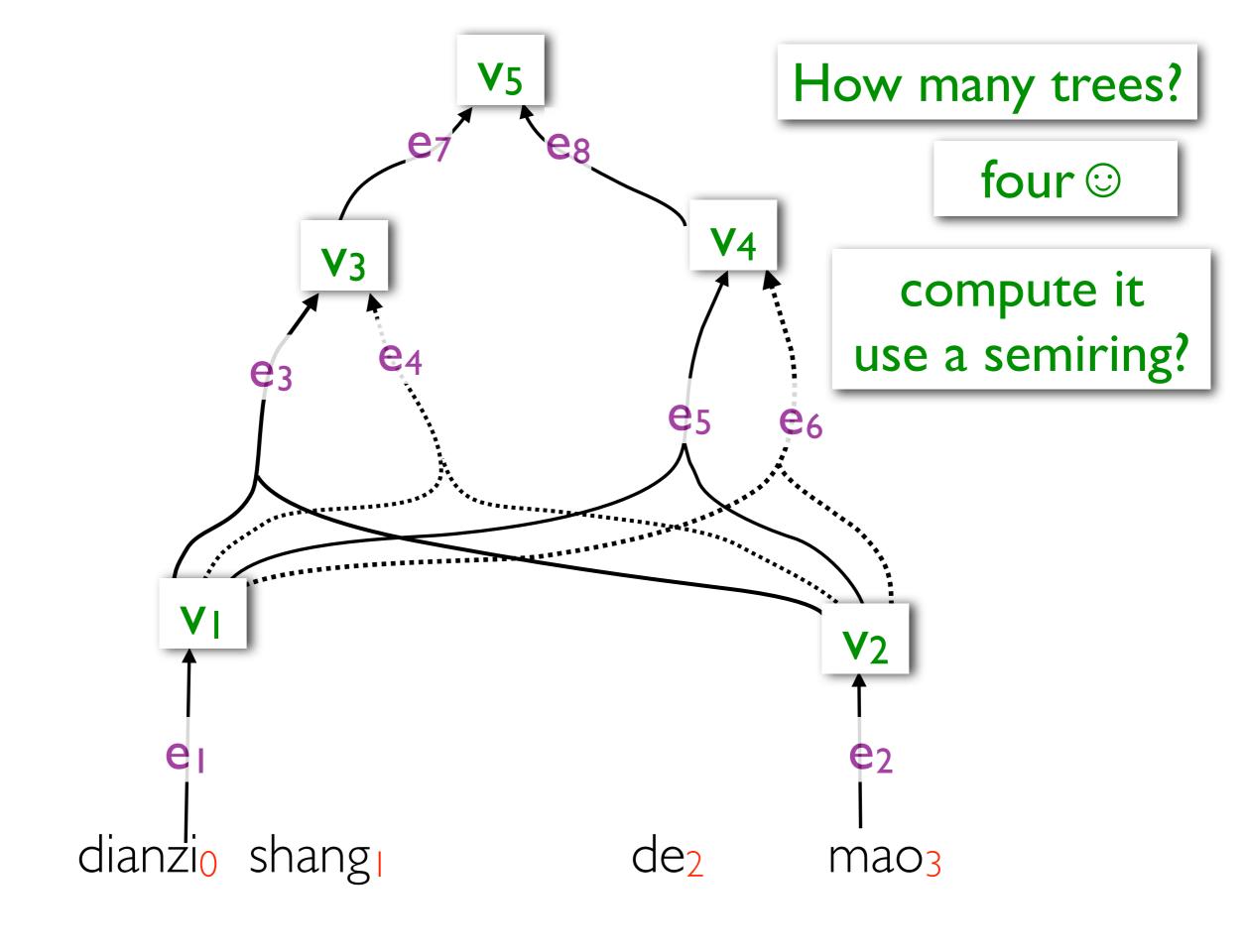
Semirings

- "Decoding" time semirings (Goodman, 1999)
 - counting, Viterbi, K-best, etc.
- "Training" time semirings
 - first-order expectation semirings (Eisner, 2002)
 - second-order expectation semirings (new)
- Applications of the Semirings (new)
 - entropy, risk, gradient of them, and many more



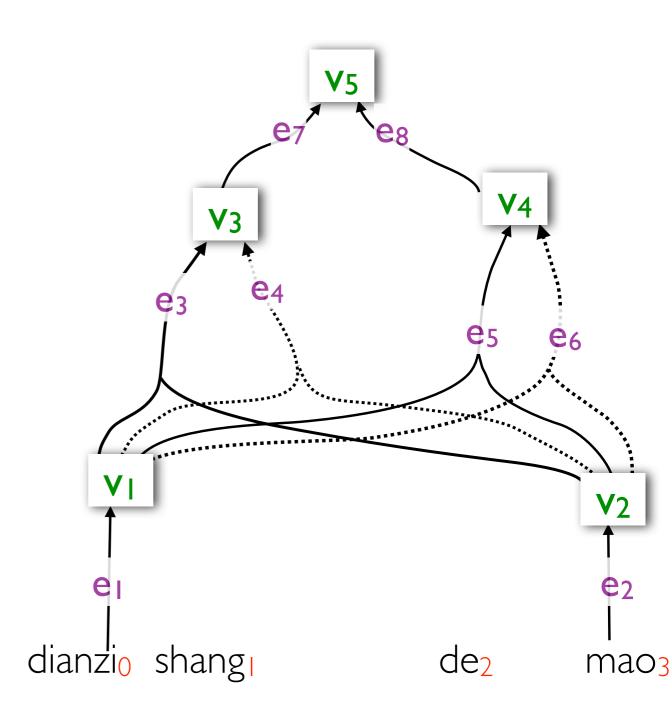






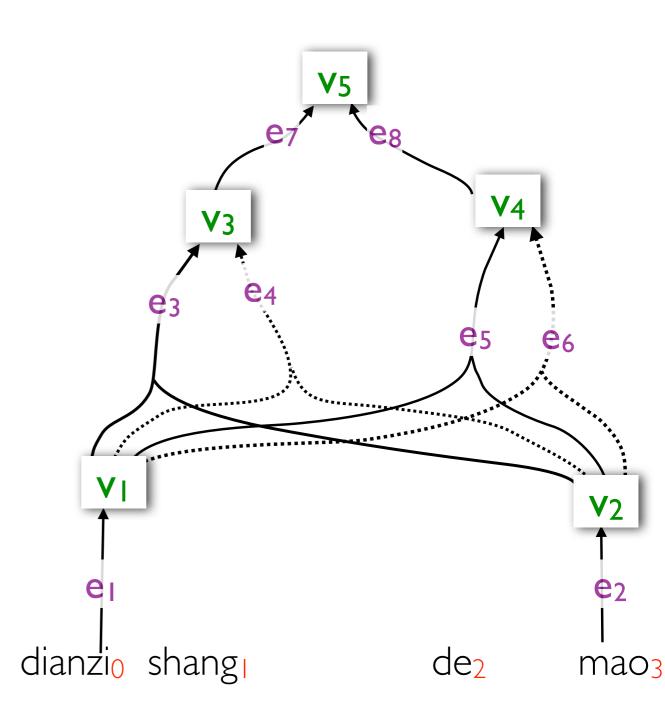
Compute the Number of Derivation Trees

Three steps:



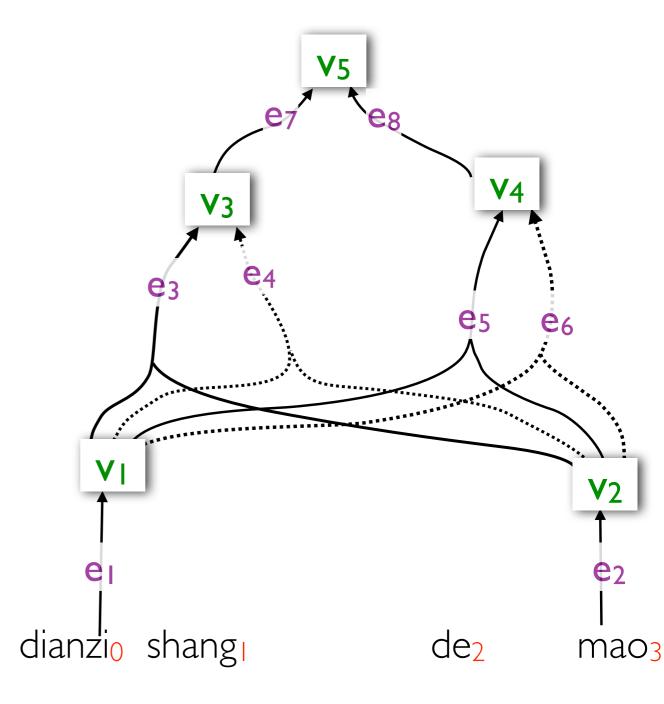
Three steps:

