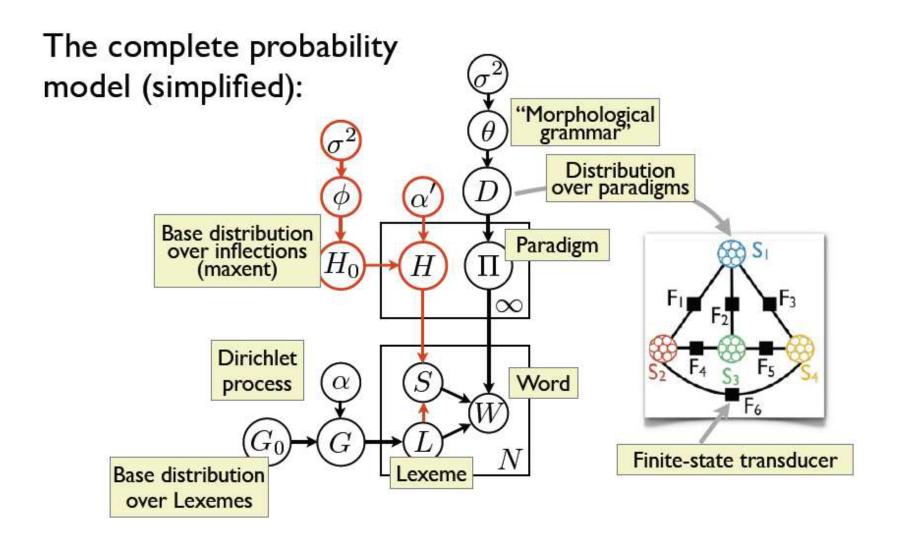
Deep Learning of **Recursive** Structure: Grammar Induction

Jason Eisner
Johns Hopkins University
ICLR 2013

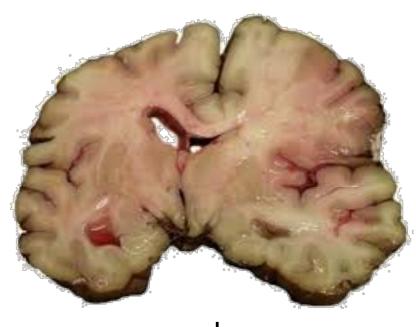
With Henry Pao. Thanks also to Darcey Riley, Matt Gormley, Michael Tontchev.

Representation learning?



Representation learning?

Representation learning!



very deep

Representation learning!

When I saw deep belief networks in 2006, I wondered:

"Could greedily trained overcomplete representations help in grammar induction?"

In this talk, I'll explain why this might help and suggest a possible architecture.

You'll see the usual ideas ...

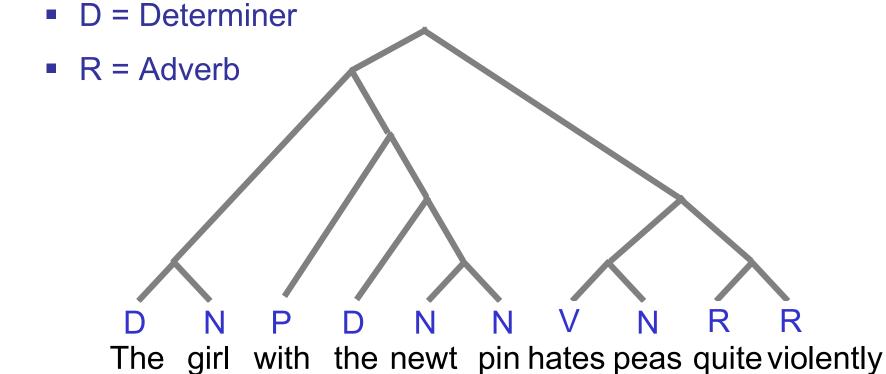
- autoencoders, bottlenecks
- convolutional parameters
- sum-product networks
- stacked training
- feature dictionaries
- word embeddings
- gradient dilution
- supervised fine-tuning

... but they'll look different

- autoencoders, bottlenecks
- convolutional parameters
- sum-product networks
- stacked training
- feature dictionaries
- word embeddings
- gradient dílution
- supervised fine-tuning

