
Proceedings of the 5th International Workshop on Parsing Technologies, pp. 54-65,

Cambridge, MA, September 1997. [An improved and extended version appears in Harry C. Bunt

and Anton Nijholt (eds.), New Developments in Natural Language Parsing, Kluwer, 2000.]

BILEXICAL GRAMMARS AND A

CUBIC-TIME PROBABILISTIC PARSER∗

Jason Eisner

Dept. of Computer and Information Science, Univ. of Pennsylvania
200 South 33rd St., Philadelphia, PA 19103-6389 USA

Email: jeisner@linc.cis.upenn.edu

1 Introduction

Computational linguistics has a long tradition of lexicalized grammars, in which each grammatical rule is spe-
cialized for some individual word. The earliest lexicalized rules were word-specific subcategorization frames.
It is now common to find fully lexicalized versions of many grammatical formalisms, such as context-free and
tree-adjoining grammars [Schabes et al. 1988]. Other formalisms, such as dependency grammar [Mel’čuk 1988]
and head-driven phrase-structure grammar [Pollard & Sag 1994], are explicitly lexical from the start.
Lexicalized grammars have two well-known advantages. Where syntactic acceptability is sensitive to the

quirks of individual words, lexicalized rules are necessary for linguistic description. Lexicalized rules are also
computationally cheap for parsing written text: a parser may ignore those rules that do not mention any input
words.
More recently, a third advantage of lexicalized grammars has emerged. Even when syntactic acceptability is

not sensitive to the particular words chosen, syntactic distribution may be [Resnik 1993]. Certain words may be
able but highly unlikely to modify certain other words. Such facts can be captured by a probabilistic lexicalized
grammar, where they may be used to resolve ambiguity in favor of the most probable analysis, and also to speed
parsing by avoiding (“pruning”) unlikely search paths. Accuracy and efficiency can therefore both benefit.

Recent work along these lines includes [Charniak 1995, Collins 1996, Eisner 1996b, Collins 1997],
who reported state-of-the-art parsing accuracy. Related models are proposed without evaluation in
[Lafferty et al. 1992, Alshawi 1996].
This recent flurry of probabilistic lexicalized parsers has focused on what one might call bilexical grammars,

in which each grammatical rule is specialized for not one but two individual words.1 The central insight is that
specific words subcategorize to some degree for other specific words: tax is a good object for the verb raise.
Accordingly, these models estimate, for example, the probability that (a phrase headed by) word y modifies
word x, for any two words x, y in the vocabulary V .

At first blush, probabilistic bilexical grammars appear to carry a substantial computational penalty. Chart
parsers derived directly from CKY or Earley’s algorithm take time O(n3 min(n, |V |)2), which amounts to O(n5)
in practice. Such algorithms implicitly or explicitly regard the grammar as a context-free grammar in which
a noun phrase headed by tiger bears the special nonterminal NPtiger. Such ≈ O(n5) algorithms are explicitly
used by [Alshawi 1996, Collins 1996], and almost certainly by [Charniak 1995] as well.
The present paper formalizes an inclusive notion of bilexical grammars, and shows that they can be parsed

in time only O(n3g3t2m) ≈ O(n3), where g, t, and m are bounded by the grammar and are typically small. (g
is the maximum number of senses per input word, t measures the degree of lexical interdependence that the
grammar allows among the several children of a word, and m bounds the number of modifier relations that
the parser need distinguish for a given pair of words.) The new algorithm also reduces space requirements to
O(n2g2t) ≈ O(n2), from the ≈ O(n3) required by CKY-style approaches to bilexical grammar. The parsing
algorithm finds the highest-scoring analysis or analyses generated by the grammar, under a probabilistic or
other measure. Non-probabilistic grammars may be treated as a special case.

∗I am grateful to Mike Collins and Joshua Goodman for useful discussions of this work.
1Actually, [Lafferty et al. 1992] is formulated as a trilexical model, though the influence of the third word could be ignored.

The new ≈ O(n3)-time algorithm has been implemented, and was used in the experimental work of
[Eisner 1996a, Eisner 1996b], which compared various bilexical probability models. The algorithm also applies
to the head-automaton models of [Alshawi 1996] and the phrase-structure models of [Collins 1996, Collins 1997],
allowing ≈ O(n3)-time rather than ≈ O(n5)-time parsing, granted the (linguistically sensible) restrictions that
the number of distinct X-bar levels is bounded and that left and right adjuncts are independent of each other.

2 Formal Definition of Bilexical Grammars

2.1 Unweighted Bilexical Grammars

A bilexical grammar consists of the following elements:

• A set V of words, called the vocabulary, which contains a distinguished symbol root.

The elements of V may be used to represent word senses: so V can contain separate elements bank1, bank2,
and bank3 to represent the various meanings of bank. For parsing to be efficient, the maximum number of
senses per word, g, should be small.

• A set M of one or more modifier roles.

M does not affect the set of sentences generated by the grammar, but it affects the structures assigned to
them. In these structures, elements of M will be used to annotate syntactic or semantic relations among
words. For example, John might not merely modify loves, but modify it as subject or object, or as agent
or patient; these are roles in M .

For parsing to be efficient, M should be small. (While a semantic theory may posit a great many modifier
roles, it need not be the parser’s job to make the finer distinctions.) More precisely, what should be small is
m, the maximum number of modifier roles available for connecting two given words, such as John and loves.

• For each word w, a pair of deterministic finite-state automata ℓw and rw. Each automaton accepts some set
of strings over the alphabet V ×M .

ℓw specifies the possible sequences of left dependents (arguments and adjuncts) for w. rw specifies the possible
sequences of right dependents for w. By convention, the first element in such a sequence is closest to w in
the surface string. Thus, the possible dependent sequences are specified by L(ℓw)

R and L(rw) respectively.

