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Has this ever happened to you?

ÅYou need to evaluate a large collection of texts.
ÅÂĲƖőċƓƚШǃŸƨќƖĲШĬŸŔŰŊШũĲŊċũШĬŔƚĦŸƻĲƖǃШ

(Quartaro et al., 2019)
ÅOr performing social science or market research 

(Mellon et al., 2024)
ÅOr you are evaluating student writing 

(Page, 1968; Ramesh and Sanampudi, 2022) 
ÅOr perhaps you need to determine what papers to show at a conference
Åв

ÅÉŸЯШǃŸƨШőŔƖĲШċШőƨůċŰШŢƨĬŊĲШƓŸŸũШƣŸШĲƻċũƨċƣĲШƚċŔĬШƣĲǂƣƚв
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§ƖШǃŸƨШŰĲĲĬШƣŸШĲƻċũƨċƣĲШċШĬŔċũŸŊƨĲШƚǃƚƣĲůвШ

Overall user satisfaction ( ╠ ).
Imagine you are the user who had 
this conversation with the 
assistant. 

All in all, how would you rate your 
overall satisfaction while interacting 
with the assistant? The higher the 
rating, the better the experience. 
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ÅWe hired a judge pool to annotate the logs of several IT-help dialogue systems.

Å Judges evaluated systems on overall user satisfaction ὗ Ȣ



вШĤƨƣШǃŸƨƖШőƨůċŰШŢƨĬŊĲШƓŸŸũШŔƚШ
difficult to maintain

ÅHuman annotation can have its own reliability challenges 
(Hosking et al., 2023; Liu et al., 2016; Smith et al., 2022)

ÅHuman judges may reasonably disagree 
(Pavlick and Kwiatkowski, 2019; Basile et al., 2021; Plank, 2022; Sandri et al., 2023)

Histograms of ὗ  Likert scale ratings of 16 judges in our pool.
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Should I replace my judge pool 
with an LLM?

We gave an LLM the same instructions and had it predict the Likert 
ƚĦċũĲШƖċƣŔŰŊШŉŸƖШĲċĦőШƣĲǂƣШƣŸШĤĲШĲƻċũƨċƣĲĬвШШ

ĤƨƣШŔƣШƽċƚШƣŸŸШŸƓƣŔůŔƚƣŔĦв
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Argmax LLM ὗȡ ώ  ÁÒÇÍÁØᶰ ȟȟȟ ὴ ώὝȟὗ  

Expected LLM ὗȡ ώ ᶿВᶰ ȟȟȟ ὴ ώὝȟὗ ẗώ

Classification

Regression

better
formulation



Should I replace my judge pool 
with an LLM?

In fact, it was about as predictive of judge preferences
ċƚШƣőĲШŢƨĬŊĲШƓŸŸũќƚШůĲċŰШƖċƣŔŰŊг

RMSE = 
В ȟ ᶰ

ȿ ȿ

ώ : Judge ὥ Ground Truth Rating
ώ : Judge ὥ Predicted Rating

Å Constant: predicted rating is always the training set 
mean. ( ώ σȢπτ)

Å Argmax LLM ὗ  (Classification)
Å Expected LLM ὗ  (Regression)
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So, you calibrate to each judge and avoid collapsing disagreements.
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Personalized Calibration Network (PCN) 
maps the naïve LLM probabilities to judge specific ones.