Tree structure

- N = Noun
- V = Verb
- P = Preposition

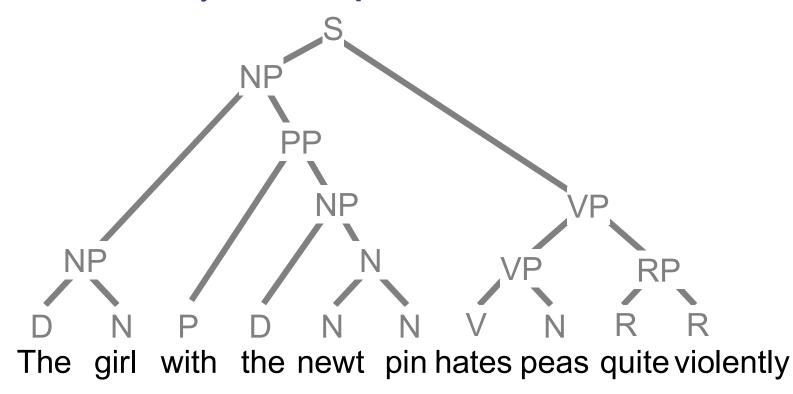


Tree structure

■ NP = Noun phrase N = NounV = VerbVP = Verb phrase P = Preposition PP = Prepositional phrase D = Determiner S = Sentence R = Adverb NP PP NP NP with the newt pin hates peas quite violently

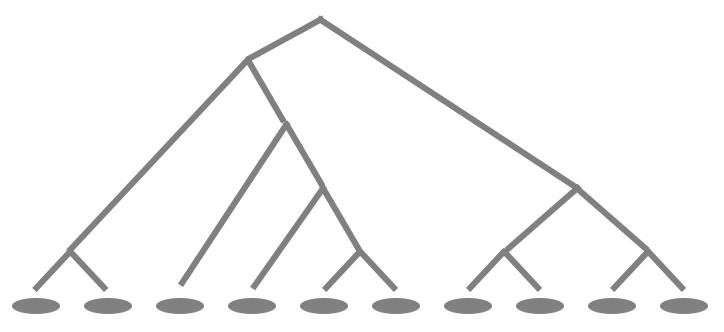
Parsing

- Finding these phrases is analogous to object detection.
 - Humans can do it.
 - The phrases help with tasks: translation, question answering, etc.
- We can do okay with a supervised model.



Grammar Induction

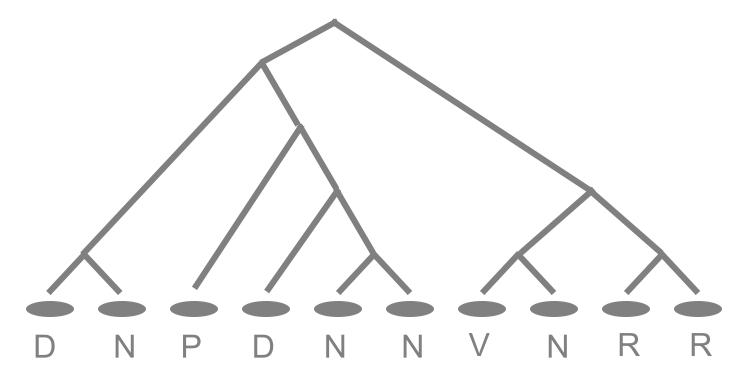
- Grammar induction is the unsupervised case.
- Given a corpus of sentences, can we find reasonable trees?
- Most people cheat: Our input is part-of-speech sequences.



The girl with the newt pin hates peas quite violently

Grammar Induction

- Grammar induction is the unsupervised case.
- Given a corpus of sentences, can we find reasonable trees?
- Most people cheat: Our input is part-of-speech sequences.
 - Less work to do: <u>start</u> with helpful low-dim word representations.