choose a semiring



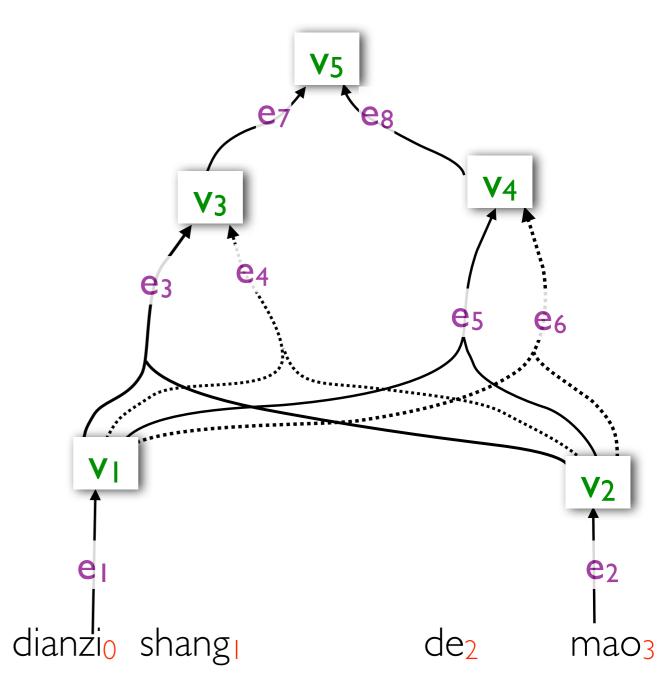
Three steps:

choose a semiring counting semiring:
ordinary integers with regular + and x



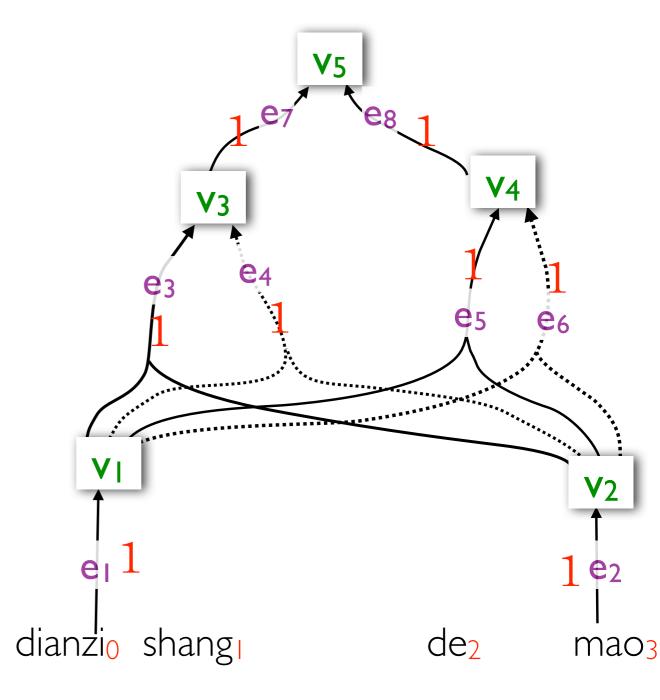
Three steps:

- choose a semiring counting semiring:
 ordinary integers with regular + and x
- specify a weight for each hyperedge



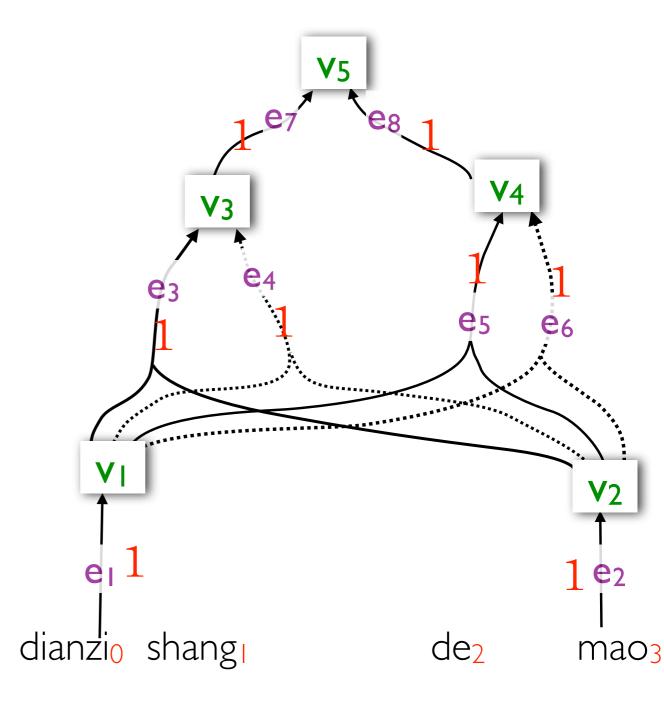
Three steps:

- choose a semiring counting semiring:
 ordinary integers with regular + and x
- specify a weight for each hyperedge



Three steps:

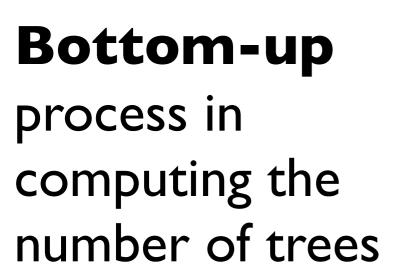
- choose a semiring counting semiring:
 ordinary integers with regular + and x
- specify a weight for each hyperedge
- run the inside algorithm

