Abstract

Many NLP algorithms have been described in terms of deduction systems. Unweighted deduction allows a generic forward-chaining execution strategy. For weighted deduction, however, efficient execution should propagate the weight of each item only after it has converged. This means visiting the items in topologically sorted order (as in dynamic programming). Toposorting is fast on a materialized graph; unfortunately, materializing the graph would take extra space. Is there a generic weighted deduction strategy which, for every acyclic deduction system and every input, uses only a constant factor more time and space than generic unweighted deduction? After reviewing past strategies, we answer this question in the affirmative by combining ideas of Goodman (1999) and Kahn (1962). We also give an extension to cyclic deduction systems, based on Tarjan (1972).

1 Introduction

Many NLP algorithms have been described in terms of deduction systems, starting with the seminal paper “Parsing as Deduction” (Pereira and Warren, 1983). In general, deduction systems are an abstraction of dynamic computation graphs that can be used to describe the structure of many algorithms, including theorem provers, dynamic programming algorithms, and structured neural networks (Sikkel, 1993; Eisner and Filardo, 2011).

Unweighted deduction admits a generic execution strategy known as “forward chaining.” Furthermore, the behavior of this strategy is well-understood. Its runtime and space can be easily bounded based on a simple inspection of the deduction system (McAllester, 2002). Static analysis can sometimes find tighter bounds (Vieira et al., 2022).

For **weighted** deduction, however, execution should wait to propagate a derived item’s weight until that weight has converged. Ideally it would visit the items in topologically sorted order (i.e., dynamic programming), which is not required for the unweighted case. Fortunately, toposorting is fast. Thus, is there a generic weighted deduction strategy which, for every acyclic deduction system and every input, uses only a constant factor more time and space than generic unweighted deduction?

In this paper, we provide this missing master strategy, which is surprisingly simple. It establishes a “don’t worry, be happy” meta-theorem (McFerrin, 1988): Asymptotic analyses of unweighted acyclic deduction systems do transfer to the weighted case.

Past methods do not achieve this guarantee. For some deduction systems, static analysis may be able to identify a topological ordering. But even then, one is left with increased runtime, either from visiting all possible items (which fails to exploit the sparsity of the set of items actually derived from a particular input) or visiting only the items that have been derived (which exploits sparsity, but requires a priority queue that incurs logarithmic overhead).

The alternative is dynamic analysis: given the input, first identify all the items that can be derived, using unweighted deduction, and then toposort them in order to compute the weights. Goodman (1999) suggested a version of this approach that materializes the graph of dependencies among items, but acknowledged that this generally increases the asymptotic space requirements. In this paper, we show how to avoid the space increase. We give a practical two-pass weighted deduction algorithm, inspired by Kahn (1962), that uses parent counting to efficiently enumerate the derived items in topologically sorted order. It stores the counts of edges but no longer stores the edges themselves.

Also, for the case where the graph may have cycles, we give a practical three-pass algorithm. The first two passes efficiently enumerate the strongly connected components in topologically sorted order (Tarjan, 1972), with the same time and space guarantees as above. The third pass solves for the weights in each cyclic component, which may in-
crease the asymptotic runtime if cycles exist.

As an application of our two- and three-pass algorithms, consider extending Earley parsing (Earley, 1970; Graham et al., 1980) to probabilistic (Stolcke, 1995) or semiring-weighted (Goodman, 1999) context-free grammars. Opedal et al. (2023) present Earley-style deduction systems whose unweighted versions are easily seen to be executable in $O(n^3|G|)$ time and $O(n^2|G|)$ space on a sentence of length n and a grammar of size $|G|$. These bounds are tight when every substring of the sentence can be analyzed, in its left context, as every sort of constituent or partial constituent. In practical settings, however, the parse chart is often much sparser than this worst case and execution is correspondingly faster. For instance, Earley (1970) describes “bounded-state grammars” where parsing is guaranteed to require only $O(n|G|)$ time and $O(n|G|)$ space. Opedal et al. (2023, Appendix H.1) simply invoked the present paper (“don’t worry”) to offer all the same guarantees for weighted parsing. In contrast, the various past methods would have been slower by a log factor, or consumed $\Theta(n^3)$ runtime even for bounded-state grammars.

While the solution seems obvious in retrospect (at least once the problem is framed), it has somehow gone unnoticed in the literature. It has also evaded several hundred graduate and undergraduate students in the author’s NLP class over two decades. Students each year are asked to design and implement a Viterbi Earley parser. As extra credit, they are asked if they can achieve $\Theta(n^2)$ runtime while maintaining correctness. None of them have ever spotted the Kahn-based solution, though some have found the other methods mentioned above.

2 Formal Framework

2.1 Deduction Systems

A weighted deduction system $\mathcal{P} = (V, W, E, \oplus)$ consists of

- a possibly infinite set of items, V, which may be regarded as representing propositions about the input to the system
- a set of weights, W, where the weight associated with an item (if any) might be intended to characterize its truth value, probability, provenance, description, or other properties
- a possibly infinite set of hyperedges, E, each of which is written in the form

$$v \leftarrow u_1, \ldots, u_k$$

where $k \geq 1$ is the in-degree of the hyperedge, $\forall v, u_1, \ldots, u_k \in V$ are items, and $f : W^k \rightarrow W$ is a combination function

- a function \oplus that maps each item $v \in V$ to an associative and commutative binary operator $\oplus_v : W \times W \rightarrow W$, called the aggregator for item v

In short, \mathcal{P} is an ordered B-hypergraph (V, E) where each hyperedge is labeled with a combination function and each vertex is labeled with an aggregator. We say that \mathcal{P} is an acyclic system if this hypergraph is acyclic. Note that our formalism is not limited to semiring-weighted systems.

2.2 Evaluation

We now explain how to regard \mathcal{P} as an arithmetic circuit—a type of program that can be applied to inputs. An input to \mathcal{P} is a pair (V, ω) where

- $V \subseteq V$ is a set of axioms
- $\omega : V \rightarrow W$ assigns a weight to each axiom

Evaluating \mathcal{P} on this input returns an output pair $(\tilde{V}, \tilde{\omega})$ where

- the derived items $\tilde{V} \subseteq V$ are those that are reachable from the axioms V in the hypergraph (V, E); equivalently, \tilde{V} is the smallest set such that

 - $V \subseteq \tilde{V}$

 - if $(v \leftarrow u_1, \ldots, u_k) \in E$ and $u_1, \ldots, u_k \in \tilde{V}$, then $v \in \tilde{V}$

- for each derived item $v \in \tilde{V}$, let $\tilde{E}_v \subseteq E$ be the set of all hyperedges used to derive it:

$$\tilde{E}_v = \{(v \leftarrow u_1, \ldots, u_k) \in E : u_1, \ldots, u_k \in \tilde{V}\}$$

The artificial requirement that $k \geq 1$ serves to simplify our pseudocode without loss of generality. A hyperedge $v \leftarrow$ with $k = 0$ would state that v is an axiom of the deduction system, with weight $f()$. It can be replaced by a $k = 1$ hyperedge $v \leftarrow \text{start}$, where f^* is the constant function returning $f()$, and start is a special item that is always included (with arbitrary weight) in the set of input axioms in §2.2 below.