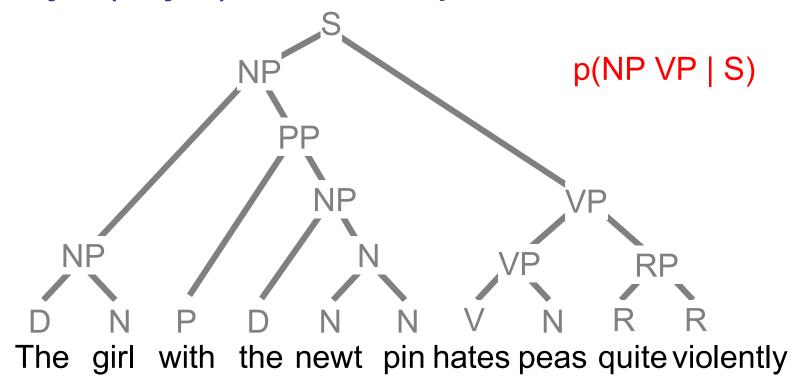


Grammar Induction

- Even then, current methods don't "really" work.
- Measure directed dependency accuracy.
 - What fraction of the words correctly identify which (single) other word they're modifying?
 - Currently 1/3 to 2/3, depending on language.
 - (English is around 1/2.)
 - And that's only on sentences of length 10 ...
- We need more magic.
 - Caveat: We're measuring agreement with linguists' conventions. To the extent that those conventions are arbitrary, a bit of supervised fine-tuning might help (Smith & Eisner 2009). Or we could evaluate on a downstream task.

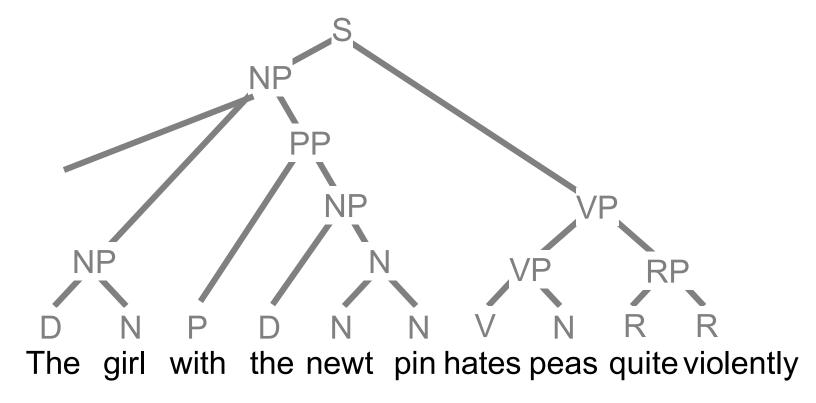
Generative Story: PCFG

- Given a set of symbols (phrase types)
- Start with S at the root
- Each symbol randomly generates 2 child symbols, or 1 word
- Our job (maybe): Learn these probabilities

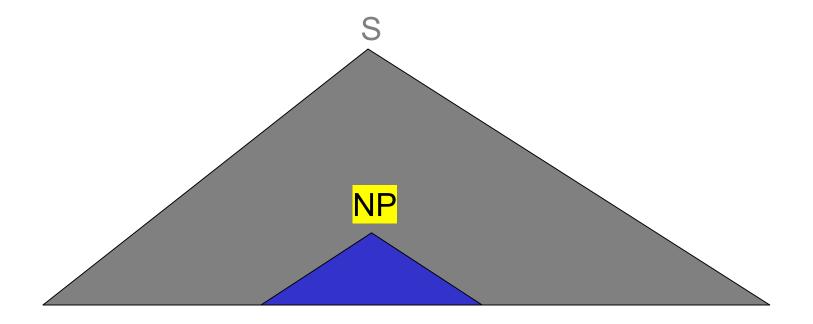


Context-Freeness of Model

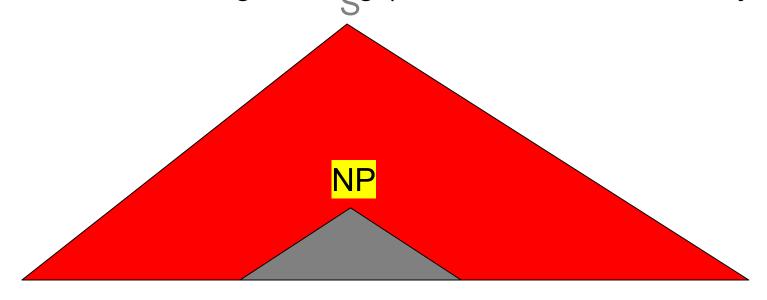
- In a PCFG, the string generated under NP doesn't depend on the context of the NP.
- All NPs are interchangeable.