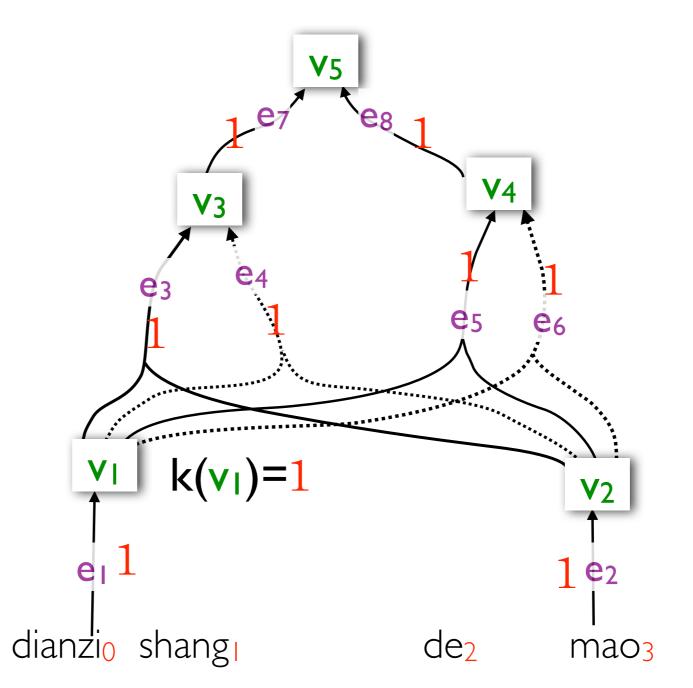


Bottom-up process in computing the number of trees



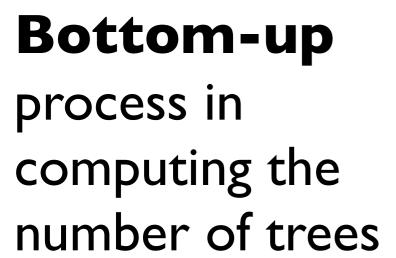
$$k(v_I) = k(e_I)$$

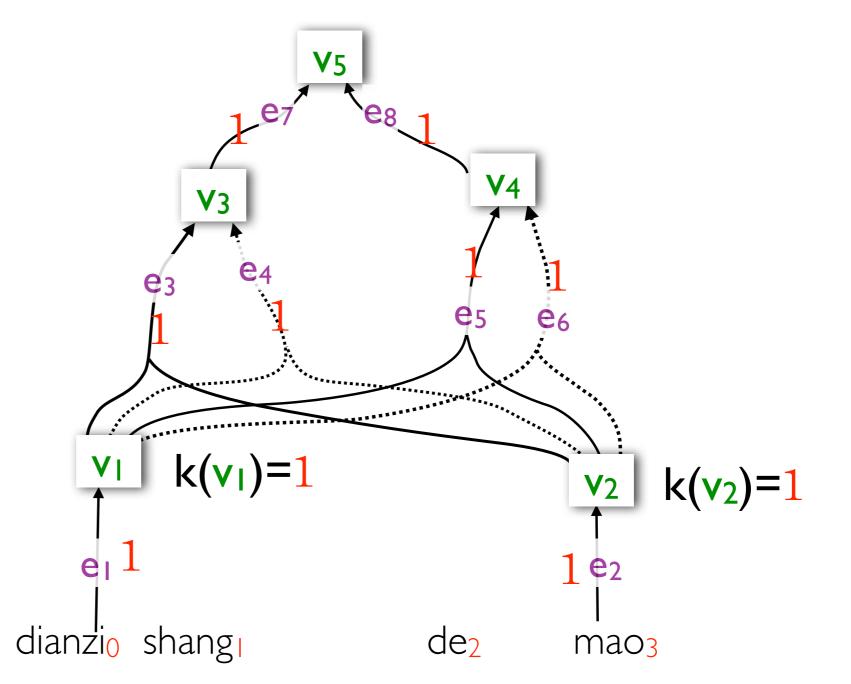




$$k(v_I) = k(e_I)$$

$$k(v_2)=k(e_2)$$

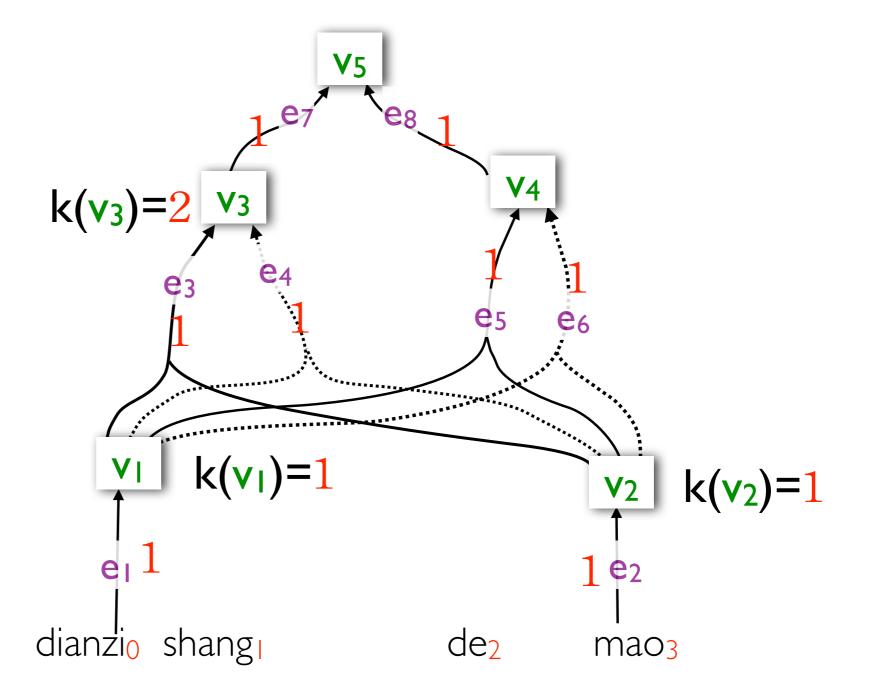




$$k(v_1) = k(e_1) \qquad k(v_2) = k(e_2)$$

$$k(v_3) = k(e_3) \bigotimes k(v_1) \bigotimes k(v_2) \bigoplus k(e_4) \bigotimes k(v_1) \bigotimes k(v_2)$$

Bottom-up
process in
computing the
number of trees

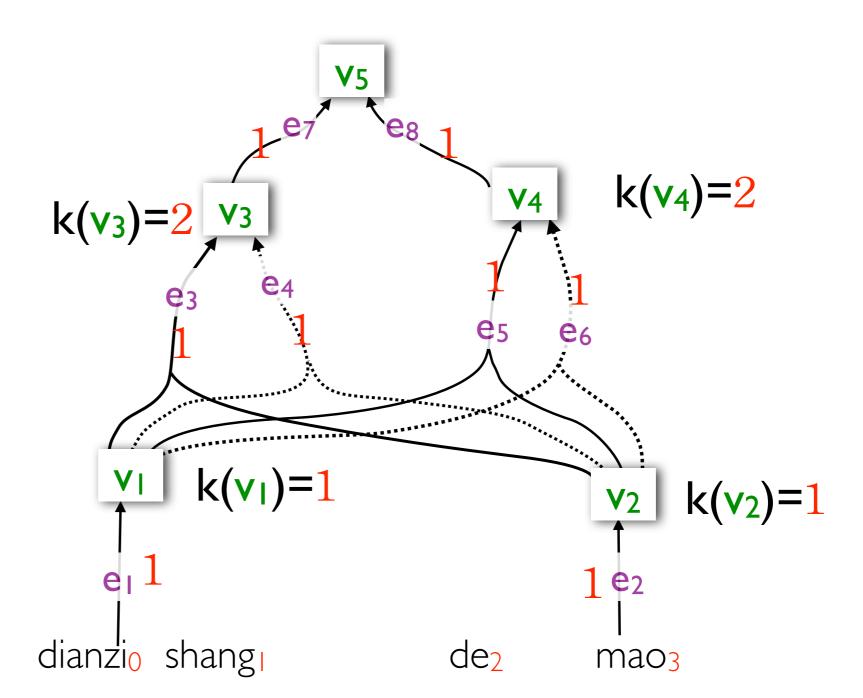


$$k(v_1) = k(e_1) \qquad k(v_2) = k(e_2)$$

$$k(v_3) = k(e_3) \bigotimes k(v_1) \bigotimes k(v_2) \bigoplus k(e_4) \bigotimes k(v_1) \bigotimes k(v_2)$$

$$k(v_4) = k(e_5) \bigotimes k(v_1) \bigotimes k(v_2) \bigoplus k(e_6) \bigotimes k(v_1) \bigotimes k(v_2)$$

Bottom-up
process in
computing the
number of trees

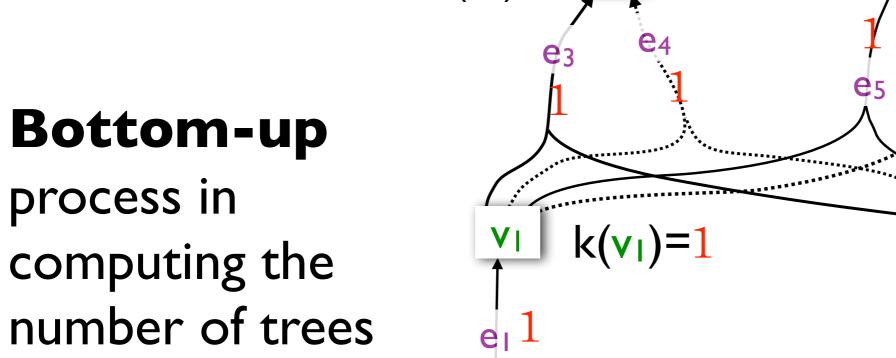


$$k(v_1) = k(e_1) \qquad k(v_2) = k(e_2)$$

$$k(v_3) = k(e_3) \bigotimes k(v_1) \bigotimes k(v_2) \bigoplus k(e_4) \bigotimes k(v_1) \bigotimes k(v_2)$$

$$k(v_4) = k(e_5) \bigotimes k(v_1) \bigotimes k(v_2) \bigoplus k(e_6) \bigotimes k(v_1) \bigotimes k(v_2)$$

$$k(v_5) = k(e_7) \bigotimes k(v_3) \bigoplus k(e_8) \bigotimes k(v_4)$$



 $k(v_4)=2$ $k(v_3)=2$ $k(v_2)=1$ e₂ dianzio shangi de₂ mao₃

 $k(v_5)=4$

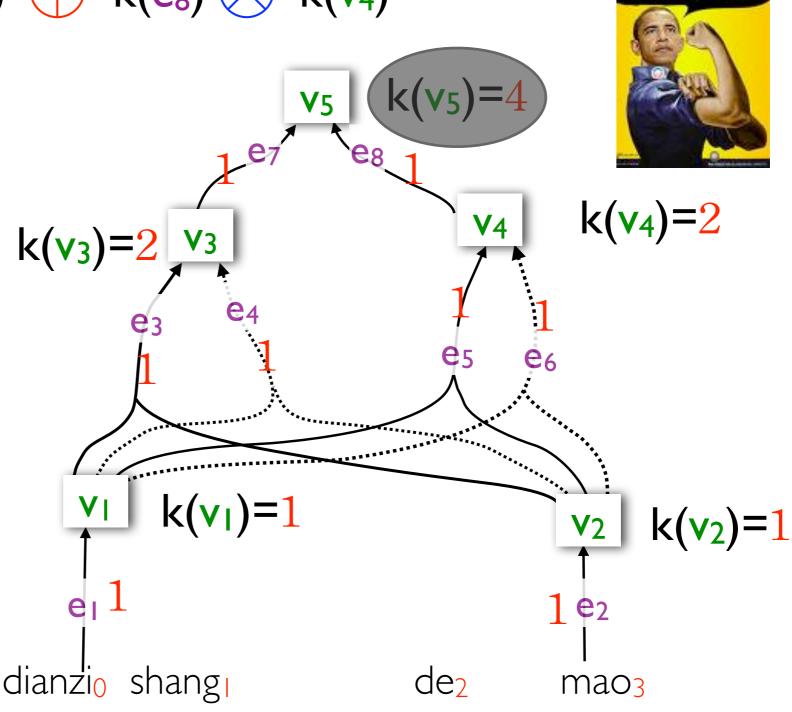
$$k(v_1) = k(e_1) \qquad k(v_2) = k(e_2)$$