In a B-hypergraph (Gallo et al., 1993), each hyperedge pairs a set of input vertices with a single output vertex. In an ordered B-hypergraph, each hyperedge pairs a sequence of input vertices with a single output vertex: $v \leftarrow u_1, u_2$ is not the same as $v \leftarrow u_2, u_1$.\footnote{In a B-hypergraph (Gallo et al., 1993), each hyperedge pairs a set of input vertices with a single output vertex. In an ordered B-hypergraph, each hyperedge pairs a sequence of input vertices with a single output vertex: $v \leftarrow u_1, u_2$ is not the same as $v \leftarrow u_2, u_1$.}
• \(\bar{\omega} : \bar{V} \rightarrow \mathbb{W} \) satisfies the following constraints: for each \(v \in V \setminus V \),
\[
\bar{\omega}(v) = \bigoplus_{u \in V} f(\bar{\omega}(u_1), \ldots, \bar{\omega}(u_k)) \tag{1a}
\]
and for each \(v \in V \),
\[
\bar{\omega}(v) = \omega(v) \oplus \bigoplus_{u \in V} f(\bar{\omega}(u_1), \ldots, \bar{\omega}(u_k)) \tag{1b}
\]
Note that \(\bar{\omega}(v) \) always has at least one summand, since \(E_v = \emptyset \) is not possible in (1a).\(^3\)

\(\bar{V} \) is always uniquely determined, as is \(\bar{E} \equiv \bigcup_{v \in \bar{V}} E_v \). How about \(\bar{\omega} \)? We say that \(v \in \bar{V} \) depends on \(u \) if \(E_v \) contains a hyperedge of the form \(v \leftarrow f \ldots u \). If \((\bar{V}, \bar{E}) \) is an acyclic hypergraph, meaning that no \(v \in \bar{V} \) depends transitively on itself, then evaluation has a unique solution \((\bar{V}, \bar{\omega})\). This is guaranteed for acyclic \(\mathcal{P} \). In general, however, there could be multiple functions \(\bar{\omega} \) or no functions \(\bar{\omega} \) that satisfy the system of constraints (1).

2.3 Special Cases

An **unweighted deduction system** is very similar to the above, but where \(f, \oplus_v, \) and \(\omega \) are omitted. Thus, evaluation returns only \(\bar{V} \) and not \(\bar{\omega} \). Equivalently, an unweighted deduction system can be regarded as the special case where there is only a single weight: \(\mathbb{W} = \{ \top \} \). Then \(f, \oplus_v, \omega, \) and \(\bar{\omega} \) are trivial constant functions that only return \(\top \).

A **semiring-weighted deduction system** is the special case where \(\oplus_v \) and \(f \) are fixed throughout \(\mathcal{P} \) to be two specific operations \(\oplus \) and \(\otimes \), respectively, such that \((\mathbb{W}, \oplus, \otimes) \) forms a semiring. This case has proved very useful for NLP algorithms (Goodman, 1999; Eisner and Blatz, 2007; Vieira et al., 2021).

2.4 Example: Weighted CKY Parsing

We give an acyclic weighted deduction system \(\mathcal{P} = (V, \mathbb{W}, \mathcal{E}, \oplus) \) that corresponds to the inside algorithm for probabilistic context-free grammars in Chomsky normal form (Baker, 1979). We take the weights to be probabilities: \(\mathbb{W} = [0, 1] \subseteq \mathbb{R} \). The item set \(V \) consists of all objects of the forms

\[
\text{word}(x,i,k) \quad \text{phrase}(a,i,k) \quad \text{rewrite}(a,x)
\]

and the hyperedges \(\mathcal{E} \) are all objects of the forms

\[
\text{phrase}(a,i,k) \leftarrow \text{rewrite}(a,x), \text{word}(x,i,k)
\]

\[
\text{phrase}(a,i,k) \leftarrow \text{rewrite}(a,b,c), \text{phrase}(b,i,j), \text{phrase}(c,j,k)
\]

where \(x \) ranges over terminal symbols, \(a, b, c \) range over nonterminal symbols, \(i, j, k \) range over the natural numbers \(\mathbb{N} \), and \(\times \) is the ordinary multiplication function on probabilities. To complete the specification of \(\mathcal{P} \), define \(\oplus_v = + \) for all \(v \in \bar{V} \).

To run the inside algorithm on a given sentence under a given grammar, one must provide the input \((V, \omega)\). Encode the sentence \(x_1x_2\ldots x_n \) as the \(n \) axioms \(\{ \text{word}(x_i, i - 1, i) : 1 \leq i \leq n \} \), each having weight 1. Encode the grammar with one rewrite axiom per production, whose weight is the probability of that production: for example, the production \(S \rightarrow NP VP \) corresponds to the axiom \(\text{rewrite}(S,NP,VP) \).

After evaluation, \(\text{phrase}(a,i,k) \in \bar{V} \) iff \(a \Rightarrow^* x_{i+1} \ldots x_k \), in which case \(\bar{\omega}(\text{phrase}(a,i,k)) \) gives the total probability of all derivations of that form—that is, the inside probability of nonterminal \(a \) over the input span \([i,k]\). We remark that furthermore, \(\bar{E} \) is the traditional packed parse forest, with the hyperedges in \(\bar{E_v} \) being the traditional backpointers from item \(v \in \bar{V} \).

A variant of this system obtains the same results with greater hardware parallelism by taking the elements of \(\mathbb{W} \) to be tensors. For each \((i, k)\) pair, all items \(\text{phrase}(a,i,k) \) are collapsed into a single item \(\text{phrase}(i,k) \) whose weight is a 1-dimensional tensor (vector) indexed by nonterminals \(a \). Similarly, all items \(\text{rewrite}(a,b,c) \) are collapsed into a single item \(\text{rewrite_unary} \) whose weight is a 3-dimensional tensor, and all items \(\text{rewrite}(a,x) \) into \(\text{rewrite_unary} \) whose weight is a 2-dimensional tensor. The combination functions and aggregators are modified to operate over tensors. It is also possible to make them nonlinear to get a neural parser (Drozdzov et al., 2019).

Another variant lets the grammar contain unary nonterminal productions, represented by additional axioms of the form \(\text{rewrite}(a,x) \), by adding all hyperedges of the form \(\text{phrase}(a,i,k) \leftarrow \text{rewrite}(a,b), \text{phrase}(b,i,k) \). The resulting \(\mathcal{P} \) is cyclic iff the grammar has unary production cycles. Even then, for a probabilistic grammar, it turns out that evaluation always gives a unique \(\bar{\omega} \).
2.5 Computational Framework

The definitions above were mathematical. To implement evaluation on a computer, we assume that the set of input axioms \(V \) is finite.\(^4\) We also hope that for a given input, the set of derived items \(\bar{V} \) will also be finite (even if \(\bar{V} \) is infinite), since otherwise the algorithms in this paper will not terminate.\(^5\) Since \(\mathcal{P} \) itself is typically infinite in order to handle arbitrary inputs, we assume that its components have been specified using code. In particular, \(\mathcal{V} \) and \(\mathcal{W} \) are datatypes, \(\oplus \) is a function, and \(\mathcal{E} \) is accessed through iterators described below.

In practice, a deduction system \(\mathcal{P} \) is usually specified using finitely many patterns that contain variables, as was done in §2.4. The patterns that specify \(\mathcal{V} \) are called types, and the patterns that specify \(\mathcal{E} \) are called deductive rules or sequents. Once these patterns are written down, the necessary code can be generated automatically. The most popular formal notation for the unweighted case is the deductive rules of sequent calculus (Sikkel, 1993; Shieber et al., 1995). That formalism was generalized by Goodman (1999) to the semiring-weighted case. Sato (1995) and Eisner et al. (2005) developed notations based on logic programming languages for those special cases, and Eisner and Filardo (2011) then generalized those notations.