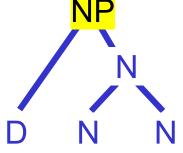
This NP is good because the "inside" string looks like a NP



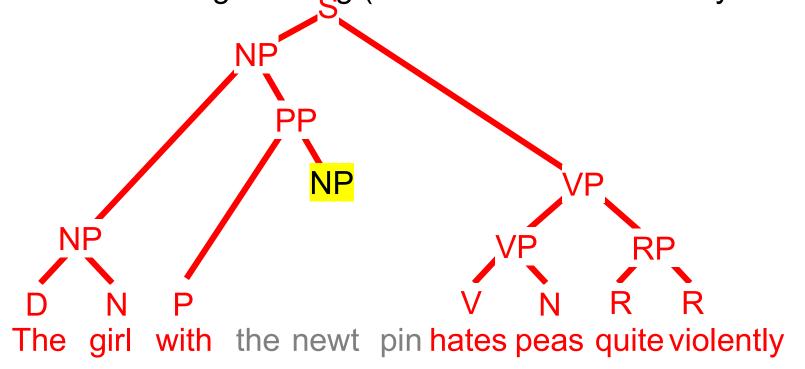
- This NP is good because the "inside" string looks like a NP
- and because the "outside" context looks like it expects a NP.
- These work together in global inference, and could help train each other during learning (cf. Cucerzan & Yarowsky 2002).



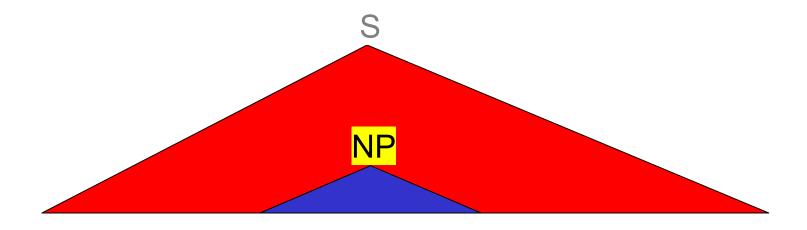
- This NP is good because the "inside" string looks like a NP
- and because the "outside" context looks like it expects a NP.
- These work together in global inference, and could help train each other during learning (cf. Cucerzan & Yarowsky 2002).



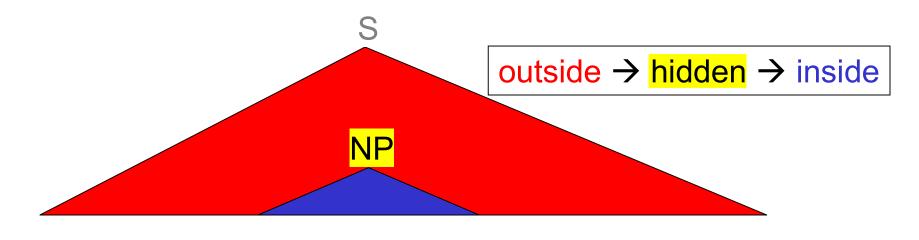
- This NP is good because the "inside" string looks like a NP
- and because the "outside" context looks like it expects a NP.
- These work together in global inference, and could help train each other during learning (cf. Cucerzan & Yarowsky 2002).



- Inside & outside strings are conditionally independent given the nonterminal symbol.
- Could build a network that maps outside → hidden → inside and use the hidden representation as the symbol.
 - If PCFG assumption is right, a 1-of-k hidden layer would be enough.



- We can't easily do this between unbounded strings.
 - We need to abstract out features of the input and the output.
- Possible strategy is a bit like Alan Yuille's talk yesterday ...



- Possible strategy is a bit like Alan Yuille's talk yesterday ...
- First learn representations for 1-word phrases given surrounding words

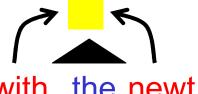
"level 0"

outside → hidden → inside

- Possible strategy is a bit like Alan Yuille's talk yesterday ...
- First learn representations for 1-word phrases given surrounding words

"level 0"

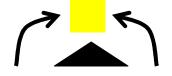
outside → hidden → inside



- Possible strategy is a bit like Alan Yuille's talk yesterday ...
- First learn representations for 1-word phrases given surrounding words

"level 0"

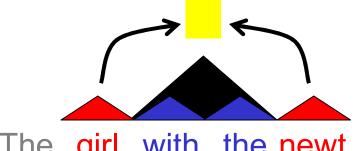
outside → hidden → inside



- Possible strategy is a bit like Alan Yuille's talk yesterday ...
- First learn representations for 1-word phrases given surrounding words
- Now learn representations for pairs of adjacent phrases given surrounding phrases
 (using only phrases for which we've already learned representations)