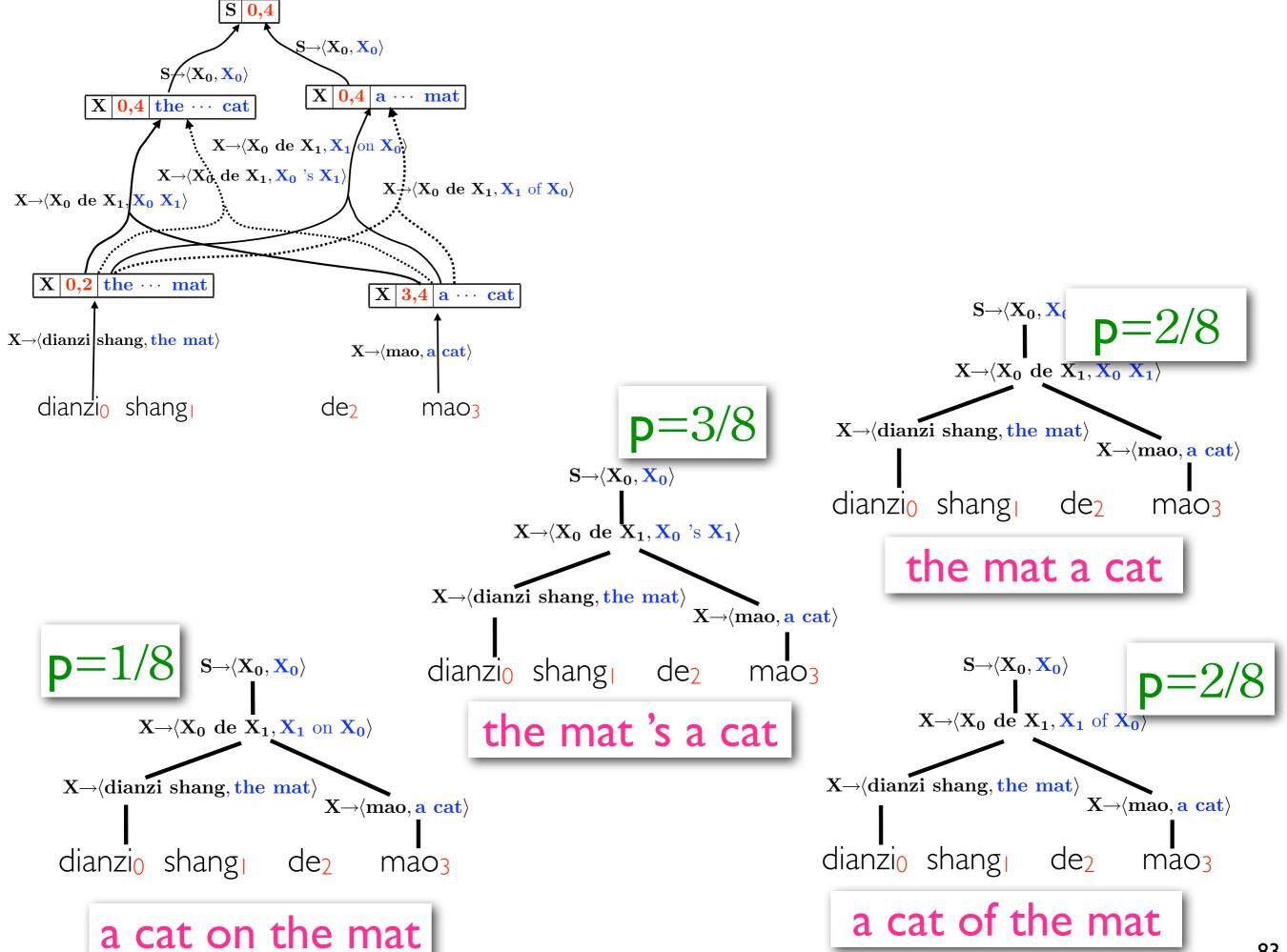
$$k(v_3) = k(e_3) \bigotimes k(v_1) \bigotimes k(v_2) \bigoplus k(e_4) \bigotimes k(v_1) \bigotimes k(v_2)$$

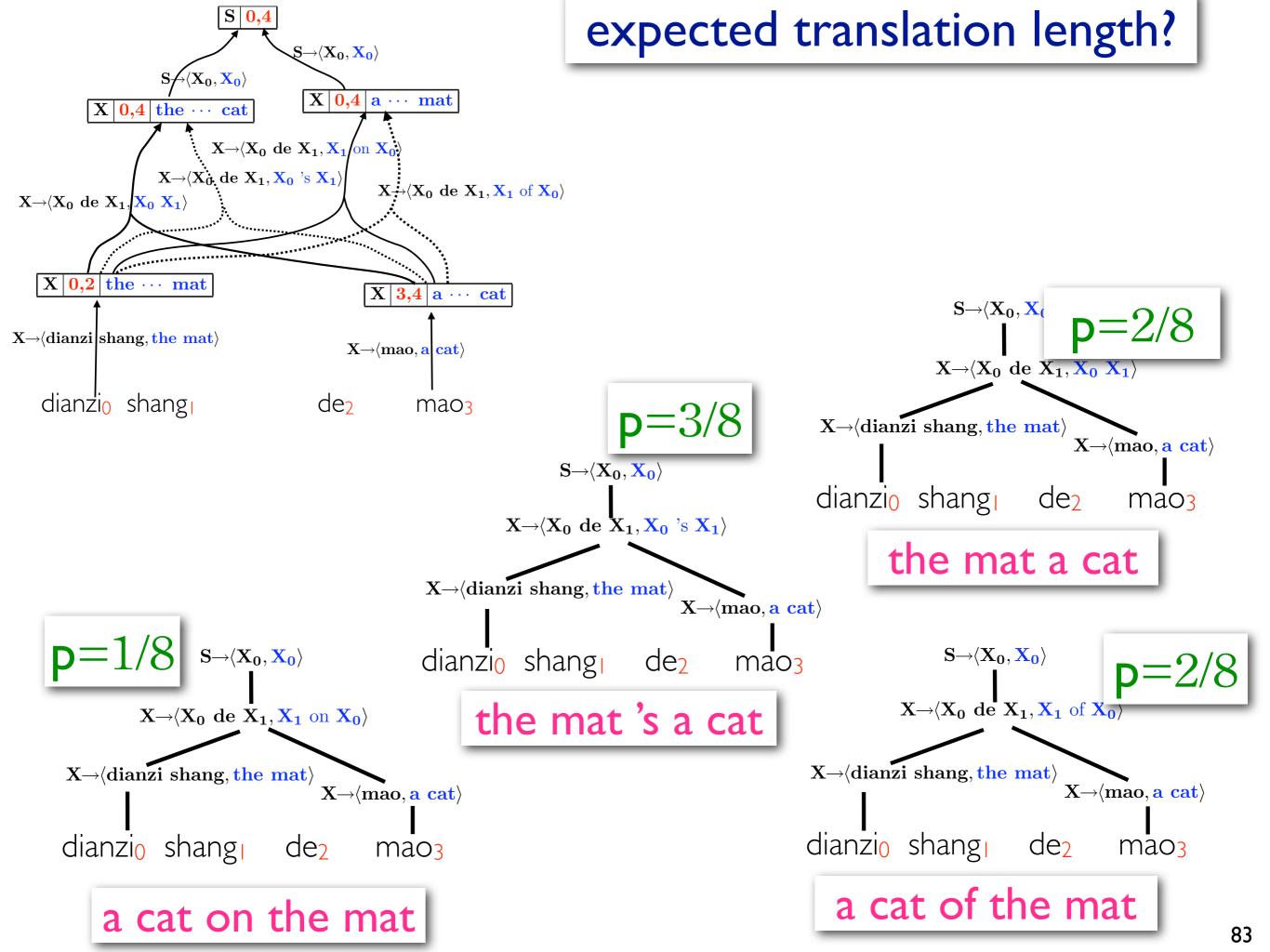
$$k(v_4) = k(e_5) \bigotimes k(v_1) \bigotimes k(v_2) \bigoplus k(e_6) \bigotimes k(v_1) \bigotimes k(v_2)$$