Each algorithm in this paper takes \((\mathcal{P}, V, \bar{V}, \omega)\) as its input. Each algorithm makes use of a chart \(C \), a data structure that maps keys in \(\mathcal{V} \) (namely, derived items) to values in \(\mathcal{W} \). If the algorithm terminates, \(C \) then holds the result of evaluating \(\mathcal{P} \) on \((V, \omega)\): \(V \) is finite and is given by the keys of \(C \), while \(\bar{V} \) \(: \) \(V \rightarrow \mathcal{W} \) is given by the mapping \(v \mapsto C[v] \).

Each algorithm also uses an agenda \(A \), which is a set of items.\(^6\) Each derived item is added to \(A \) (“pushed”) when it is added as a key to \(C \) for the first time (or in the case of Algorithm 5, for the last time). Later it is removed again (“popped”) and new items are derived from it. The chart is complete once the agenda is empty. Algorithm 2 allows a popped item to be pushed again later because its weight has changed; our other algorithms do not.

In our pseudocode, \(C \) and \(A \) are global but all other variables are local (important for recursion). The chart class provides iterators specific to \(\mathcal{P} \):

- \(C.\text{in}(v) \) yields all hyperedges \(v \leftrightharpoons u_1, \ldots, u_k \) such that \(u_1, \ldots, u_k \) have already popped from \(A \).
- \(C.\text{out}(u) \) yields all hyperedges \(v \leftrightharpoons u_1, \ldots, u_k \) in \(\mathcal{E} \) such that \(u_1, \ldots, u_k \) have already popped from \(A \) and \(u \notin \{u_1, \ldots, u_k\} \).

Note that if \(u \) appears more than once among \(u_1, \ldots, u_k \), then the iterator should still only yield the hyperedge once. This is necessary to ensure that with the hyperedge \(v \leftrightharpoons u, u \), Algorithm 2 below will increment \(\omega(v) \) by \(\bar{f}(\omega(u), \omega(u)) \) only once and not twice.

In practice, these iterators are made efficient via index data structures, as discussed below. Notice that \(A.\text{pop}(u) \) must notify \(C \) to add \(u \) to these indexes.

The code that is automatically generated for \(\mathcal{P} \) implements the item datatype, the chart class including iterators, and the agenda class.

Some of the algorithms in this paper require only \(\text{out()} \) and not \(\text{in()} \). We prefer to avoid \(\text{in()} \) for reasons to be discussed in §5.3; see also §8.

In our efficiency analyses, we will sometimes make the following standard assumptions (but they are not needed for the meta-theorem of §1):

1. There exists a constant \(K \) such that all hyperedges in \(\mathcal{E} \) have in-degree \(k \leq K \).
2. \(\bar{f} \) and \(\oplus \) can be computed in \(\mathcal{O}(1) \) time.
3. Storing an item as a chart key, testing whether it is one, or looking up or modifying its weight in the chart, can be achieved in \(\mathcal{O}(1) \) time.
4. The \(C.\text{out}(v) \) method and (when used) the \(C.\text{in}(u) \) method create iterators in \(\mathcal{O}(1) \) time. Furthermore, calling such an iterator to get the next hyperedge (or learn that there is no next hyperedge) takes \(\mathcal{O}(1) \) time. Hence iterating over an item’s \(m \geq 0 \) in- or out-edges can be done in time proportional to \(m + 1 \).
5. A chart mapping \(N \) items to their weights can be stored in \(\mathcal{O}(N) \) space, including any private indexes needed to support the iterators.

\(^4\)To keep \(V \) finite, arithmetic facts such as \(\text{plus}(4, 1, 5) \) are generally not included in \(V \) (or \(\bar{V} \)). Deductive rules (§2.5) may consult these built-in facts, but they are not treated as items in our framework, only as conditions on hyperedges.

\(^5\)The infinite \(V \) case does arise when the deduction system \(\mathcal{P} \) is designed to derive provable mathematical theorems, valid real-world inferences, reachable configurations of a Turing machine, etc. Computational techniques in this case include timeout, pruning, query-driven evaluation (§8), and lifted inference. Timeout and pruning involve small modifications to the algorithms in this paper. The other strategies can be implemented by automatically transforming \(\mathcal{P} \) to derive fewer items (e.g. Beeri and Ramakrishnan, 1991) and leaving our algorithms unchanged.

\(^6\)The agenda \(A \) and chart \(C \) respectively correspond to the open set and closed set of search algorithms like \(A^* \).
In the author’s experience, these assumptions can be made to hold for most deduction systems used in NLP, at least given the Uniform Hashing Assumption\(^7\) and using the Word RAM model of computation. However, a few tricks may be needed:

- To ensure that each axiom can be stored in \(O(1)\) space, one may have to transform the deduction system. For instance, rather than specifying each context-free grammar rule—of any length—by a single axiom, a long rule can be binarized so that it is specified by multiple axioms (thus increasing \(N\)), each of which requires only \(O(1)\) space to store.

- Even when individual axioms and their weights are bounded in size, the derived items or their weights may be unbounded in size. However, often the space and time requirements above can still be achieved through structure sharing and hash consing.\(^8\)

- To ensure the given iterator performance, it may be necessary to transform the deduction system, again increasing \(N\). In particular, McAllester (2002) applies a transformation to unweighted deduction systems that are written in his notation; Eisner et al. (2005) apply a very similar approach to weighted systems. In the transformed systems,\(^9\) hyperedges have in-degree \(\leq 2\). Hence \(C.\text{out}(u)\) must find all previously popped items \(u’\) such that \(E\) contains hyperedges with inputs \(u, u’\) or \(u, u\). Moreover, those items can be found with a constant number of hash lookups, by having \(C\) maintain a constant number of hash tables (indexes), each of which maps from a possible property of \(u’\) to a list of all previously popped items \(u’\) with that property. For instance, for the hash table that would map each integer \(j\) to all items of the form \(\text{phrase}(b, i, j)\), if any.

Further implementation details are given in the papers that were cited throughout the present section. We do not dwell on them as they are orthogonal to the concerns of the present paper.