"level 1"

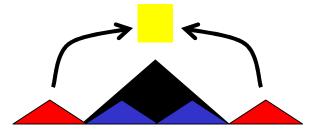
outside → hidden → inside



- Possible strategy is a bit like Alan Yuille's talk yesterday ...
- First learn representations for 1-word phrases given surrounding words
- Now learn representations for pairs of adjacent phrases given surrounding phrases
 (using only phrases for which we've already learned representations)

"level 1"

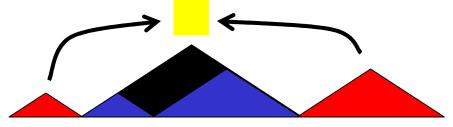
outside → hidden → inside



- Possible strategy is a bit like Alan Yuille's talk yesterday ...
- First learn representations for 1-word phrases given surrounding words
- Now learn representations for pairs of adjacent phrases given surrounding phrases
 (using only phrases for which we've already learned representations)

"level 2"

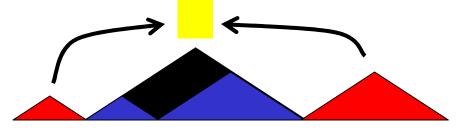
outside → hidden → inside



Problems with Bottleneck Idea

- Relationship between inside and outside isn't linear (CCA not good enough)
 - It's not a neural net either.
 - It's actually a PCFG we "know" the structure!
 - Note: A PCFG = a sum-product network (Poon & Domingos 2011)

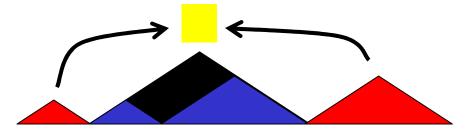
outside → hidden → inside



Problems with Bottleneck Idea

- 2. We also learn representations for nonconstituents like "newt pin hates."
 - Maybe that's good: if we let 1000 flowers bloom, at least we won't miss the good stuff.
 - But how do we put the pieces back together?
 - (Maybe there are ways: cf. Socher et al. 2011.)

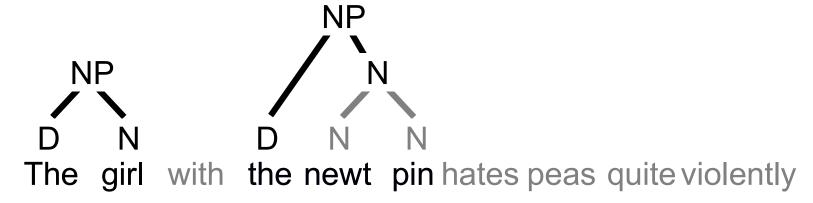
outside → hidden → inside



Problems with Bottleneck Idea

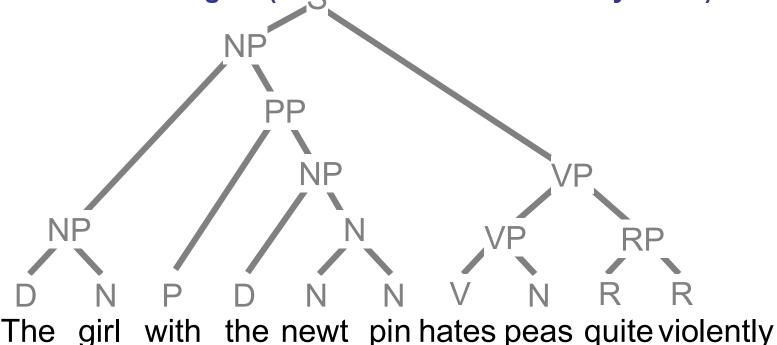
- 3. "The girl" was learned at level 2, but "the newt pin" was learned separately at level 3.
 - These levels learn separate parameters.
 - So different representations, even though both have the same top-level structure and are interchangeable.
 - Oops!

outside → hidden → inside



Convolutional Parameter Tying

- Conclusion: Depth of network doesn't map onto to depth of tree.
- Low levels of tree are just as important as high levels for evaluation and supervised tasks.
- We want to share parameters between low and high, not merely between left and right. (That's what a PCFG already does.)



Second Idea: Global Training

- Just use a fixed PCFG throughout (one that allows anything to rewrite as anything).
- Adjust its parameters to optimize likelihood.