Note that the collection of automata in a grammar may be implemented as a pair of functions ℓ and r, such
that ℓ(w, s, w′, µ) returns the destination state of the (w′, µ)-labeled arc that leaves state s of automaton ℓw,
and similarly for r(w, s, w′, µ). These functions may be computed in any convenient way.

For parsing to be efficient, the maximum number of states per automaton, t, should be small. However,
without penalty there may be arbitrarily many distinct automata (one per word in V), and each automaton
state may have arbitrarily many arcs (one per possible dependent in V), so |V | does not affect performance.

We must now define the language generated by the grammar, and the structures that the grammar assigns
to sentences of this language.
Let a dependency tree be a rooted tree whose nodes (internal and external) are labeled with words from

V , and whose edges are labeled with modifier roles from M . The children (“dependents”) of a node are ordered
with respect to each other and the node itself, so that the node has both left children that precede it and
right children that follow it. Figure 1a illustrates a dependency tree all of whose edges are labeled with the
empty string.
Given a bilexical grammar, a leaf x of a dependency tree may be expanded to modify the tree as follows.

Let w be the word that labels x, α be any string of left dependents accepted by ℓw, and β be any string of right
dependents accepted by rw. These strings are in (V ×M)∗. Add |α| left children and |β| right children to the
leaf x. Label the left children and their attached edges with the symbol pairs in α (from right to left); similarly
label the right children and their attached edges with the symbol pairs in β (from left to right).

A dependency parse tree is a dependency tree generated from the grammar by starting with a single node,
labeled with the special symbol root ∈ V , and repeatedly expanding leaves until every node has been expanded
exactly once. Figure 1a may be so obtained: one typical expansion step gives the leaf plan the child sequences
α = the, β = of, raise. Another such step expands the, choosing to give it no children at all (α = β = ǫ).

(a)

raise

taxto

incomethe

ofThe

plan

ROOT

government

(b)

of thegovernment to raise

no yes yes

The
V N

taxincomeraiseto
To N

theof
Det P Det N

government
N

The of

plan

plan of thegovernment to raiseplan

ROOT

(c)

raiseplan governmentof the to

The incomeraiseto theof government tax

taxincomeraiseto theof government

plan

plan

taxincome

The

ROOT

ROOT

ROOT

to theof governmentplan raise

Figure 1: (a) An unlabeled dependency parse tree. (b) The same tree shown flattened out. A span of the tree
is any substring such that no interior word of the span links to any word outside the span. One non-span and
two spans are shown. (c) A span may be decomposed into smaller spans as repeatedly shown; therefore, a span
can be built from smaller spans by following the arrows upward. The parsing algorithm builds successively
larger spans in a dynamic programming table (chart). The minimal spans, used to seed the chart, are linked or
unlinked word bigrams, such as The→plan or tax root.

A string ω ∈ V ∗ is generated by the grammar, with analysis T , if T is a dependency parse tree and listing
the node labels of T in infix order yields the string ω followed by root. ω is called the fringe of T .
The term bilexical refers to the fact that (i) each w ∈ V may specify a wholly different choice of automata

ℓw and rw, and furthermore (ii) each such automaton may make distinctions among individual words that are
appropriate to serve as children of w. Thus the grammar is sensitive to specific pairs of lexical items. For
example, it is possible for one lexical verb to select for a completely idiosyncratic set of nouns as subject, and
another lexical verb to select for an entirely different set of nouns. Since it never requires more than a two-state
automaton (though with many arcs!) to specify the set of possible subjects for a verb, there is no penalty for
such behavior in the parsing algorithm to be described here.

2.2 Weighted Bilexical Grammars

The ability of a verb to subcategorize for an idiosyncratic set of nouns, as above, can be used to implement
black-and-white (“hard”) selectional restrictions. Where bilexical grammars are really useful, however, is in
capturing gradient (“soft”) selectional restrictions. A weighted bilexical grammar can equip each verb with an
idiosyncratic probability distribution over possible object nouns, or indeed possible dependents of any sort. We
now formalize this notion.
Aweighted finite-state automaton A is a finite-state automaton that associates a real-valuedweight with

each arc and each final state. Following heavily-weighted arcs is intuitively “good,” “probable,” or “common”;
so is stopping in a heavily-weighted final state. Each accepting path through A is automatically assigned a
weight, namely, the sum of all arc weights on the path and the final-state weight of the last state on the path.
Each string accepted by A is assigned the weight of its accepting path.
Now, we may define a weighted bilexical grammar as a bilexical grammar in which all the automata ℓw and

rw are weighted automata. The grammar assigns a weight to each dependency parse tree: namely, the sum of
the weights of all strings of dependents, α and β, generated while expanding nodes to derive the tree. (This
weight is well-defined: it does not depend on the order in which leaves were expanded.)
The goal of the parser is to determine whether a string ω ∈ V ∗ can be generated by the grammar, and if so,

to determine the highest-weighted analysis for that sentence. It is convenient to set up the weighted automata
so that each automaton formally accepts all strings in V ∗, but assigns a weight of −∞ to any that are not
permitted by the competence grammar. Then a sentence is rejected as ungrammatical if its highest-weight
analysis has weight only −∞. The unweighted case is therefore a special case of the weighted case.