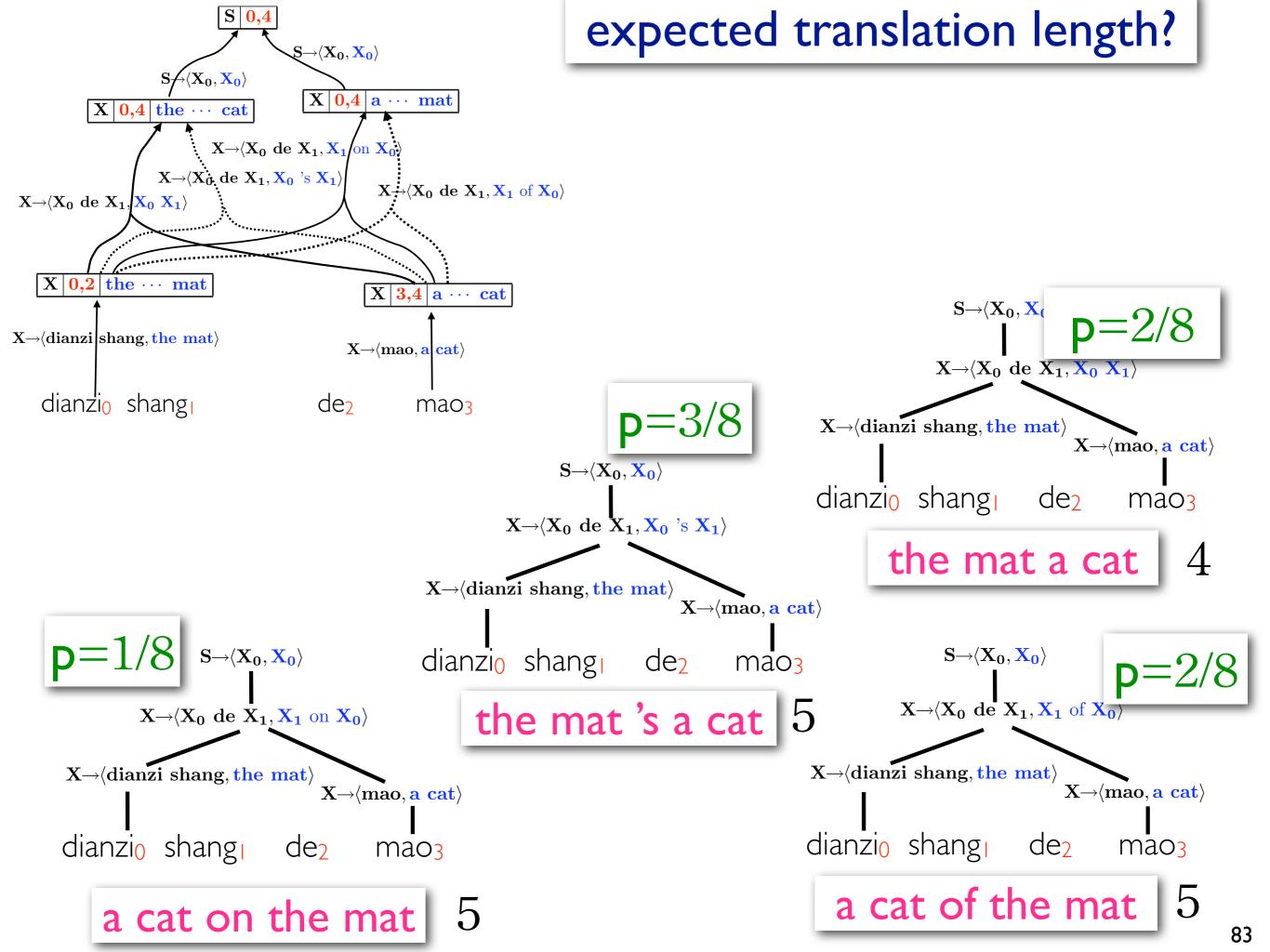
$$k(v_5) = k(e_7) \bigotimes k(v_3) \bigoplus k(e_8) \bigotimes k(v_4)$$
Yes, We Can!

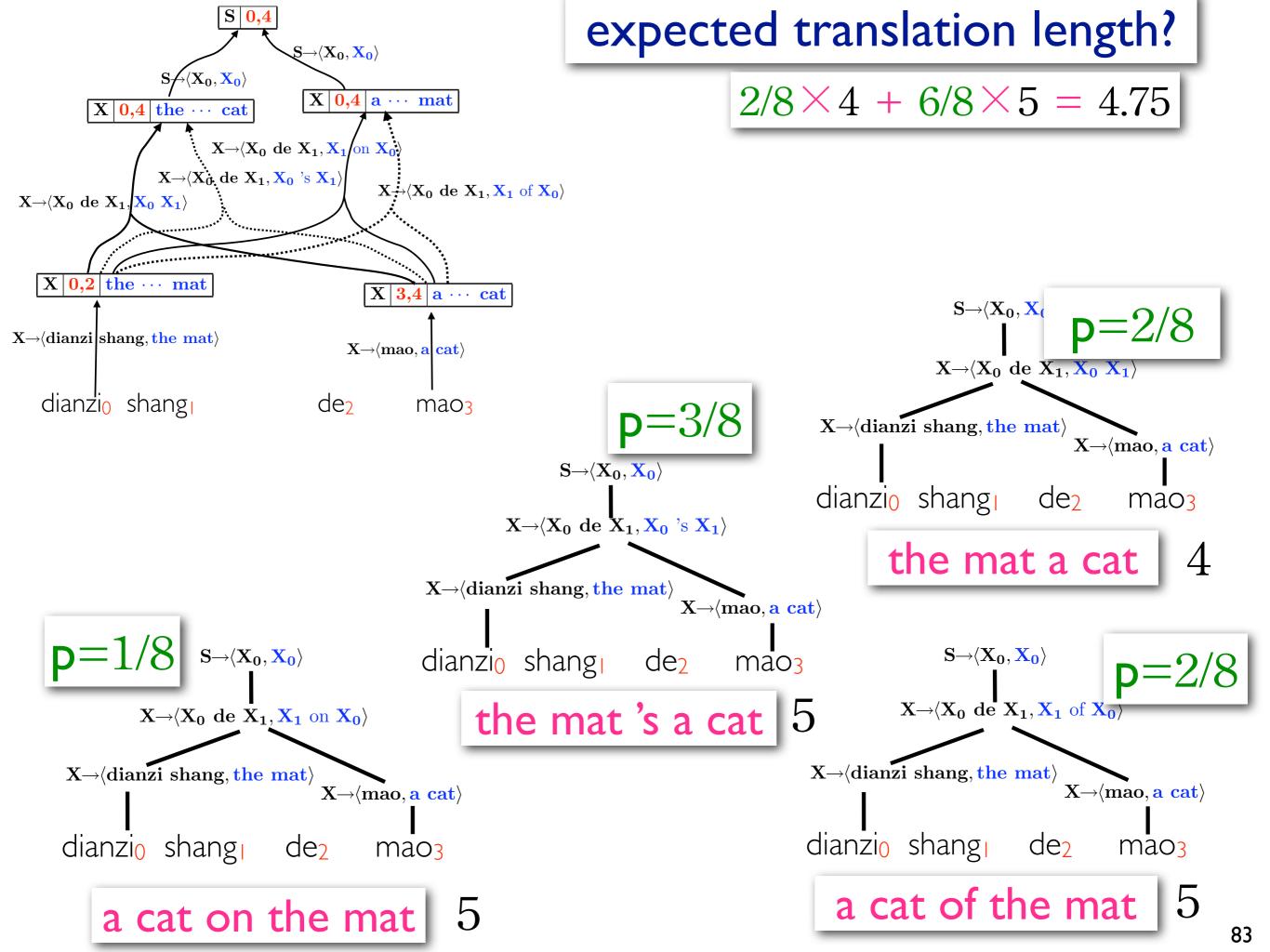
Bottom-up process in computing the number of trees