3 Unweighted Forward Chaining

A basic strategy for unweighted deduction is forward chaining (Algorithm 1), well-known in the Datalog community (Ceri et al., 1990). This is simply a reachability algorithm: it finds all of the items that can be reached from the axioms \(V\) in the \(B\)-hypergraph \((V, E)\). If the standard assumptions of §2.5 hold, it runs in time \(O(|V| + |E|)\) and space \(O(|V|)\).

```
Algorithm 1 Unweighted forward chaining
1: \(C \leftarrow \emptyset; A \leftarrow \emptyset\) \quad \triangleright \text{here } C \subseteq V \text{ is just a set} 
2: \text{for } v \in V:\n3: \quad C.\text{add}(v); A.\text{push}(v)\n4: \text{while } A \neq \emptyset:\n5: \quad u \leftarrow A.\text{pop}\) \quad \triangleright \text{remove some element} \n6: \quad \text{for } (v \leftarrow (u_1, \ldots, u_k) \in C.\text{out}(u):\n7: \quad \quad \text{if } v \notin C:\n8: \quad \quad \quad C.\text{add}(v); A.\text{push}(v)\n```

Since this is the unweighted case, the chart \(C\) does not need to store weights. It is simply the set of items derived so far, approaching the desired \(\bar{V}\).\(^{10}\) In later algorithms, however, \(C\) will be a map from those items to the weights that they have accumulated so far, approaching the desired \(\bar{\omega}\).

\(^7\)Alternatively, we can use universal hashing. Then the runtime bounds are bounds on the expected runtime, where the expectation is over the choice of hash function.

\(^8\)E.g., for weighted deduction systems written in Dyna (Eisner et al., 2005), items may be unbounded lists or other deeply nested Prolog-style terms. Yet structure sharing allows \text{out()} or \text{in()} to build a complex item in \(O(1)\) time, and hash consing finds a pointer in \(O(1)\) time to the copy of that item (if any) that is stored as a chart key alongside the item’s weight.

\(^9\)The transformation introduces intermediate items for partially matched rules (“prefix firings”). These new items are analogous to “saved states” in the RETE forward-chaining algorithm for OPS-5 (Forgy, 1979; Perlin, 1990).

\(^{10}\)To guarantee that \(C\) actually converges to a possibly infinite \(\bar{V}\)—in the sense that every item in \(\bar{V}\) is eventually added to \(C\)—one must use an agenda policy that avoids starvation. For example, if the policy periodically selects the least recently pushed item, then every pushed item is eventually popped.
4 Weighted Forward Chaining

Algorithm 2 is a first attempt to generalize to the weighted case, where $C$ becomes a map.

The pseudocode uses the following conventions:

1. If $v$ is not a key of $C$, then $C[v]$ returns a special value $\bot \in \mathbb{W}$. We define $\bot \oplus v = \omega$ for all $\omega$.
2. Changing $C[v]$ from $\bot$ to a value in $\mathbb{W}$ adds $v$ as a new key to the chart $C$.

Algorithm 2 Weighted forward chaining

1. $C \leftarrow \emptyset$ ▷ map with keys in $V$, values in $\mathbb{W}$
2. $A \leftarrow \emptyset$
3. for $v \in V$ : ▷ axioms
4. $C[v] \oplus v := \omega(v)$
5. $A.push(v)$
6. while $A \neq \emptyset$ :
7. $u \leftarrow A.pop()$ ▷ remove some element
8. for $(v \leftarrow u_1, \ldots, u_k) \in C.out(u)$ :
9. $C[v] \oplus u_i := f(C[u_1], \ldots, C[u_k])$
10. if $C[v]$ changed :
11. if $v$ has already popped from $A$ : error
12. if $v \notin A : A.push(v)$

If $C[v]$ has changed at line 10, we must have it on the agenda to ensure that its new value is propagated forward through the hypergraph. The error at line 11 occurs when we would propagate both old and new values, which in general leads to incorrect results. The major challenge of this paper is to efficiently avoid this error condition.

In an acyclic system, the “obvious” way to avoid the error condition is to pop items from the agenda in topologically sorted (toposorted) order—do not pop $v$ until every item that $v$ depends on has already popped. If that can be arranged, then $v$ will only pop after its value has converged; $C[v]$ will never change again, so $v$ will never be pushed again.

We remark that toposorting is not the only option. Line 11 can simply be omitted in the special case where $\mathbb{W} = \mathbb{R}$, $\oplus_v = \min$ for all $v \in V$, and all functions $f$ are monotonic on all arguments. Then $C[v]$ can only decrease at line 9, and propagating its new (smaller) value will in effect replace the old value. Separately, there exists a slightly different family of algorithms which, each time $u$ pops from the agenda, propagates the difference between $C[u]$ and the old value of $C[u]$ from the last time it popped. Such “difference propagation algorithms” exist for semiring-weighted deduction systems (Eisner et al., 2005, Fig. 3) and also exist for weighted deduction systems in which each operation $\oplus_v$ has a corresponding operation $\ominus_v$ that can be used to compute differences of values.

The approaches in the previous paragraph are correct in the special cases where they apply. They even work for cyclic deduction systems (provided that they converge). However, they are an inefficient choice for the acyclic case—the same derived item in $V$ could pop more than once (in fact far more), which we refer to as repropagation, but in the toposorted solution, it will pop exactly once. We therefore focus on toposorting approaches.

5 Previous Toposorted Strategies

Assume that $\mathcal{P}$ is acyclic and that unweighted forward chaining terminates. We discuss previously proposed strategies that visit the finitely many derived items $V$ in a toposorted order, and explain why these strategies do not satisfy our goals.

In addition to methods based on Algorithms 1 and 2, we consider algorithms that relax the items in $V$ in a topologically sorted order. $C.relax(v)$ recomputes $C[v]$ based on the current state of the chart $C$ as well as the input $(V, \omega)$:

1. if $v \in V$ then $\omega(v)$ else $\bot$
2. for $(v \leftarrow u_1, \ldots, u_k) \in C.in(v)$ :
3. $C[v] \oplus u_i = f(C[u_1], \ldots, C[u_k])$

This special case also applies when $\mathbb{W}$ is a lattice, $\oplus_v$ is the meet operation, and $f$ preserves the lattice’s partial order.

Although for the special case with $\oplus_v = \min$ that was just mentioned at the start of the previous paragraph, there is a well-known way to avoid repropagation even in the cyclic case, inspired by Dijkstra’s (1959) shortest-path algorithm: prioritize the agenda so that $v$ with minimum $C[v]$ pops first (Knuth, 1977; Nederhof, 2003). This suffices provided that each $f$ is superior, meaning that $f$ is not only monotonic (i.e., monotonically non-decreasing in all arguments) but also its output is $\geq$ all of its inputs. Under the standard assumptions of §2.5, a runtime of $O(\vert E \vert + \vert V \vert \log \vert V \vert)$ can be achieved by implementing the agenda as a Fibonacci heap (Fredman and Tarjan, 1987). Note that the prioritization methods in §5.1 below are quite different: they prioritize based only on $v$, not $C[v]$, so they do not depend on any properties of $\mathbb{W}$, $\oplus_v$, or $f$, and do not require the decrease_key method.
If we relax every \( v \in \bar{V} \) once, after relaxing all of the items that it depends on, then \( C \) will hold the correct result of evaluation from (1). Note that it is harmless to relax \( v \notin \bar{V} \); this will simply leave \( C[v] = \bot \), so it will not be added to the chart.

5.1 Prioritization

One approach to evaluation is to run Algorithm 2 where the agenda \( A \) is a priority queue that pops the derived items in a known taposorted order. This requires specifying a priority function \( \pi \) such that if \( v \) depends on \( u \), then \( u \) pops first because \( \pi(u) \prec \pi(v) \), where \( \prec \) is a total ordering of the priorities returned by \( \pi \). \( \pi \) could depend on the input \( V \). It must be manually designed for a given \( \mathcal{P} \) (or perhaps in some cases, it could be automatically constructed via some sort of static analysis of \( \mathcal{P} \)). We will assume in our discussion that \( \pi \) and \( \prec \) are constant-time functions.