2.3 Lexical Selection

The above formalism must be extended to deal with lexical selection. Regrettably, the input to a parser is
typically not a string in V ∗. Rather, it contains ambiguous tokens such as bank, whereas the “words” in V are
word senses such as bank1, bank2, and bank3, or part-of-speech-tagged words such as bank/N and bank/V. One
would like a parser to resolve these ambiguities as well as structural ambiguities.
We may modify the formalism as follows. Consider the unweighted case first. Let Ω be the real input—a

string not in V ∗ but rather in P(V)∗, where P denotes powerset. Thus the ith symbol of Ω is a confusion set

of possibilities for the ith word of the input, e.g., {bank1, bank2, bank3}. Ω is generated by the grammar, with
analysis T , if some string ω ∈ V ∗ is so generated, where ω is formed by replacing each set in Ω with one of its
elements. Note that ω is the fringe of T .

For the weighted case, each confusion set in the input string Ω assigns a weight to each of its members.
Again, intuitively, the heavily-weighted members are the ones that are commonly correct, so the noun bank/N
would be weighted more highly than the verb bank/V. We score dependency parse trees as before, except that
now we also add to a tree’s score the weights of all its fringe words, as selected from their respective confusion
sets. Formally, we say that Ω = W1W2 . . .Wn ∈ P(V)∗ is generated by the grammar, with analysis T and
weight p + q1 + · · · + qn, if some string ω = w1w2 . . . wn ∈ V ∗ is generated with analysis T and weight p, and
|ω| = |Ω| = n and for each 1 ≤ i ≤ n, ωi appears in the set Wi with weight qi.

2.4 Adding String-Local Constraints

An extension is to allow the grammar to specify a list of excluded bigrams. If a tree’s fringe contains an
excluded bigram (two-word sequence), the tree is not considered a valid dependency parse tree, and is given

score −∞.

§3.8 shows how this extension lets the scoring model consider such factors as the probability of the tag k-grams
that appear in the parse (even for k > 2), as proposed by [Lafferty et al. 1992]. Consideration of such factors has
been shown useful for probabilistic systems that simultaneously optimize tagging and parsing [Eisner 1996b].

3 Uses of Bilexical Grammars

Bilexical grammars, and the new parsing algorithm for them, are not limited to dependency-style structures.
They are flexible enough to capture a variety of grammar formalisms and probability models. This section will
illustrate the point with some key cases. We begin with the dependency case, and progress to phrase-structure
grammars.

3.1 A Simple Case: Monolexical Dependency Grammar

It is straightforward to encode dependency grammars such as those of [Gaifman 1965]. We focus here on the
case that [Milward 1994] calls Lexicalized Dependency Grammar (LDG). Milward demonstrates a parser for
this case that requires O(n3g3t3) ≈ O(n3) time and O(n2g2t2) ≈ O(n2) space, using a left-to-right algorithm
that maintains its state as an acyclic directed graph. Here t is taken to be the maximum number of dependents
on a word. m does not appear because Milward takes tree edges to be unlabeled, i.e., m = 1.

LDG is defined to be only monolexical. Each word sense entry in the lexicon is for a word tagged with the
type of phrase it projects. An entry for helped/S, which appears as head of the sentence Nurses helped John
wash, may specify that it wants a left dependent sequence of the form w1/N and a right dependent sequence
of the form w2/N, w3/V. However, under LDG it cannot constrain the lexical content of w1, w2, or w3, either
discretely or probabilistically.2

By encoding a monolexical LDG as a bilexical grammar, and applying the algorithm described below in §4,
we can improve parsing time and space by a factor of t. The encoding is straightforward. To capture the
preferences for helped/S as above, we define ℓhelped/S to be a two-state automaton that accepts exactly the set
of nouns, and rhelped/S to be a three-state automaton that accepts exactly those word sequences of the form
(noun, verb). Obviously, ℓhelped/S includes a great many arcs—one arc for every noun in V . This does not
however affect parsing performance, which depends only on the number of states in the automaton.

3.2 Optional and Iterated Dependents

The use of automata makes the bilexical grammar considerably more flexible than its LDG equivalent. In the
example of §3.1, rhelped/S can be trivially modified so that the dependent verb is optional (Nurses helped John).
LDG can accomplish this only by adding a new lexical sense of helped/S, increasing g.

Similarly, under a bilexical grammar, ℓnurses/N can be specified to accept dependent sequences of the form
(adj, adj, adj, . . . adj, (det)). Then nurses may be expanded into weary Belgian nurses. Unbounded iteration
of this sort is not possible in LDG, where each word sense has a fixed number of dependents. In LDG, as in
categorial grammars, weary Belgian nurses would have to be headed by the adjunct weary. Thus, even if LDG
were sensitive to bilexicalized dependencies, it would not recognize nurses→helped as such a dependency.

3.3 Bilexical Dependency Grammar

In the example of §3.1, we may arbitrarily weight the individual noun arcs of the ℓhelped automaton, according
to how appropriate those nouns are as subjects of helped. (In the unweighted case, we might choose to rule
out inanimate subjects altogether, by removing their arcs or assigning them the weight −∞.) This turns the
grammar from monolexical to bilexical, without affecting the cubic-time cost of the parsing algorithm of §4.

2What would happen if we tried to represent bilexical dependencies in such a grammar? In order to restrict w2 to nouns denoting
helpless animate creatures, the grammar would need a new nonterminal symbol, NPhelpable. All nouns in this class would then
need additional lexical entries to indicate that they are possible heads of NPhelpable. The proliferation of such entries would drive

g up to |V | in Milward’s algorithm, resulting in performance of O(n3|V |3t3) (or by ignoring rules that do not refer to lexical items
in the input sentence, O(n6t3) ≈ O(n6)).

3.4 Probabilistic Bilexical Dependency Grammars

[Eisner 1996b] compares several probability models for dependency grammar. Each model simultaneously eval-
uates the part-of-speech tags and the dependencies in a given dependency parse tree. Given an untagged input
sentence, the goal is to find the dependency parse tree with highest probability under the model.