- Fundamental tool: inside-outside algorithm.
 - Baker 1979
 - This is an ingredient in almost anything!

Inside-Outside Algorithm

- Under a PCFG, with T=tree, S=sentence,
 p(T|S) = (1/Z(S)) exp (∮ · features(T,S))
- The inside algorithm computes Z by dynamic programming in O(n³) time, provided that the features are rule-local.
- The outside algorithm is just backprop to compute ∇Z in $O(n^3)$ time.
- Because the model has exponential form, $\nabla Z / Z = \nabla \log Z$ gives the expected features of the tree given the sentence.
 - Use this to get the expected count of each rule [at each position].
 - Can use that for EM (or just do gradient ascent).

Inside-Outside Algorithm

- Seems like this should work!
- But it doesn't.
 - (Lari & Young 1990; Merialdo 1994 had trouble even for the special case of HMMs)
- Space is riddled with local maxima, nearly all of them bad.
- Algorithms quickly discover superficial phrases like "of the," and then never let go.

- 1. Modify the objective function to make it easier to optimize.
 - Klein & Manning 2002: constituent-context model
 - Spitkovsky et al. 2012: dependency-and-boundary models
 - Gimpel & Smith 2012: convex objective
 - (and others)

2. More effective search, usually via search bias

- Klein & Manning 2002: initializers
- Smith & Eisner 2004: deterministic annealing
- Spitkovsky et al. 2009, 2010, 2012:
 "baby steps," fragments
- Spitkovsky et al. 2011: lateen EM
- Gormley & Eisner 2013: global branch-and-bound

3. Incorporate linguistic knowledge into objective

- Headden et al. 2009: richer generative model
- Naseem et al. 2010, Druck et al. 2009: constrain to be consistent with "universal" grammar (see also Marecek and Zabokrtsky 2011)
- Gillenwater et al. 2010: posterior regularization for sparsity (see also Ravi & Knight 2009)
- Cohen & Smith 2010: hierarchical prior on parameters
- Spitkovsky et al. 2010, 2011, 2012: pay attention to punctuation, capitalization, hypertext markup
- Pate & Goldwater 2013: pay attention to acoustics

4. Multi-task learning or co-training

- Klein & Manning 2002: constituent-context model
- Berg-Kirkpatrick & Klein 2010: phylogenetic grammar induction
- Cohen et al. 2001: multilingual grammar induction

5. Change the objective function to mitigate model misspecification

- Smith & Eisner 2005: contrastive estimation
- Asks "Why is likelihood poorly correlated with parse accuracy?"

6. Spectral methods

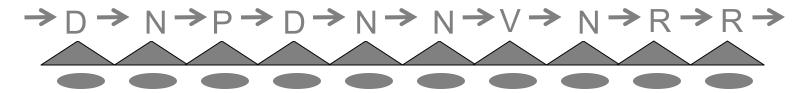
But so far, these assume the tree structure is known

- Summary: A pile of tricks that we hope can help solve the intractable problems that humans solve. (See Cohen 2011, Hsu & Liang 2012.)
- Just like in deep learning!

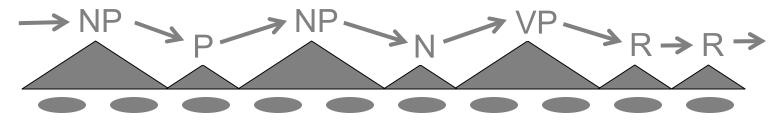
 Keep the PCFG maximum likelihood objective, but impose a search bias.

- Let's again work upward from the bottom, but now get a global solution at each step by parsing.
 - This idea is a variant of one of the "structural annealing" techniques of Smith & Eisner 2006.

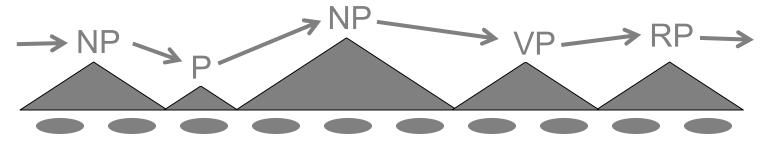
- Instead of one tree, cover sentence with a sequence of trees.
- Explain the root sequence with a bigram (Markov) model.
- Start by encouraging long sequences.
- As EM proceeds, gradually encourage shorter.