Now the agenda push and pop methods are simply the \texttt{insert} and \texttt{delete\_min} operations of a priority queue. Each takes \( O(\log |V|) \) time when the priority queue is implemented as a binary heap with at most \( |V| \) entries.\(^{13}\) Unfortunately this approach adds \( O(|\bar{V}| \log |V|) \) overall to our runtime bound, which can make it asymptotically slower than unweighted forward chaining (§3).

If the priorities are integers in the range \([0, N]\) for some \( N > 0 \), then this extra runtime can be reduced to \( O(N) \) using a bucket priority queue (Dial, 1969). A bucket priority queue maintains an array that maps each \( p \in [0, N) \) to a bucket (set) that contains all agenda items with priority \( p \). The bucket queue also maintains \( p_{\text{last}} \), the priority of the most recently popped item (initially 0). \( A.\text{push}(v) \) simply adds \( v \) to bucket \( \pi(v) \). \( A.\text{pop}() \) increments \( p_{\text{last}} \) until it reaches the first non-empty bucket, then removes any item from that bucket.

This works because our usage of the priority queue is monotone (Thorup, 2000)—that is, the minimum priority never decreases, so \( p_{\text{last}} \) never needs to decrease. Overall, Algorithm 2 will scan forward once through all the empty and non-empty buckets, taking \( O(N) \) time. When there is a risk of large \( N \), we observe that an alternative is to store only the non-empty buckets on the integer priority queue of Thorup (2000), so the next non-empty bucket can be found in \( O(\log \log B) \) time where \( B \) is the current number of non-empty buckets (assuming the Word RAM model of computation and assuming that priorities fit in a single word). The monotone property ensures that each bucket is added and emptied only once, so the extra runtime is now \( O(N' \log \log N') \) where \( N' \) bounds the number of distinct priority levels (buckets) ever used, e.g., \( N' = \min(|V|, N) \). This is an asymptotic improvement if \( N' \log \log N' = o(N) \).

An example permitting small \( N \) is the deduction system for CKY parsing (§2.4). Take \( N = n \), where \( n \) is the length of the input sentence, and define \( \pi(\text{phrase}(a, i, k)) = k - i - 1 \in [0, N) \). Many items will have the same integer priority.

Consider also the extension that allows acyclic unary productions (§2.4). Here we can identify each nonterminal \( a \) with an integer in \([0, m]\) such that \( b < a \) if \( \text{rewrite}(a, b) \in V \). Take \( N = nm \), \( \pi(\text{phrase}(a, i, k)) = (k - i - 1) \cdot m + a \in [0, N) \).

While prioritization is often useful both theoretically and practically, it does not solve our main problem. First, it assumes we know a priority function for \( \mathcal{P} \). Second, the runtime is not guaranteed to be proportional to that of Algorithm 1, even with integer priorities. In the last example above, \( N \) may not be \( O(|E| + |\bar{V}|) \): consider a pathological class of inputs where the grammar has very long unary production chains (so \( m \) is large) that are not actually reached from the input sentences. The alternative \( N' \log \log N' \) may also fail to be \( O(|E| + |\bar{V}|) \), e.g., on a class of inputs where \( |E| = O(|V|) \).

5.2 Dynamic Programming Tabulation

Again by analyzing \( \mathcal{P} \) manually (or potentially automatically), it may be possible to devise a method which, given the axioms \( V \), iterates in topologically sorted order over some finite “worst-case” set \( X \subseteq V \) that is guaranteed to be a superset of \( \bar{V} \). By relaxing all \( v \in X \) in this order, we get the correct result.

This is called tabulation—systematically filling in a table (namely, the chart) that records \( \bar{w}(v) \in \mathcal{W} \cup \{|\bot|\} \) for all \( v \in X \). An example is CKY parsing (Kasami, 1965; Baker, 1979). Define \( \mathcal{V} \) as in §2.4. Given \( V \) that specifies a sentence of length \( n \) and a context-free grammar in Chomsky Normal Form, let \( X \overset{\text{def}}{=} V \cup \{\text{phrase}(x, i, k) : 0 \leq i < k \leq n\} \). The CKY algorithm relaxes all items in \( X \) in increasing order of their widths \( k - i \), where \( \text{rewrite} \) items are said to have width 0. Opedal et al. (2023, Appendix H.2) give the much less
obvious order for weighted Earley parsing.

This strategy does away with the \texttt{out()} iterator. The trouble is that it calls \texttt{C.in(v)} on all items \(v \in X\)—and \(X\) may be much larger than \(V\). That ruins our goal of making weighted evaluation on every input as fast as unweighted evaluation up to a constant factor. For example, in \textsc{CKY} parsing, \(|X| = \Theta(n^2)\), yet parsing a particular sentence with a particular grammar may lead to a very sparse \(V\). Algorithm 1 will be fast on this input whereas \textsc{CKY} remains slow (\(\Omega(n^2)\)). For a more precisely analyzed example, consider the deduction system corresponding to Earley’s algorithm, as already mentioned in \S1. A bounded-state grammar is guaranteed to give a sparse \(V\) on every input sentence.

\cite{Goodman99} points out that on such a grammar, Algorithm 1 runs in \(O(n)\) time, but again, tabulation takes \(\Omega(n^2)\) time since \(|X| = \Theta(n^2)\).

5.3 The Two-Pass Trick

To avoid this problem, \cite{Goodman99} proposes to (1) compute \(V\) using unweighted forward chaining (Algorithm 1), and then (2) relax just the items in \(V\), in effect choosing \(X = \overline{V}\). The question now—in our acyclic case—is how pass (2) can visit the items in \(\overline{V}\) in a topologically sorted order. Using a priority queue to do so would have the same overhead as using a priority queue with the simpler one-pass method (\S5.1).

Instead, we can use \textbf{backward chaining} during the second pass (Algorithm 3). This is a simple recursive algorithm that essentially interleaves relaxation with depth-first search. It indeed relaxes the vertices in \(\overline{V}\) in a toposorted order. The call stack acts like a LIFO agenda (made explicit in Algorithm 7).

Note that \texttt{C.in(v)} is only called on \(v \in \overline{V}\) and it only iterates over the hyperedges in \(\overline{E}_v\), which are supported by items in \(\overline{V}\). This is why a first pass to discover \(\overline{V}\) is helpful. By contrast, a pure one-pass backward chaining method would have to identify a finite \(X\) and iterate over all of \(E\)’s hyperedges to items \(v \in X\), which would visit many items and hyperedges that are not in \(\overline{V}\) and \(\overline{E}\).

At first glance, Algorithm 3 appears to be exactly what we need: under our standard assumptions (\S2.5), it runs in time \(O(|\overline{V}| + |\overline{E}|)\) and space \(O(|\overline{V}|)\), just like Algorithm 1. The question is whether the standard assumptions still hold. Algorithm 3 requires not only \texttt{C.out(u)} on the forward pass (like Algorithm 1) but also \texttt{C.in(v)} on the backward pass. Supporting the second type of iterator will generally require maintaining additional indexes in the chart \(C\). For some deduction systems, that is only a mild annoyance and a constant-factor overhead. Unfortunately, there do exist pathological cases where the second iterator is asymptotically more expensive. This implies that Algorithm 3 cannot serve as a generic master algorithm to establish our meta-theorem (\S1).