Each of these models can be accomodated to the bilexical parsing framework, allowing a cubic-time solution.
In each case, V is a set of part-of-speech-tagged words. For simplicity, M is taken to be a singleton set {ǫ}. Each
weighted automaton ℓw or rw is defined so that it accepts any dependent sequence in V ∗, but the automaton
has 8 states, which enable interactions among successive dependents in a sequence. Any arc that accepts a
noun (say) terminates in the Noun state. The w arc from Noun may be weighted differently than the w arcs
from other states; so a given dependent word w may be more or less likely depending on whether the previous
dependent in the sequence was a noun. The final-state weight of Noun may also be selected freely: so the
sequence of dependents might be likely or unlikely to end with a noun.3

As sketched in [Eisner 1996a], each of Eisner’s probability models is implemented as a particular scheme for
weighting such an automaton. For example, model C regards ℓw and rw as Markov processes, where each state
specifies a probability distribution over its exit options, namely, its outgoing arcs and the option of halting. The
weight of an arc or a final state is then the log of its probability. Thus if rhelped/V includes an arc labeled with
(bathe/V, ǫ) and this arc is leaving the Noun state, then the arc weight is (an estimate of)

log Pr(next right dependent is bathe/V | parent is helped/V and previous right dependent was a noun)

The weight of a dependency parse tree under this probability model is a product of such factors, which means
that it estimates Pr(dependency links & input words) according to a generative model. By contrast, model D
estimates Pr(dependency links | input words), using arc weights that are roughly of the form

log Pr(bathe/V is a right dep. of helped/V | both words appear in sentence and prev. right dep. was a noun)

which is similar to the probability model of [Collins 1996]. Some of the models evaluated also rely on weighted
string-local constraints, as implemented in §3.8 below.

3.5 Probabilistic Bilexical Phrase-Structure Grammar

In some situations, one wishes a parser to evaluate phrase-structure trees rather than dependency parse trees.
[Collins 1997] observes that since VP and S are both verb-headed, the dependency grammars of §3.4 would falsely
expect them to appear in the same environments. (The expectation is false because continue subcategorizes
for VP only.) Phrase-structure trees address the problem by providing nonterminal labels. In addition, phrase-
structure trees are less flat than dependency trees: a word’s dependents attach to it at different levels, providing
an obliqueness order on the dependents of a word. Obliqueness is of semantic interest, and is also exploited by
[Wu 1995], whose statistical translation model preserves the topology (ID, not LP) of binary-branching parses.
Fortunately, it is possible to encode (headed) phrase structure trees as dependency trees with labeled edges.

One can therefore use the fast bilexical parsing algorithm of §4 to generate the highest-weighted dependency
tree, and then convert that tree to a phrase-structure tree.
For the encoding, we expand V so that all words are tagged not with single nonterminals but with nonter-

minal chains. Let us encode the phrase-structure tree [John [continuedV [to batheV himself]VP]VP]S . The
word bathe is the head of V and VP constituents, while continued is the head of V, VP, and S constituents
(reading from the leaves upward). In the dependency tree, we therefore tag them as bathe/V,VP and contin-
ued/V,VP,S. The automaton rcontinued can now require a dependent’s tag to end with VP; this captures the
ungrammaticality of *John continued [Oscar to bathe himself].
Next, we put M to be the set of nonterminals. To encode the fact that in the phrase-structure tree, himself

modifies bathe by attaching at the VP level above bathe, we attach himself to bathe in the corresponding
dependency tree with a VP-labeled edge.
Finally, we wish to ensure that any dependency tree the parser returns can be mapped back to a phrase-

structure tree. For this reason, the bilexical grammar’s automata must require that the left or right dependents
of a word are appropriate to the word’s tag. Thus, any edges depending from continued/V,VP,S must be

3The eight states are start, Noun, Verb, Noun Modifier, Adverb, Preposition, Wh-word, and Punctuation.

labeled with V, VP, or S—the nonterminals that continued projects—and must fall in this order on each side.
For instance, rcontinued/V,V P,S may not allow S-labeled right dependents to precede VP-labeled right dependents.
For this scheme to work, certain conditions must hold of the phrase-structure trees we are encoding. Only

finitely many nonterminal chains may be available to tag a given word, and the nonterminals in a chain may
not repeat. This is essentially in conformance with X-bar theory. The one difference is in the treatment of
adjunction: in X-bar theory, three adjuncts to a VP would require 4 VP levels. One may work around this by
stipulating a single VP-ADJUNCT level above VP, to which all VP adjuncts (0 or more) attach.4

This encoding scheme improves on that of [Collins 1996], because any dependency tree can be converted back
to a phrase-structure tree, and this tree is unique. This makes it possible to use the fast bilexical parser, which
(unlike Collins’s) produces dependency trees without regard to whether they were derived from phrase structure
trees. It also means that a probabilistic parsing model (unlike Collins’s) need not be deficient, i.e., probability
is not assigned to dependency structures that cannot be used by the phrase-structure grammar.

One interesting artifact of Collins’s encoding scheme is that unary rules are impossible: every nonterminal
level must have at least one dependent, whether on the left or on the right. If desired, the new scheme can be
made to have this property as well. We augment V further, so that each nonterminal in a nonterminal chain
is annotated with either “L” or “R,” indicating that it requires children on the specified side. If VP is marked
with “L,” then the left-child automaton for that word must rule out any left-dependent sequence that does not
have at least one dependent with a VP-labeled edge, and preserve the weights on all other dependent sequences.