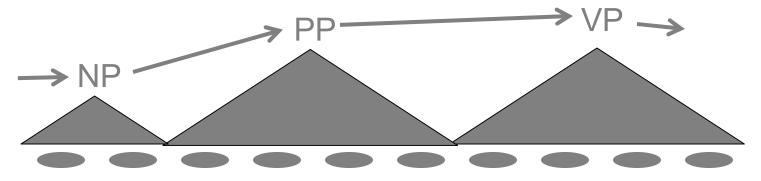
- Instead of one tree, cover sentence with a sequence of trees.
- Explain the root sequence with a bigram (Markov) model.
- Start by encouraging long sequences.
- As EM proceeds, gradually encourage shorter.



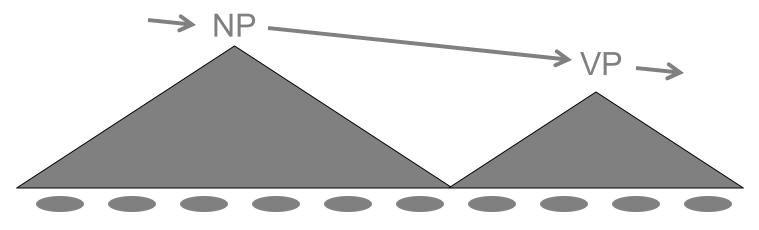
- Instead of one tree, cover sentence with a sequence of trees.
- Explain the root sequence with a bigram (Markov) model.
- Start by encouraging long sequences.
- As EM proceeds, gradually encourage shorter.



- Instead of one tree, cover sentence with a sequence of trees.
- Explain the root sequence with a bigram (Markov) model.
- Start by encouraging long sequences.
- As EM proceeds, gradually encourage shorter.



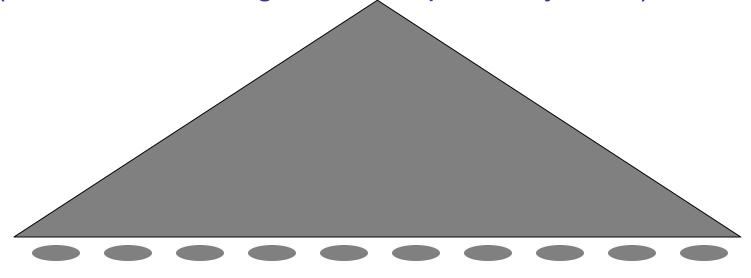
- Instead of one tree, cover sentence with a sequence of trees.
- Explain the root sequence with a bigram (Markov) model.
- Start by encouraging long sequences.
- As EM proceeds, gradually encourage shorter.



The girl with the newt pin hates peas quite violently

- Instead of one tree, cover sentence with a sequence of trees.
- Explain the root sequence with a bigram (Markov) model.
- Start by encouraging long sequences.
- As EM proceeds, gradually encourage shorter.
- In other words, find local structure first.
- Standard inside-outside can be easily adapted to work with this distribution (tree sequence) instead of a standard PCFG.

- In other words, find local structure first.
- Sort of like layer-wise training, but now, once you learn a rule, you can use it at all levels.
- Can anneal the distribution to avoid gradient dilution (cf. Gens & Domingos 2012, Spitkovsky 2012)



- Firth 1957: "You shall know a word by the company it keeps."
- Our previous bottleneck model was circular, because it predicts each word from its neighbors, which are also words.
- But you can think of this as a "restricted" auto-encoder where the sentence is used to generate itself.
- And it's reminiscent of successful work on word embeddings (see review in Turian et al. 2010, and later work e.g. by Dhillon et al.)

"level 0"

outside → hidden → inside

phrase

- Firth 1957: "You shall know a word by the company it keeps."
- Brill & Marcus 1992: If tag X appears in the same word contexts as tag sequence Y Z, then maybe Y Z is a phrase of the same type as X.
 - So add rule X → Y Z.
 - ProperNoun → Determiner Noun
 - Noun → Adjective Noun

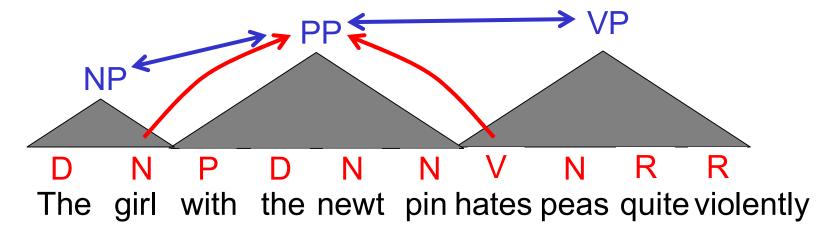
(Mary vs. the girl)

(girl vs. tall girl) (recursive!)