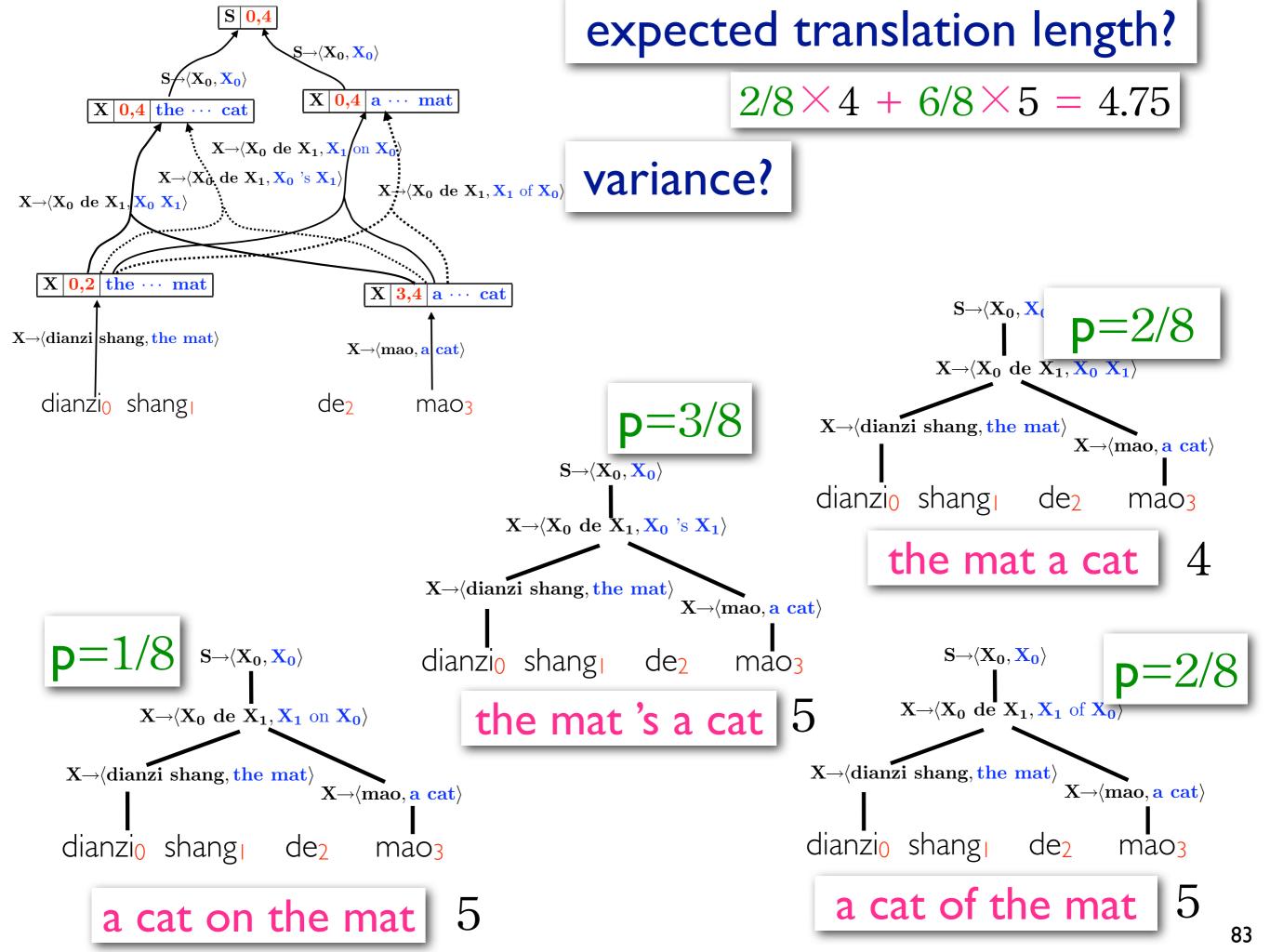


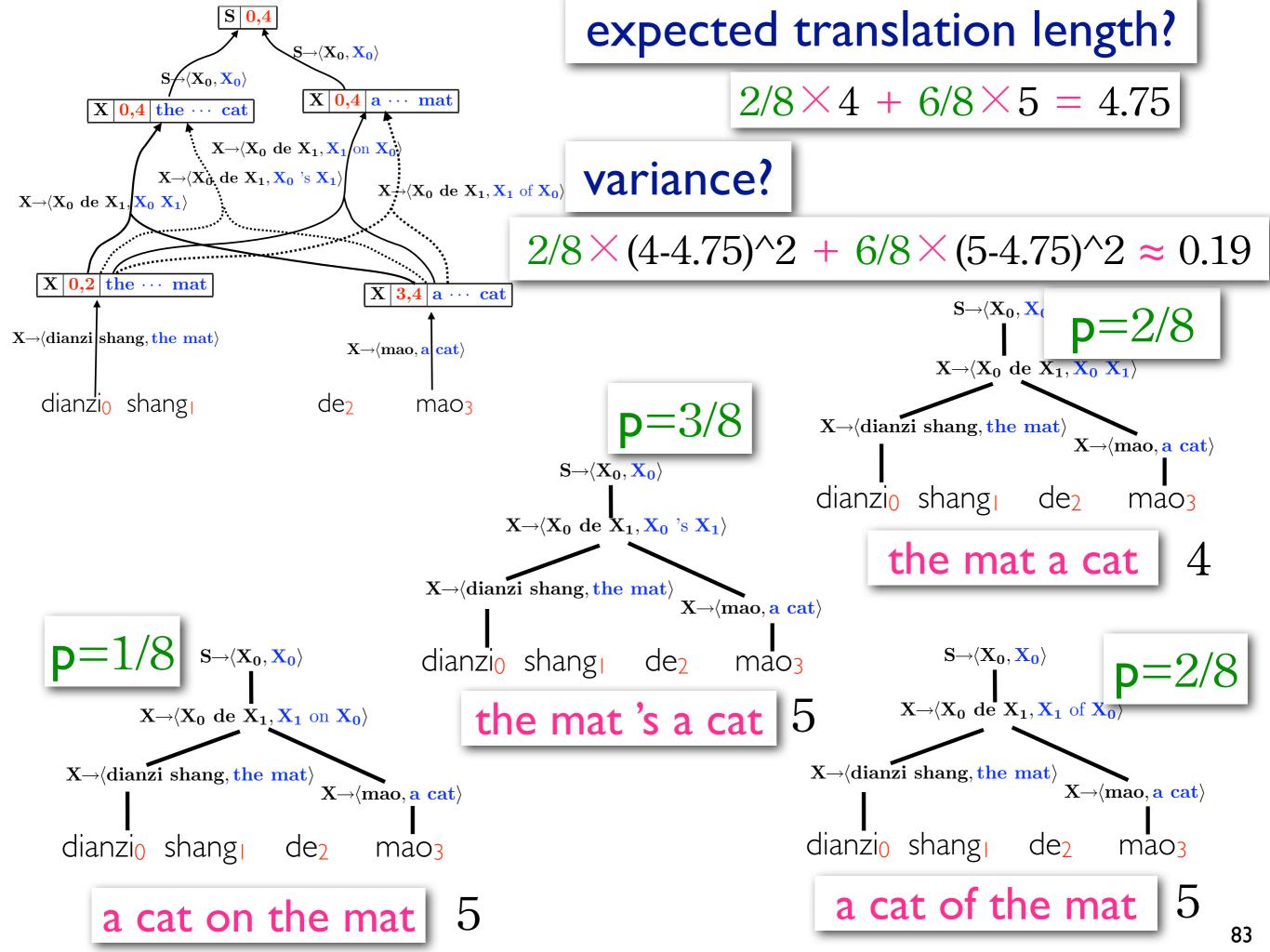












First- and Second-order Expectation Semirings

First-order:

(Eisner, 2002)

• each member is a 2-tuple: $\langle p, r \rangle$

$\langle p_1, r_1 \rangle \otimes \langle p_2, r_2 \rangle$	$\langle p_1p_2, p_1r_2 + p_2r_1 \rangle$
$\langle p_1, r_1 \rangle \oplus \langle p_2, r_2 \rangle$	$\langle p_1 + p_2, r_1 + r_2 \rangle$

Second-order:

• each member is a 4-tuple: $\langle p, r, s, t \rangle$

	$\langle p_1p_2, p_1r_2 + p_2r_1, p_1s_2 + p_2s_1, q_1s_2 \rangle$	
	$p_1t_2 + p_2t_1 + r_1s_2 + r_2s_1$	
$\langle p_1, r_1, s_1, t_1 \rangle \oplus \langle p_2, r_2, s_2, t_2 \rangle$	$\langle p_1 + p_2, r_1 + r_2, s_1 + s_2, t_1 + t_2 \rangle$	

$$k(v_I) = k(e_I)$$

$$k(v_2)=k(e_2)$$

$$k(v_3)=k(e_3)$$

$$k(v_1) \bigotimes k(v_2)$$

$$\bigoplus$$
 k

$$k(v_3) = k(e_3) \bigotimes k(v_1) \bigotimes k(v_2) \bigoplus k(e_4) \bigotimes k(v_1) \bigotimes k(v_2)$$

$$k(v_4) = k(e_5)$$

$$\bigotimes$$
 k(v_1)

$$\langle k(v_2) \rangle$$

$$k(v_4) = k(e_5) \bigotimes k(v_1) \bigotimes k(v_2) \bigoplus k(e_6) \bigotimes k(v_1) \bigotimes k(v_2)$$

$$k(v_5) = k(e_7) \bigotimes k(v_3) \bigoplus k(e_8) \bigotimes k(v_4)$$

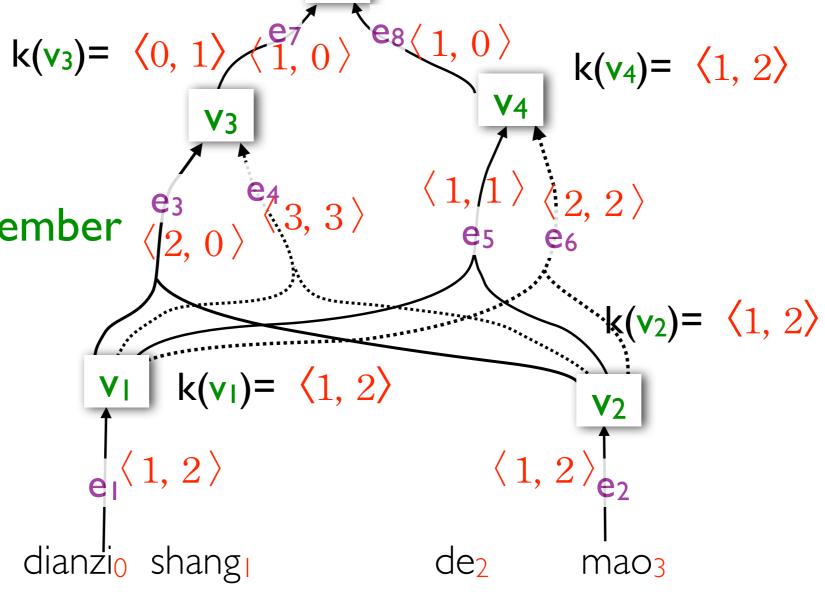
$$\langle k(v_3) \rangle$$

$$\rightarrow$$
 k(e₈)

 $v_5 | k(v_5) = \langle 8, 4.75 \rangle$

each semiring member

is a **2-tuple**



$$k(v_{1}) = k(e_{1}) \qquad k(v_{2}) = k(e_{2})$$

$$k(v_{3}) = k(e_{3}) \otimes k(v_{1}) \otimes k(v_{2}) \qquad k(e_{4}) \otimes k(v_{1}) \otimes k(v_{2})$$

$$k(v_{4}) = k(e_{5}) \otimes k(v_{1}) \otimes k(v_{2}) \qquad k(e_{6}) \otimes k(v_{1}) \otimes k(v_{2})$$

$$k(v_{5}) = k(e_{7}) \otimes k(v_{3}) \qquad k(e_{8}) \otimes k(v_{4})$$

$$v_{5} \qquad k(v_{5}) = \langle 8, 4.5, 4.5, 5 \rangle$$

$$k(v_{3}) = \langle 1, 1, 1, 1 \rangle \qquad v_{3} \qquad \langle 1, 1, 1/1 \rangle$$

$$k(v_{3}) = \langle 1, 1, 1, 1 \rangle \qquad v_{3} \qquad \langle 1, 1, 1/1 \rangle$$

$$k(v_{3}) = \langle 1, 1, 1, 1 \rangle \qquad \langle 1, 2, 1, 3 \rangle$$
Second-order:
$$each semiring member$$

$$e$$

$$k(v_{1})=k(e_{1}) \qquad k(v_{2})=k(e_{2})$$

$$k(v_{3})=k(e_{3}) \otimes k(v_{1}) \otimes k(v_{2}) \qquad k(e_{4}) \otimes k(v_{1}) \otimes k(v_{2})$$

$$k(v_{4})=k(e_{5}) \otimes k(v_{1}) \otimes k(v_{2}) \qquad k(e_{6}) \otimes k(v_{1}) \otimes k(v_{2})$$

$$k(v_{5})=k(e_{7}) \otimes k(v_{3}) \qquad k(e_{8}) \otimes k(v_{4})$$

$$v_{5} \qquad k(v_{5})=\langle 8,4.5,4.5,5 \rangle$$

$$k(v_{3})=\langle 1,1,1,1 \rangle \qquad v_{3} \qquad \langle 1,0,0,0 \rangle$$

$$k(v_{3})=\langle 1,1,1,1 \rangle \qquad v_{3} \qquad \langle 1,1,1,1 \rangle$$
Second-order:
$$each \ semiring \ member$$

$$each \ semiring$$

• Expectation over a hypergraph

Expectation over a hypergraph

$$\overline{r} \stackrel{\text{def}}{=} \mathbb{E}_p[r] = \sum_{d \in \text{HG}} p(d)r(d)$$

r(d) is a function over a derivation d
 e.g., the length of the translation yielded by d

Expectation over a hypergraph

$$\overline{r} \stackrel{\mathrm{def}}{=} \mathbb{E}_p[r] = \sum_{d \in \mathrm{HG}} p(d) r(d)$$
 exponential size

r(d) is a function over a derivation d
 e.g., the length of the translation yielded by d

Expectation over a hypergraph

$$\overline{r} \stackrel{\mathrm{def}}{=} \mathbb{E}_p[r] = \sum_{d \in \mathrm{HG}} p(d) r(d)$$
 exponential size

- r(d) is a function over a derivation d
 e.g., the length of the translation yielded by d
- r(d) is additively decomposed

$$r(d) \stackrel{\text{def}}{=} \sum_{e \in d} r_e$$

e.g., translation length is additively decomposed!

Second-order Expectations on Hypergraphs

Expectation of products over a hypergraph

$$ar{t} \stackrel{\mathrm{def}}{=} \mathbb{E}_p[r \cdot s] = \sum_{d \in \mathrm{HG}} p(d) r(d) s(d)$$
 exponential size

r and s are additively decomposed

$$r(d) \stackrel{\text{def}}{=} \sum_{e \in d} r_e$$

$$s(d) \stackrel{\text{def}}{=} \sum_{e \in d} s_e$$

r and s can be identical or different functions.

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

$$r_e \stackrel{\text{def}}{=} \log p_e$$

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

$$r_e \stackrel{\text{def}}{=} \log p_e$$

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

 p_e : transition probability or log-linear score at edge e r_e ?

$$r_e \stackrel{\text{def}}{=} \log p_e$$

entropy is an expectation

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

 p_e : transition probability or log-linear score at edge e_{r_e} ?

Entropy:

$$r_e \stackrel{\text{def}}{=} \log p_e$$

entropy is an expectation

$$H(p) = \mathbb{E}_p[-\log p] = -\sum_{d \in HG} p(d) \log p(d)$$

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

 p_e : transition probability or log-linear score at edge er_e ?

Entropy:

$$r_e \stackrel{\text{def}}{=} \log p_e$$

entropy is an expectation

$$H(p) = \mathbb{E}_p[-\log p] = -\sum_{d \in HG} p(d) \log p(d)$$

 $\log p(d)$ is additively decomposed!

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

$$r_e \stackrel{\text{def}}{=} \log p_e$$

$$r_e \stackrel{\text{def}}{=} \log q_e$$

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

 p_e : transition probability or log-linear score at edge e r_e ?

Entropy:

$$r_e \stackrel{\text{def}}{=} \log p_e$$

Cross-entropy:

$$r_e \stackrel{\mathrm{def}}{=} \log q_e$$

Why?

cross-entropy is an expectation

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

 p_e : transition probability or log-linear score at edge e r_e ?

Entropy:

$$r_e \stackrel{\text{def}}{=} \log p_e$$

Cross-entropy:

$$r_e \stackrel{\text{def}}{=} \log q_e$$

Why?

cross-entropy is an expectation

$$H(p,q) = \mathbb{E}_p(-\log q) = -\sum_{d \in HG} p(d) \log q(d)$$

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

 p_e : transition probability or log-linear score at edge e r_e ?

Entropy:

$$r_e \stackrel{\text{def}}{=} \log p_e$$

Cross-entropy:

$$r_e \stackrel{\text{def}}{=} \log q_e$$

Why?

cross-entropy is an expectation

$$H(p,q) = \mathbb{E}_p(-\log q) = -\sum_{d \in HG} p(d) \log q(d)$$

log q(d) is additively decomposed!