3.6 Relationship to Head Automata

It should be noted that weighted bilexical grammars are essentially a special case of head-automaton grammars
[Alshawi 1996]. As noted in the introduction, head-automaton grammars are bilexical in spirit. However, the
left and right dependents of a word w are generated not separately, by automata ℓw and rw, but in interleaved
fashion by a single weighted automaton, dw. dw assigns weight to strings over the alphabet V × {←,→}; each
such string is an interleaving of lists of left and right dependents from V .

Head automata, as well as [Collins 1997], can model the case that §3.5 cannot: where nonterminal sequences
may include nonterminal cycles. [Alshawi 1996] points out that this makes head automata are fairly powerful.
An automaton corresponding to the regular expression ((a,←)(b,→))∗ requires its word to have an equal number
of left and right children, i.e,. anwbn. (By contrast, a bilexical grammar or dependency grammar may be made
to generate {anwbn : n ≥ 0} only by making words other than w the heads of these strings, so that the words
that are allowed to interact bilexically would change.)
For syntactic description, this added power is probably unnecessary. (Linguistically plausible interactions

among left and right subcat frames, such as fronting, can be captured in bilexical grammars simply via multiple
word senses.) What head-automaton grammars offer over bilexical grammars is the ability for a head to specify
an obliqueness order over all its dependents, including arbitrarily many adjuncts. A head-automaton parse tree
for a2a1wb1b2 is more finely detailed than in dependency grammar. It essentially gives the phrase headed by w
a binary-branching analysis, such as

a2

a1 w

b1

b2

.

3.7 Idiom Encoding

To the bilexical construction of §3.3, one may add detectors for special phrases. Consider the idioms (a) run
scared, (b) run circles [around NP], and (c) run NP [into the ground]. (a), like most idioms, is only bilexical, so
it may be captured “for free”: simply increase the weight of the scared arc in rrun/V . But because (b) and (c)
are trilexical, they require augmentation to the grammar. (b) requires a special state to be added to rrun/V , so
that the dependent sequence (circles, around) may be recognized and weighted heavily. (c) requires a specialized
lexical entry for into; this sense is a preferred dependent of run and has ground as a preferred dependent.

4This scheme conflates the two semantically distinct parses of “intentionally knock twice”; a later semantic component would
have to resolve the scope ambiguity. The more powerful head automata of §3.6 could distinguish the readings, but at the cost of
using a O(n5) rather than O(n3) parsing algorithm.

3.8 k-gram Tagging

One may use the string-local constraints of §2.4 to score dependency parse trees according to the trigram part-of-
speech tagging model of [Church 1988]. Each input word w (including root) is regarded as a confusion set over
all tuples of the form (t′′, t′, t, w), where t is a tag for w and t′′, t′ are tags for the two words that precede w. (Thus,
V consists of such tuples.) The weight of the tuple (t′′, t′, t, w) in its confusion set is log(Pr(w | t) ·Pr(t | t′′, t′)).
The bigram (t′′i , t

′

i, ti, wi)(t
′′

i+1, t
′

i+1, ti+1, wi+1) is an excluded bigram unless t′i = t′′i+1 and ti = t′i+1.
Because of the excluded bigrams, any dependency parse tree has a fringe (including root) of the form

(bos,bos, t1, w1)(bos, t1, t2, w2)(t1, t2, t3, w3) . . . (tn−1, tn,eos,root)

Then the total weight accruing to the tree from the confusion sets is

log(Pr(t1 | bos,bos) · Pr(t2 | bos, t1) · Pr(t3 | t1, t2) · · ·Pr(eos | tn−1, tn)

·Pr(w1 | t1) · · ·Pr(wn | tn) · Pr(root | eos))

and to maximize this total is to maximize the probability product shown, just as [Church 1988] does. k-grams
for k > 3 may be handled in exactly the same way.
Since the parser maximizes the above sum of confusion-set weights and the weights accruing from the choice

of paths through the automata, grammatical structure also helps determine the highest-weighted parse.

4 Cubic-Time Parsing

This section begins by reviewing the general idea of chart parsing, presenting a general method drawn from
context-free “dotted-rule” methods such as [Graham et al. 1980, Earley 1970]. Second, we will see why this
method is inefficient when applied to bilexical grammars in the obvious way. Finally, a more efficient (cubic-
time) algorithm is presented, which applies the general chart parsing method rather differently.

4.1 Generalized Chart Parsing Method

The input is a string Ω = W1W2 . . .Wn of confusion sets (so each Wi ⊆ V). C (the chart) is an (n+1)× (n+1)
array. The chart cell Ci,j holds a set of partial analyses of the input. Each partial analysis has a weight, and
also a signature that concisely describes its ability to combine with other partial analyses. For each signature
s, the subcell Ci,j [s] holds the highest-weight partial analysis of the input substring Wi+1Wi+2 . . .Wj for which
s is the signature.5

Let Discover(i, j, P) be an operation that replaces Ci,j [signature(P)] with the partial analysis P if P has
higher weight than the partial analysis currently in Ci,j [signature(P)].

A basic chart-parsing method is then as follows:

1. for i := 1 to n+ 1
2. foreach w ∈Wi, where Wn+1 = {root} (* seed chart with members of the confusion set *)

3. foreach partial analysis a of the single word w

4. Discover(i− 1, i, a)
5. for width := 1 to n+ 1
6. for start := 0 to (n+ 1)− width

7. end := start+ width

5In a more general conception, Ci,j [s] holds a summary of all known partial analyses of Wi+1Wi+2 . . .Wj having signature s.
Summaries must be defined in such a way that if f is an operation that combines two partial analyses, and A and B are sets of
partial analyses of adjacent substrings, then summary({f(a, b) : a ∈ A and b ∈ B}) must be computable from summary(A) and
summary(B). In addition, if A and B are both sets of partial analyses of Wi+1Wi+2 . . .Wj having signature s, then summary(A∪
B) must be computable from summary(A) and summary(B), so that new analyses can be added to the chart.