For such a case, consider a deduction system with hyperedges of the form \(t(p \cdot q) \mapsto r(p), s(q)\) where \(p\) and \(q\) are large primes and \(p \cdot q\) is their product (\(\mod m\)). Suppose there are \(n\) \(r\) items and \(n\) \(s\) items. On the forward pass, this requires all \(n^2\) combinations. On the backward pass, since factoring \(p \cdot q\) is computationally hard, the \texttt{out()} iterator cannot easily work backwards from a given \(t\) item—the best strategy is probably to iterate over all \(r\) \((r, s)\) pairs that have popped from the agenda to find out which ones yield the given \(t\) item. Since this would be done for each \(t\) item, the overall runtime of the backward pass could be as bad as \(\Theta(mn^2)\), even though there are only \(n^2\) edges and the forward pass runs in time \(O(n^2)\).

What \cite{Goodman99} actually proposed was to materialize the hypergraph of derived items during forward chaining, allowing the use of classical toposorting algorithms, which run on materialized graphs. In particular, if each derived item \(v\) stores its incoming hyperedges \(E_v\), then it is easy to make \texttt{C.in(v)} satisfy the standard assumptions—it simply iterates over the stored list. Then Algorithm 3 requires not only \texttt{C.out(u)} on the forward pass (like Algorithm 1) but also \texttt{C.in(v)} on the backward pass. Supporting the second type of iterator will generally require maintaining additional indexes in the chart \(C\). For some deduction systems, that is only a mild annoyance and a constant-factor overhead. Unfortunately, there do exist pathological cases where the second iterator is asymptotically more expensive. This implies that Algorithm 3 cannot serve as a generic master algorithm to establish our meta-theorem (\S1).

\begin{algorithm}[h]
\caption{Weight computation by backward chaining}
\begin{algorithmic}[1]
\State \(\triangleright\) Algorithm 1 has already been run to compute \(V\)
\State \(C \leftarrow \emptyset\) \Comment{now \(C\) is a map with keys in \(V\)}
\For {\(v \in \overline{V}: \text{COMPUTE}(v)\)} \Comment{\(\overline{V}\) is the old set \(C\)}
\State \(C\text{-}\text{relax}(v)\)
\EndFor
\If {\(C[v] = \perp\)} \Comment{first visit}
\State \(\triangleright\) this iterator requires \(u_1, \ldots, u_k\) to have been popped from Algorithm 1’s agenda
\EndIf
\For {\(v \leftarrow \bigcup_{i=1}^{k} u_i \in C\text{-}\text{in}(v)\):}
\For {\(i \leftarrow 1\ \text{to } k:\ \text{COMPUTE}(u_i)\)}
\State \(C\text{-}\text{relax}(v)\)
\EndFor
\Assume {\(C[v] \neq \perp\)} \Comment{because \(v \in \overline{V}\)}
\EndFor
\end{algorithmic}
\end{algorithm}

\footnotetext{In principle, this might be fixed by making \(X\) a tighter upper bound on \(\overline{V}\). Given \(\overline{V}\), evaluation would have to analyze the grammar and construct a special smaller \(X\) for the sentence with \(|X| = O(n)|\), then use that \(X\). However, \S5.3 is easier.

\footnotetext{Or more dramatically, \(p\) and \(q\) are strings and \(p \cdot q\) denotes a cryptographic hash of their concatenation into range \([0, m]\).}
Algorithm 4 Unweighted forward chaining with
parent counting (compare Algorithm 1)
1: $C \leftarrow \emptyset; A \leftarrow \emptyset$ \text{ here $C \subseteq \mathcal{V}$ is just a set
2: \text{ for } v \in \mathcal{V} : \text{ axioms}
3: \quad [ \text{ $C$.add}(v); \text{ $A$.push}(v) \]
4: \quad \text{ if waiting_edges}[v] += 1 \text{ \# summands needed
5: \quad \text{ while } A \neq \emptyset :
6: \quad \quad u \leftarrow A\text{.pop}() \text{ remove some element}
7: \quad \quad waiting\_items += 1 \text{ \# items popped
8: \quad \text{ for } (v \leftarrow u_1, \ldots, u_k) \in C\text{.out}(u) :
9: \quad \quad \text{ if waiting_edges}[v] = 0 : \text{ \# \& $v \notin C$
10: \quad \quad \quad [ C\text{.add}(v); A\text{.push}(v) \]
11: \quad \quad \text{ waiting_edges}[v] += 1

Algorithm 5 Weighted forward chaining with parent counting (compare Algorithm 2)
1: \text{ if Algorithm 4 has already computed
waiting\_edges}[v] \text{ \& \& waiting\_items.
2: \quad C \leftarrow \emptyset; A \leftarrow \emptyset \text{ now } C \text{ is a map with keys in } \mathcal{V
3: \text{ for } v \in \mathcal{V} : \text{ axioms
4: \quad \text{ contribute}(v, \omega(v)) \]
5: \quad \text{ while } A \neq \emptyset :
6: \quad \quad u \leftarrow A\text{.pop}() \text{ remove some element}
7: \quad \quad waiting\_items -- 1 \text{ \# items unpopped
8: \quad \text{ for } (v \leftarrow u_1, \ldots, u_k) \in C\text{.out}(u) :
9: \quad \quad \text{ contribute}(v, f(C[u_1], \ldots, C[u_k]))
10: \quad \text{ if waiting\_items } \neq 0 \text{ : error } \text{ cycle detected
11: \quad \text{ procedure contribute}(v, w)
12: \quad \quad C[v] \oplus_v w \]
13: \quad \quad waiting\_edges[v] -- 1 \text{ \# summands needed
14: \quad \quad if waiting\_edges[v] = 0 :
15: \quad \quad \quad A\text{.push}(v) \text{ \# delayed push: item is ready

The algorithm 3 achieves the desired runtime. Unfortunately, as Goodman acknowledged, materialization drives the space requirement up from $\Theta(|\mathcal{V}|)$ to $\Theta(|\mathcal{V}| + |E|)$. In the example of the previous paragraph, the space goes from $\Theta(m+n)$ to $\Theta(m+n^2)$.

5.4 Discussion

In summary, none of the previous strategies for acyclic weighted deduction are guaranteed to achieve the same time and space performance as unweighted deduction (Algorithm 1). In addition, some of them require constructing priority functions or efficient $\text{in()}$ iterators. While they are quite practical for some systems, it has not previously been possible for a paper that presents an unweighted deduction system to simply assert that its asymptotic analysis—for example, via McAllester (2002)—will carry through to weighted deduction.

6 Two-Pass Weighted Deduction via Parent Counting

We now present our simple solution to the problem, in the acyclic case. As already mentioned, it allows acyclic weighted deduction systems such as the inside algorithm (§2.4) and weighted Earley’s algorithm (§1) to benefit from sparsity in the chart just as much as their unweighted versions do, without any asymptotic time or space overhead.

The idea is to use a version of topological sorting (Kahn, 1962) that only requires following out-hyperedges, as in forward chaining. We first modify our first pass (Algorithm 4). An item $v \in C$ does not store its incoming hyperedges $E_v$, but just stores the count of those incoming hyperedges in $\text{waiting\_edges}[v]$ (initially 0).

Now, the second pass (Algorithm 5) computes the weights, waiting to push an item $v$ onto the agenda until all contributions to its total weight have been aggregated into $C[v]$. $\text{waiting\_edges}[v]$ holds the count of contributions that have not yet arrived; when this is reduced to 0, the item can finally be pushed.\(^\text{16}\) The agenda in the second pass plays the role of the “ready list” of Kahn (1962).

All of the same work of deriving items will be done again on the second pass, with no memory of the first pass other than the counts. Both passes use forward chaining and derive the same items—but the second pass may derive them in a different order, as it deliberately imposes ordering constraints.

Our pseudocode also maintains an extra counter, $\text{waiting\_items}$, used only to check the requirement that the input graph must be acyclic.

For any input, both passes consume only as much runtime and space as Algorithm 1, up to a constant factor.\(^\text{17}\) This constant-factor result does not require all of the standard assumptions of §2.5. It needs only the assumptions that $f$ and $\oplus_v$ can be computed in $O(1)$ time, and that an item’s weight can be stored in space proportional to the space required by the item itself. If even these assumptions fail, we can still say that the additional runtime of the weighted algorithm is only the total cost of

\(^{16}\)Just as a garbage collector can destroy an object when its reference count is reduced to 0.

\(^{17}\)More precisely, only as much as the maximum runtime and space of Algorithm 1 on that input, where the max is over possible pop orders. The pop order is left unspecified in Algorithm 1 but might affect the actual runtime of the iterators.