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

 p_e : transition probability or log-linear score at edge e r_e ?

Entropy:

$$r_e \stackrel{\text{def}}{=} \log p_e$$

$$r_e \stackrel{\text{def}}{=} \log q_e$$

$$r_e \stackrel{\text{def}}{=} \text{loss at edge } e$$

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

 p_e : transition probability or log-linear score at edge e r_e ?

Entropy:

$$r_e \stackrel{\text{def}}{=} \log p_e$$

Cross-entropy:

$$r_e \stackrel{\text{def}}{=} \log q_e$$

Bayes risk:

$$r_e \stackrel{\text{def}}{=} \text{loss at edge } e$$

Why?

Bayes risk is an expectation

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

 p_e : transition probability or log-linear score at edge e r_e ?

Entropy:

$$r_e \stackrel{\text{def}}{=} \log p_e$$

Cross-entropy:

$$r_e \stackrel{\text{def}}{=} \log q_e$$

Bayes risk:

$$r_e \stackrel{\text{def}}{=} \text{loss at edge } e$$

Why?

Bayes risk is an expectation

Risk =
$$\mathbb{E}_p(L) = -\sum_{d \in HG} p(d) \cdot L(Y(d))$$

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

 p_e : transition probability or log-linear score at edge e r_e ?

Entropy:

$$r_e \stackrel{\text{def}}{=} \log p_e$$

Cross-entropy:

$$r_e \stackrel{\mathrm{def}}{=} \log q_e$$

Bayes risk:

$$r_e \stackrel{\text{def}}{=} \text{loss at edge } e$$

Why?

Bayes risk is an expectation

Risk =
$$\mathbb{E}_p(L) = -\sum_{d \in HG} p(d) \cdot L(Y(d))$$

L(Y(d)) is additively decomposed!

$$k_e \stackrel{\text{def}}{=} \langle p_e, p_e r_e \rangle$$

pe: transition probability or log-linear score at edge e re?

Entropy:

$$r_e \stackrel{\text{def}}{=} \log p_e$$

Cross-entropy:

$$r_e \stackrel{\text{def}}{=} \log q_e$$

Bayes risk:

$$r_e \stackrel{\text{def}}{=} \text{loss at edge } e$$

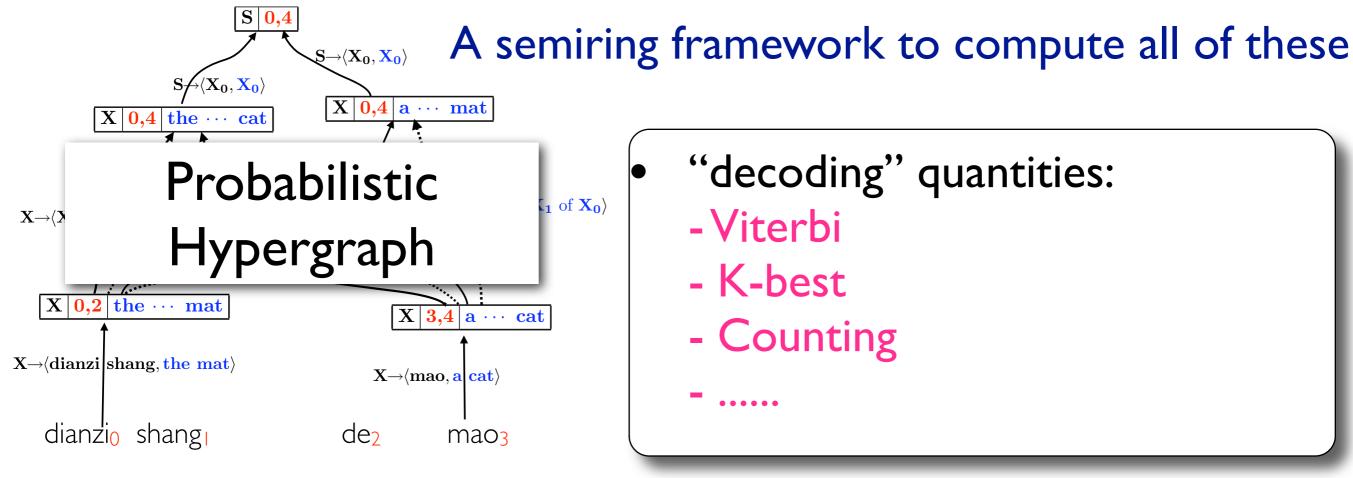
Bayes risk is an expectation

$$Risk = \mathbb{E}_p(L) = -\sum_{d \in HG} p(d) \cdot L(Y(d))$$

L(Y(d)) is additively decomposed! (Tromble et al. 2008)

Applications of Expectation Semirings: a Summary

Quantity	k_e	$k_{\mathbf{root}}$	Final
Expectation	$\langle p_e, p_e r_e \rangle$	$\langle Z, \overline{r} \rangle$	\overline{r}/Z
Entropy	$r_e \stackrel{\text{def}}{=} \log p_e$, so $k_e = \langle p_e, p_e \log p_e \rangle$	$\langle Z, \overline{r} \rangle$	$\log Z - \overline{r}/Z$
Cross-	$\langle q_e angle$	$\langle Z_q \rangle$	$\log Z_q - \overline{r}/Z_p$
entropy	$r_e \stackrel{\text{def}}{=} \log q_e$, so $k_e = \langle p_e, p_e \log q_e \rangle$	$\langle Z_p, \overline{r} \rangle$ $\left \begin{array}{c} \log Z_q - i/Z_p \end{array} \right $	
Bayes risk	$r_e \stackrel{\text{def}}{=} L_e$, so $k_e = \langle p_e, p_e L_e \rangle$	$\langle Z, \overline{r} \rangle$	\overline{r}/Z
First-order	$\langle p_e, \nabla p_e \rangle$	$\langle Z, abla Z angle$	abla Z
gradient	$\langle p_e, \ \mathbf{v} \ p_e \rangle$		
Covariance	$\langle p_e, p_e r_e, p_e s_e, p_e r_e s_e \rangle$	$\langle Z, \overline{r}, \overline{s}, \overline{t} \rangle$	$\frac{\overline{t}}{Z} - \frac{\overline{r}\overline{s}^{\mathbf{T}}}{Z^2}$
matrix	$\langle Pe, Pe' e, Pe^{g}e, Pe' e^{g}e \rangle$		
Hessian	$\langle p_e, \nabla p_e, \nabla p_e, \nabla^2 p_e \rangle$	$\Big \langle Z, abla Z, abla Z, abla^2 Z \Big\rangle$	$ abla^2 Z$
matrix	$\langle Pe, \ lackbox{V} Pe, \ lackbox{V} Pe, \ lackbox{V} Pe/$		
Gradient of	$\langle p_e, p_e r_e, \nabla p_e, (\nabla p_e) r_e + p_e (\nabla r_e) \rangle$	$\langle Z, \overline{r}, \nabla Z, \nabla \overline{r} \rangle$	$\frac{Z\nabla \overline{r} - \overline{r}\nabla Z}{Z^2}$
expectation	$\langle Pe, Pe'e, \mathbf{v} Pe, (\mathbf{v} Pe)'e + Pe(\mathbf{v}'e) \rangle$		
Gradient of	$\langle p_e, p_e \log p_e, \nabla p_e, (1 + \log p_e) \nabla p_e \rangle$	$\langle Z, \overline{r}, \nabla Z, \nabla \overline{r} \rangle$	$\left \frac{\nabla Z}{Z} - \frac{Z \nabla \overline{r} - \overline{r} \nabla Z}{Z^2} \right $
entropy	\(\frac{Pe}{Pe}, \frac{Pe}{Pe}, \fra	(2,1, v 2, v 1)	Z Z^2
Gradient of	$\langle p_e, p_e L_e, \nabla p_e, L_e \nabla p_e \rangle$	$\langle Z, \overline{r}, \nabla Z, \nabla \overline{r} \rangle$	$\frac{Z\nabla \overline{r} - \overline{r}\nabla Z}{Z^2}$
risk	\Pe\ Pe\ e\ \ \ Pe\ \ \ Pe\ \ \ \ Pe\ \ \ \		Z^2



- "decoding" quantities:
 - Viterbi
 - K-best
 - Counting

- First-order quantities:
 - expectation
 - entropy
 - Bayes risk
 - cross-entropy
 - KL divergence
 - feature expectations
 - first-order gradient of Z

- Second-order quantities:
 - Expectation over product
 - interaction between features
 - Hessian matrix of Z
 - second-order gradient descent
 - gradient of expectation
 - gradient of entropy or Bayes risk