In the usual case, where the ultimate goal of the parser is to find the highest-weight dependency parse tree, summary(A) is just
the highest-weight parse tree in A (or, more generally, a forest of all parse trees in A that tie for the highest weight). However,
if the parser is to return something else, one might set things up so that summary(A) was a list of the 10 highest-weight parse
trees in A—or even something more outré. If the parser is being used only to do language modeling for speech recognition, for
instance, and the goal is to minimize the per-word error rate, then the summary might give a posterior probability distribution
over the confusion set for the kth word, for each i < k ≤ j; this would be determined by allowing the partial analyses in A to vote
in proportion to their weight.

8. for mid := start+ 1 to end− 1
9. foreach partial analysis a in Cstart,mid (* i.e., each Cstart,mid[s] that is defined *)

10. foreach partial analysis b in Cmid,end

11. foreach way of combining a and b into a new weighted analysis c (if any)
12. Discover(start, end, c)
13. foreach partial analysis a in C0,n+1

14. if signature(a) indicates that a is a full (not partial) analysis of the sentence
15. then print a

The iterations in lines 3 and 11 have yet to be defined, but the dynamic programming idea is clear (and
familiar): analyses of length-1 substrings can be created from the substrings themselves (line 3), and analyses
of successively longer substrings can be created by gluing together shorter analyses in pairs (line 11), until we
have one or more analyses of the whole sentence.
In particular, the problem has the optimal substructure property: any optimal analysis of a long string can

be found by gluing together just optimal analyses of shorter substrings. (An optimal analysis is defined to be a
partial analysis of maximum weight for its signature; Discover() ensures that the chart contains only optimal
analyses.) For suppose that a and a′ are partial analyses of the same substring, and have the same signature,
but a has less weight than a′. Then suboptimal a cannot be part of any optimal analysis b in the chart—for if
it were, the definition of signature ensures that we could substitute a′ for a in b to get an partial analysis b′ of
greater total weight than b and the same signature as b, which contradicts b’s optimality.

The algorithm’s running time is dominated by the six nested loops, yielding time Θ(n3S2d). Here S is the
maximum number of possible signatures that may fall in a given chart cell, and d is the maximum number of
ways to combine two adjacent partial analyses into a larger one.

4.2 Inefficient Chart Parsing of Bilexical Grammars

How might we apply the above method to parsing of bilexical grammars? The obvious way is for each partial
analysis to represent a subtree. More precisely, each partial analysis would represent a kind of dotted subtree
that may not yet have acquired all its children. The signature of such a dotted subtree is a triple (w, sℓw , srw),
where w ∈ V is an input word, sℓw is a state of ℓw, and srw is a state of rw. If both sℓw and srw are final states,
then the signature is said to be complete.
It is clear that in line 3 of the algorithm, the sole analysis a is the triple (w, start state of ℓw, start state of

rw). It is also clear that line 14 should ensure that we print only trees with complete signatures as analyses
of the sentence. Finally, consider line 11. If a has signature (w, sℓw , srw) and b has a complete signature, then
there are m possible values of c in which b is attached to the root of the dotted subtree a as a new right child.
These analyses have signatures

{(w, sℓw , r(w, srw , w
′, µ)) : µ ∈M} (where r(w, . . .) is the transition function of rw as defined in §2.1)

The case where a is attached to the root of b as a new left child is similar, and may give another m values for c.
Why is this method inefficient? Because there are too many possible signatures. The probability with which b

attaches to a depends on the roots of both a and b. Since the root w of a could be any of the words at positions
start+ 1, start+ 2, . . .mid, and there may be min(n, |V |) distinct such words in the worst case, the number S
of possible signatures for a is at least min(n, |V |). The same is true for b, whose root w′ could likewise be any
of many words. But then the runtime of the algorithm is Ω(n3 min(n, |V |)2|M |) ≈ Ω(n5). In a nutshell, the
problem is that each chart cell may have to maintain many differently-headed analyses.

4.3 Efficient Chart Parsing of Bilexical Grammars

To eliminate these two additional min(n, |V |) factors, we must reduce the number of possible signatures for
a partial analysis. The solution is for partial analyses to represent some kind of contiguous string other than
constituents. Each partial analysis in Ci,j will be a new kind of object called a span, which consists of one
or two “half-constituents” in a sense to be described. The headword(s) of a span in Ci,j are guaranteed to be
at positions i and j in the sentence. This guarantee means that where Ci,j in the previous section had n-fold
uncertainty about the correct location of the headword for the optimal analysis of Wi+1Wi+2 . . .Wj , here it will
have only 3-fold uncertainty. The three possibilities are that wi is an unattached headword, that wj is, or that
both are.

Given a dependency parse tree, we know what its constituents are: a constituent is any substring consisting
of a word and all its descendants. The inefficient parsing algorithm of the §4.2 assembled the correct parse tree
by finding and gluing together analyses of the tree’s constituents in an approved way. For something similar
to be possible with spans, we must define what the spans of a given dependency parse tree are, and how to
glue analyses of spans together into analyses of larger spans. Not every substring of the sentence is a correct
constituent, and in the same way, not every substring is a correct span.

Figure 1a–b illustrates what spans are. A span of the dependency parse tree in (a) and (b) is any substring
wiwi+1 . . . wj (j > i) of the tree’s fringe, such that none of the interior words of the span communicate with
any words outside the span. Formally: if i < k < j, and wk is a dependent of wk′ or vice-versa, then i ≤ k′ ≤ j.