running \( f \) and \( \oplus_u \) for every hyperedge \( v \xleftarrow{f} \ldots \) in \( |E| \), and the additional space is only what is needed to store the weights of the \( |V| \) items. When all the standard assumptions apply, the method achieves \( \mathcal{O}(|V| + |E|) \) time and \( \mathcal{O}(|V|) \) space, just like §3.

7 Weighted Deduction With Cycles

Goodman (1999) also considers the case where the derived hypergraph \((\bar{V}, \bar{E})\) may be cyclic (while remaining finite). There, we should partition it into strongly connected components (SCCs), which we should visit and solve in toposorted order.

7.1 Solving the SCCs

Let \( S \subseteq \bar{V} \) be an SCC. We assume a procedure \textsc{SolveSCC}(\( S \)) that sets \( C[v] = \bar{\omega}(v) \) for all \( v \in S \), where the \( \bar{\omega}(v) \) values jointly satisfy the \(|S|\) equations (1). The procedure will be called only after previous SCCs have been solved. Thus, \( C[u] = \bar{\omega}(u) \) already whenever \( v \in S \) depends on \( u \notin S \).

Solution is commonly attempted by relaxing the items \( v \in S \) repeatedly until no further change. Since \( C.\text{relax}(v) \) (from §5) requires the \( \text{in}(\cdot) \) iterator, we can optionally reorganize the computation to use only \( \text{out}(\cdot) \): see Algorithm 6.

Repeated relaxation is not guaranteed to terminate, nor even converge in the limit to a solution \( \bar{\omega} \), even when one exists. However, under some deduction systems, \( S \) may have special structure that enables a finite-time solution algorithm. For example, footnote 12 noted that Knuth (1977) solves certain weighted deduction systems in which \( \oplus_u = \min \).

As another example, the equations (1) may become linear once the weights \( \bar{\omega}(u) \) from previous SCCs have been replaced with constants. If the \( \oplus \) and \( \ominus \) operations of this linear system of equations form a semiring that also has a closure operator for summing a geometric series in finite time, then the Kleene-Floyd-Warshall algorithm (Lehmann, 1977) solves the SCC \( S \) in \( \mathcal{O}(|S|^3) \) operations.

---

\(^{18}\) Much like the Bellman-Ford shortest-paths algorithm (Bellman, 1958), although that algorithm also includes a test that halts with an error if convergence is impossible.

\(^{19}\) Algorithm 6 relaxes all \( v \in S \) in parallel, which unfortunately can cause oscillation in some cases where serial relaxation would converge. A serial variant, which requires more space, would temporarily materialize the out-edges from all \( u \in S \): the out-edges to \( v \in S \) are stored at \( v \) to support serial relaxation within \( S \), while the out-edges to \( v \notin S \) may be saved in a separate list and used at the end to propagate to later SCCs. Alternatively, when a difference propagation algorithm exists (§4), one could run it on \( S \) to convergence.

Algorithm 6 Solving an SCC using only out()

1. procedure \textsc{SolveSCC}(\( S \))
2. \( \triangleright \) This procedure assumes that \( C[v] \) already aggregates the non-cyclic contributions to \( \bar{\omega}(v) \), from axioms and earlier SCCs.
3. \( \triangleright \) \( C_{\text{prev}}, C_{\text{new}} \) are local maps with keys in \( S \).
4. for \( v \in S \):
5. if \( v \in V \) : \( C[v] \oplus_u = \bar{\omega}(v) \) \( \triangleright \) axiom?
6. \( C_{\text{prev}}[v] \leftarrow C[v] \) \( \triangleright \) all acyclic contributions
7. while true :
8. \( C_{\text{new}} \leftarrow C_{\text{prev}} \) \( \triangleright \) deep copy
9. for \( u \in S \) :
10. for \( (v \xleftarrow{f} u_1, \ldots, u_k) \in C.\text{out}(u) \) :
11. if \( v \in S \) : \( \triangleright \) cyclic hyperedge back to \( S \)
12. \[ C_{\text{new}}[v] \oplus_{v} = f(C[u_1], \ldots, C[u_k]) \]
13. if \( C_{\text{new}} = C : \) break \( \triangleright \) deep equality test
14. \( C \leftarrow C_{\text{new}} \)
15. \( \triangleright \) Finally, propagate the solution to later SCCs, in case they too are solved with Algorithm 6.
16. for \( u \in S \) :
17. for \( (v \xleftarrow{f} u_1, \ldots, u_k) \in C.\text{out}(u) \) :
18. if \( v \notin S \) : \( \triangleright \) hyperedge to later SCC
19. \( C[v] \oplus_v = f(C[u_1], \ldots, C[u_k]) \)

This may be improved to sub-cubic (e.g., Strassen, 1969) if an \( \oplus \) operator is also available.

However the SCCs are solved, the point is that solving \( n \) SCCs separately (if \( n > 1 \)) is generally faster than applying the same algorithm to solve the entire graph (Purdom, 1970). For example, Tarjan (1981) noted that since Kleene-Floyd-Warshall runs in cubic time on the number of items, the runtimes of these two strategies are proportional to \( |E| + \sum_i |S_i|^3 < |E| + |V|^3 \), respectively, when the SCCs have sizes \( |S_1| + \ldots + |S_n| = |V| \). Similarly, Nederhof (2003) suggested running Knuth’s algorithm on each SCC separately, giving runtimes proportional to \( \sum_i |E_i| \log(1 + |S_i|) < |E| \log(1 + |V|) \).

Applying the relaxation method to the SCCs of an acyclic hypergraph recovers the fast Algorithm 3, since each SCC \( S_i \) has \( |S_i| = 1 \) and can be solved to convergence with a single relaxation.

7.2 Finding the SCCs

To solve the SCCs one at a time, we need to enumerate them in toposorted order. Accomplishing this in \( \mathcal{O}(|V| + |E|) \) time is a job for Tarjan’s algorithm (Tarjan, 1972). We give two solutions.\(^{20}\)

\(^{20}\) Goodman (1999) offers three solutions, but §5.4 rejected them as too expensive even in the acyclic case. In particular, Goodman’s solution based on SCC decomposition could
If efficient \texttt{in()} iterators for \( P \) are available, then
we can use Algorithm 7, a variant of Algorithm 3
that has been upgraded to use Tarjan’s algorithm
rather than ordinary depth-first search. Again, this
is a two-pass algorithm: (1) compute \( \bar{V} \) using un-
weighted forward chaining (Algorithm 1), and then
(2) run a Tarjan-enhanced backward pass to find
(solve) and the SCCs in toposorted order.\textsuperscript{21} The
SCCs that are closest to the axioms are found first,
so each SCC can be solved as soon as it is found.

But what if we do not have \texttt{in()} iterators that
are as efficient as the \texttt{out()} iterators (see §5.3)?
Fortunately, it is also possible to use pure forward
chaining, since the forward graph has the same
set of SCCs as the backward graph. This is
a three-pass algorithm (Algorithm 8): (1) run
Algorithm 1 to find \( \bar{V} \), (2) run Tarjan’s algorithm
on the forward graph to enumerate the SCCs in
reverse order, pushing them onto a stack, (3) pop
the SCCs off the stack to visit them in the desired
order, solving each one when it is popped. For
any \( K \), this method consumes only as much time
and space as Algorithm 1—excluding the extra
time it uses for the \texttt{SolveSCC} calls, which is
unavoidable—up to a constant factor, over all
inputs and all deduction systems whose hyperedges
have in-degree \( \leq K \). The constant factor depends
only on \( K \) (see footnote 22 for why it does).

One might hope to combine passes (1) and (2).
That would indeed work if we were dealing with an
ordinary graph. However, hypergraphs are trickier.
It is crucial for Tarjan’s algorithm that when it visits
a node \( u \), it immediately explores all paths from \( u \),
so as to discover any cycle containing \( u \) while \( u \) is
still on the stack. But \( C.out(u) \) will not enumerate
a hyperedge \( v \leftarrow u, u' \) if \( u' \) is not yet known to be
in \( \bar{V} \), so the necessary exploration from \( u \) to \( v \)
will be blocked. Pass (1) solves this by precomputing
the vertices \( \bar{V} \). Now calling \( C.out(u) \) during pass
(2) will not be blocked but will be able to find the