Since we will build the parse by assembling analyses of spans, and the interiors of adjacent spans are insulated
from each other, we crucially never need to know anything about the internal analysis inside a span. When
we combine two adjacent spans, we never add a link from or to the interior of either. For, by the definition of
span, if such a link were necessary, then the spans being combined could not be spans of the true parse anyway.
There is always some other way of decomposing the true parse (itself a span) into smaller spans so that no such
links from or to interiors are necessary.
Figure 1c shows such a decomposition.6 Any span of greater than two words, say again from wi to wj , can be

decomposed uniquely by the following deterministic procedure. Choose i < k < j such that wk is the rightmost
word (strictly inside the span) that connects to wi; if there is no such word, put k = i+1. Because crossing links
are not allowed, the substrings from wi . . . wk and wk . . . wj must also be spans. We can therefore assemble the
original wi . . . wj span by concatenating the wi . . . wk and wk . . . wj spans, and optionally adding a link between
the end words, wi and wj . By construction, there is never any need to add a link between any other pair of
words. Notice that when the two narrower spans are concatenated, wk gets its left children from one span and
its right children from the other.
The procedure for choosing k can be rephrased declaratively. To wit, the left span in the concatenation,

wi . . . wk, must be simple in the following sense: it must have a direct link between wi and wk, or else have
only two words.
It is useful to note that the analysis of a span always takes one of three forms; Figure 1b illustrates the first

two (labeled “yes”). In the first case, the endwords wi and wj are not yet connected to each other: that is, the
path between them in the final parse tree will involve words outside the span. Then the span consists of two
“half-constituents”—wi with all its right descendants, followed by wj with all its left descendants. wi and wj

both need parents. In the second case, wj is a descendant of wi via a chain of one or more leftward links within
the span itself; then the span consists of wi and all its right descendants to the left of wj (inclusive), and only
wi still needs a parent. The third case is the mirror image of the second. (It is impossible for both wi and wj

to both have parents inside the span: for then some word interior to the span would need a parent outside it.)
The signature of a span does not have to state anything about the internal analysis except which of these

three cases holds—i.e., which of wi, wj need parents. This is needed so that the parser knows when it is able to
add a link from i or j to a more distant word after concatenation, without creating multiple parents or otherwise
jeopardizing the form of the dependency parse. To determine the allowability of the dependent introduced by
such a new link, or the weight associated with it, the signature of a span from wi to wj must also include the
states of the automata rwi

and ℓwj
.

We can now understand the actual algorithm. It is convenient to slightly alter the definition of Ci,j , so that
it stores the best analysis (as a span) of WiWi+1 . . .Wj .

7 We may represent an analysis of a span as a tuple
(linktype, a, b), where linktype specifies the label (∈M) and direction of the link, if any, between the leftmost
and rightmost words of the span, and where a and b point to the narrower spans that were concatenated to
obtain this one. If the span is only two words wide, then we represent an analysis of it as (linktype, w1, w2) so
that the analysis specifies the words it has chosen from the confusion set.
As usual, the analyses we discover in a cell of the chart are organized into competitions or subcells by their

signatures. The signature of an analysis has the form (L?, R?, wL, wR, sr, sℓ, simple?). Here L? and R? are
boolean variables stating whether the leftmost and rightmost words have parents in the span. wL and wR are
the leftmost and rightmost words of the span (as chosen from the appropriate confusion sets). sr is the state

6[Lafferty et al. 1992] give a related decomposition for the case of link grammar, and use it to construct an O(n3) top-down
parsing algorithm. The bilexical parsing algorithm could be adapted to the case of link grammars, in which case it would resemble
a bottom-up version of the independent algorithm of [Lafferty et al. 1992].

7Why not start with Wi+1 as in §4.1? Because the spans we concatenate, unlike constituents that we concatenate, overlap in
one word.

of the leftmost word’s right-dependent automaton rwL
after the automaton has read all the leftmost word’s

dependents within the span, and sℓ is similarly the state of the rightmost word’s left-dependent automaton ℓwR
.

Finally, simple? is true just if the span is simple, as defined above; we use this to prevent ourselves from finding
the same analysis in multiple ways.

1. for i := 1 to n

2. foreach wi ∈Wi, wi+1 ∈Wi+1 such that wiwi+1 is not an excluded bigram, where Wn+1 = {root}
3. foreach linktype ∈ ({←,→}×M) ∪ {none}
4. Discover(i, i+ 1, (linktype, wi, wi+1)) (* seed with two-word spans *)

5. for width := 3 to n+ 1
6. for start := 1 to (n+ 1)− width

7. end := start+ width

8. for mid := start+ 1 to end− 1
9. foreach partial analysis a in Cstart,mid (* i.e., a is each Cstart,mid[s] that is defined *)

10. if sig(a).simple? (* where sig(a) is just s from comment above; don’t recompute it *)

11. foreach partial analysis b in Cmid,end such that sig(b).wL = sig(a).wR

(* so a, b agree on sense of overlapping word *)

12. if (sig(a).R? xor sig(b).L?) (* overlapping word gets exactly one parent *)

13. Discover(start, end, (none, a, b)) (* version without a covering link *)

14. if not (sig(a).L? or sig(b).R?) (* prevents multiple parents, link cycles *)

15. foreach linktype ∈ {←,→}×M

16. Discover(start, end, (linktype, a, b))
17. foreach partial analysis a in C0,n+1

18. if sig(a).L? (* so a is a connected tree rooted at ROOT *)

19. then print a

Computing the signatures is fairly straightforward. For example, if linktype is rightward in line 16 (making
wstart a dependent of wend), then the new analysis (linktype, a, b) has the signature

(true, false, sig(a).wL, sig(b).wR, sig(a).sr, δ(sig(b).sℓ, sig(a).wL),true)

Computing weights of analyses is also fairly straightforward. In the above example, (linktype, a, b) has weight

weight(a) + weight(b) + arcweight(sig(b).sℓ, sig(a).wL) + stopweight(sig(a).sℓ) + stopweight(sig(b).sr)

Note the use of the final-state weights, stopweight, to reflect the fact that the overlapping word wmid (see
line 11) can no longer get new children once it is hidden in the interior of the span.8 For a two-word span
(linktype, wi, wi+1) with rightward link, as created in line 4, the weight is arcweight(wi+1.start, wi) plus the
weight of wi (only!) in its confusion set.
The algorithm requires O(n2S) space for the chart, where S is the maximum number of signatures per cell.

The running time is again dominated by the six nested loops. It is O(n3 · S2 · |M |). Given the definition of
signatures, S = O(g2t2); that is, it is bounded by a constant times (max size of confusion set)2 times (max states
per automaton)2. (Crucially, there are only g choices for each of wL and wR.) Thus, the grammar constant S
is typically small.
With careful coding it is possible to improve the runtime somewhat, from O(n3g4t4|M |) to O(n3g3t2m).

Perhaps only some link types are possible in line 15, so |M | can be replaced by m. We can save a factor of g at
line 11, because the restriction on sig(b).wL means that we only need to iterate through S/g of the signatures.
Finally, we can reduce S to just O(g2t), which helps both time and space complexity. Instead of Discover()
using a single chart to maintain the best analysis with signature (L?, R?, wL, wR, sr, sℓ, simple?), it will use two
charts to maintain, respectively, the best analyses with signatures (L?, R?, wL, wR, sr,halted, simple?) and
(L?, R?, wL, wR,halted, sℓ, simple?). Each of these two analyses has already had one stopweight added to its
weight. The algorithm should now be modified to select a from the first chart and b from the second chart.

5 Conclusions

This paper has introduced a new formalism, weighted bilexical grammars, in which individual lexical items can
have idiosyncratic selectional influences on each other. Such “bilexicalism” has been a theme of much current

8In the case where start = 0, also add stopweight(sig(b).sℓ); if end = n+ 1, also add stopweight(sig(a).sr).

work. The new formalism can be used to describe bilexical approaches to both dependency and phrase-structure
grammars, and its scoring approach is compatible with a wide variety of probability models.
The obvious parsing algorithm for bilexical grammars (used by most authors) takes time Θ(n5). A more

efficient O(n3) method is exhibited. The new algorithm has been implemented and used in a large parsing
experiment [Eisner 1996b].

References

[Alshawi 1996] Hiyan Alshawi. Head automata for speech translation. Proceedings of the fourth International
Conference on Spoken Language Processing, Philadelphia. cmp-lg/9607006.

[Charniak 1995] Eugene Charniak. Parsing with context-free grammars and word statistics. Technical Report
CS-95-28, Dept. of Computer Science, Brown Univ.

[Church 1988] Kenneth W. Church. A stochastic parts program and noun phrase parser for unrestricted text.
In Proceedings of the 2nd Conf. on Applied NLP, 136–148, Austin, TX.

[Collins 1996] Michael J. Collins. A new statistical parser based on bigram lexical dependencies. Proceedings
of the 34th Annual ACL, Santa Cruz, July, 184–191. cmp-lg/9605012.

[Collins 1997] Michael J. Collins. Three generative, lexicalised models for statistical parsing. Proceedings of the
35th ACL and 8th European ACL, Madrid, July. cmp-lg/9706022.

[Earley 1970] Earley, J. An Efficient Context-Free Parsing Algorithm. Communications of the ACM 13(2):
94-102.

[Eisner 1996a] Jason M. Eisner. Three new probabilistic models for dependency parsing: an exploration. Pro-
ceedings of COLING-96, Copenhagen, August, 340–345. cmp-lg/9706003.

[Eisner 1996b] Jason M. Eisner. An empirical comparison of probability models for dependency grammar.
Technical Report IRCS-96-11, IRCS, University of Pennsylvania. cmp-lg/9706004.

[Gaifman 1965] H. Gaifman. Dependency systems and phrase structure systems. Information and Control 8,
304–337.

[Graham et al. 1980] Graham, S.L., Harrison, M.A. and Ruzzo, W.L. An Improved Context-Free Recognizer.
ACM Transactions on Prog. Languages and Systems 2(3):415-463.

[Lafferty et al. 1992] John Lafferty, Daniel Sleator, and Davy Temperley. Grammatical trigrams: A probabilistic
model of link grammar. In Proc. of the AAAI Conf. on Probabilistic Approaches to Natural Language, October.

[Mel’čuk1988] Igor A. Mel’čuk. Dependency Syntax: Theory and Practice. State University of New York Press.

[Milward 1994] David Milward. Dynamic dependency grammar. Linguistics and Philosophy 17: 561–605.
Netherlands: Kluwer.

[Pollard & Sag 1994] Carl Pollard & Ivan Sag. Head-Driven Phrase Structure Grammar. University of Chicago
Press.

[Resnik 1993] Selection and Information: A Class-Based Approach to Lexical Relationships. Ph.D. dissertation
(Technical Report IRCS-93-42), University of Pennsylvania.

[Schabes et al. 1988] Yves Schabes, Anne Abeillé, & Aravind Joshi. Parsing strategies with ‘lexicalized’ gram-
mars: Application to Tree Adjoining Grammars. Proceedings of COLING-88, Budapest, August.

[Wu 1995] Dekai Wu. An algorithm for simultaneously bracketing parallel texts by aligning words. Proceedings
of ACL-95, MIT.