\texttt{Algorithm 7} Weighted cyclic backward chaining
(compare Algorithm 3)

\begin{algorithm}
\begin{algorithmic}[1]
\State \( \triangleright \) Algorithm 1 has already been run to compute \( \bar{V} \)
\State \( \triangleright \) Here \( A \) is a stack of distinct items. \( A.index[v] \)
records the current stack position of \( v \) (with the bottom and top elements at 0 and \( |A| - 1 \) respectively), or takes a special value if \( v \notin A \).
\State \( C \leftarrow \emptyset \); \( A \leftarrow \emptyset \) \triangleright now \( C \) is a map with keys in \( \bar{V} \)
\State for \( v \in \bar{V} \) : \texttt{COMPUTE}(v) \triangleright \( \bar{V} \) is the old set \( C \)
\State function \texttt{COMPUTE}(v)
\State \( \triangleright \) Set \( C[v] = \omega(v) \), unless any of \( v \)’s own SCC
is on the stack \( A \). In that case, add \( v \) and its
remaining SCC ancestors to \( A \), setting their \( C \) values as required by Algorithm 6 line 2.
\State Returns the \# of items at the bottom of the stack
\State that were not detected to be in \( \bar{V} \)’s SCC.
\State \State \( \triangleright \) will become return value
\State \( \triangleright \) first visit
\State \( A.push(v) \) \triangleright we may undo this at line 22
\State \( \texttt{if} \ v \in \bar{V} \) : \( C[v] \leftarrow \omega(v) \) \triangleright axiom?
\State \( \texttt{for} \ (v \leftarrow u_1, \ldots, u_k) \in C.in(v) \) :
\State \State \( r \leftarrow \texttt{true} \) \triangleright acyclic hyperedge?
\State \State \texttt{for} \( i \leftarrow 1 \) to \( k \) :
\State \State \State \texttt{if} \( u_i \in A \) : \triangleright \texttt{cycle detected}
\State \State \State \( [r \leftarrow \false; \ \text{low} \ \text{min} = A.index[u_i]] \)
\State \State \State \texttt{else} \texttt{low} \ = \ \texttt{COMPUTE}(u_i)
\State \State \State \texttt{if} \( r : C[v] \not\in f(C[u_1], \ldots, C[u_k]) \)
\State \State \State \texttt{assert} \( C[v] \neq \bot \) \triangleright because \( v \in \bar{V} \)
\State \State \State \texttt{if} \( \text{low} \ = \ A.index[v] \) : \triangleright \text{low} is unchanged
\State \State \State \State \texttt{\triangleright nothing beneath \( v \) is in \( v \)’s SCC}
\State \State \State \texttt{S} \leftarrow \emptyset \ \triangleright \texttt{pop \( v \)’s entire SCC into this set}
\State \State \State \texttt{while} \( |A| > \text{low} \) \triangleright \text{solve \( A \cdot pop() \)}
\State \State \State \texttt{SolveSCC}(S)
\State \texttt{return} \( \text{low} \)
\end{algorithmic}
\end{algorithm}

hyperedge to \( v \) as desired, perhaps looping back
through \( u \) (or \( u' \)). In effect, pass (2) runs Tarjan’s
algorithm on the implicit dependency graph
that has an edge \( u \rightarrow v \) whenever \( v \) was derived by
combining \( u \) with other items during pass (1). Pass
(2) can enumerate the dependency edges from \( u \)
at any time. To enable this, at Algorithm 8 line 13,
the \texttt{.out iterator must retain state from pass (1)
and only require \( u_1, \ldots, u_k \) to have been popped
previously—not necessarily during pass (2): that
is, \( u_1, \ldots, u_k \in \bar{V} \) \textsuperscript{22}. The backward methods also
used this more relaxed test (Algorithm 3 line 7 and
Algorithm 7 line 11), but Algorithm 5 line 8 did not.

\textsuperscript{21}Algorithm 7 uses a somewhat nonstandard presentation
of Tarjan’s that exposes a helpful contract at line 6. Note that \( A \)
no longer serves as an agenda of items to explore in future,
but as a stack of items that are currently being explored.
An item waits on the stack because we are backward chaining and its
inputs are not yet all known. It always depends transitively on all
items above it on the stack. This is because each item \( v \) on the
stack depends on the item immediately above \( v \) either directly,
if \texttt{COMPUTE}(v) is still in progress (hence that item is some \( u_i \)),
or else transitively, via some item below \( v \) (then called \( A[\text{low}] \))
that kept \( v \) from popping when \texttt{COMPUTE}(v) returned.

\textsuperscript{22}As a result, this hyperedge will be visited \( k \) times, but
only the first time will have an effect, due to the test at line 11.
\textsuperscript{23}Each time we arrive at line 9 or 16, the loop must enumer-
We have not discussed parallel execution beyond tensorization of a deduction system (§2.4). But in forward chaining, one could push multiple items from the agenda and then process them simultaneously in multiple threads, taking care to avoid write conflicts. Indeed, semi-naive bottom-up evaluation, a classical strategy for evaluating unweighted deduction systems (Ceri et al., 1990), is equivalent to processing all items on the agenda in parallel at each step. For backward chaining, Matei (2016) reviews concurrent versions of Tarjan’s algorithm.

8 Limitations

We have not discussed dynamic algorithms, where the axioms or their weights can be updated after or during evaluation, and one wishes to update the derived items and their weights without recomputing them from scratch (Eisner et al., 2005; Filardo and Eisner, 2012).

Finally, §2.2 defined evaluation to return all of V. We did not discuss query-driven evaluation, which returns only V ∩ Q (and corresponding weights) for a given set of query items Q ⊆ V. This can allow termination even in some cases with infinite V. Intuitively, we hope to backward-chain from Q while also forward-chaining from V. This can be achieved by a technique such as magic sets (Beeri and Ramakrishnan, 1991), which transforms the deduction system P to (1) accept additional input axioms that specify the queries Q, (2) derive additional items corresponding to recursive queries, (3) augment the original hyperedges so that they will derive an original item v only when it answers a query. Evaluation of the new system P’ requires only forward chaining via out() (e.g., our Algorithms 4–6 and 8)—but forward chaining for (2) simulates backward chaining under P. As a result, the out() iterators of P’ must do additional work corresponding to what the in() iterators of P did.

9 Conclusions

Often an NLP algorithm can be expressed as a weighted deduction system (§2) that defines how various quantities should be computed from one another. Such a system is usually presented as a small collection of rules that combine to generate a large or even infinite computation graph (really a hypergraph). The rules specify concisely what is to be computed, leaving the details of scheduling and data structures to generic strategies that are well-understood, reliable, and easy to analyze.

We adopted a general formalism for weighted deduction systems (going beyond the usual semiring-weighted case) and surveyed a range of generic strategies that can be interpreted or compiled for a given system when seeking a practical CPU implementation. All of the strategies were presented uniformly in terms of a chart C and agenda A.

Our main novel contribution was to exhibit a generic strategy for acyclic weighted deduction that is guaranteed to be as time- and space-efficient on every system and input as the corresponding strategy for unweighted deduction, up to a constant factor that is independent of the system and input. We
also exhibited a strategy with related guarantees for the more general case of cyclic weighted deduction.

Acknowledgements

Tim Vieira, Andreas Opedal, and Matthew Francis-Landau provided useful discussion. In particular, Tim suggested discussing bucket queues in §5.1. The anonymous reviewers contributed several useful suggestions and questions about the presentation, which I have tried to address. Any errors are my own.

References


Tim Vieira, Ryan Cotterell, and Jason Eisner. 2022. Automating the analysis of parsing algorithms (and other dynamic programs). *Transactions of the Association for Computational Linguistics*. Accepted for publication.