"level 0"

outside → hidden → inside

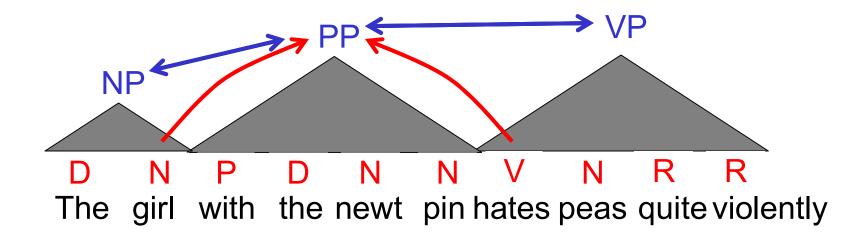
- Back to bottom-up approach. Modify the root sequence model so that the sequence is now conditioned on context.
 - Globally normalized log-linear model of root sequence
 p(₀NP₂ ₂PP₆ ₆VP₁₀ | red stuff) [like a semi-Markov CRF]
 - The features of this example sequence make it probable
 - Happy root bigrams NP PP and PP VP
 - The PP covers positions 2-6, so is happily surrounded by N, V



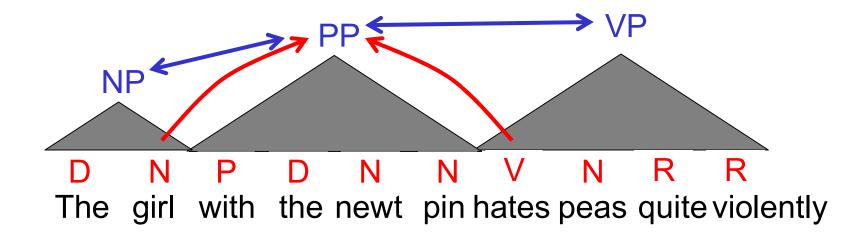
 Full likelihood of sentence sums over all root sequences, with probabilities from log-linear parameters θ.

```
p(_0w_{10}) = a \text{ sum over many explanations like}
p_{\theta}(_0NP_2 _2PP_6 _6VP_{10} | \text{red stuff})
\cdot p_{G}(_0w_2 | NP) \cdot p_{G}(_2w_6 | PP) \cdot p_{G}(_6w_{10} | VP)
```

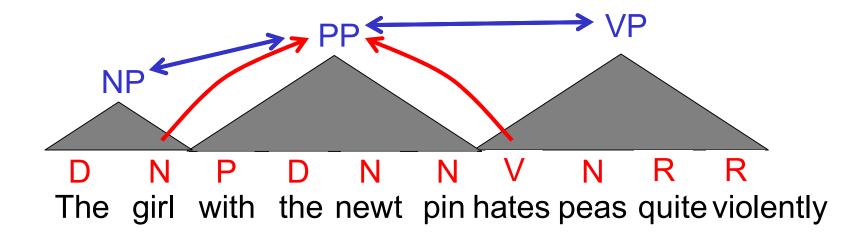
where p_G denotes the PCFG and sums over many trees.



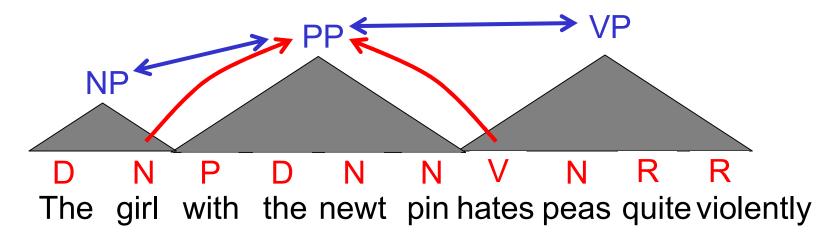
- We jointly learn the model θ of the root sequence and the model G of each tree given its root. Training is still tractable!
 - Gradient is a difference of 2 expected feature vectors.
 - One sums over explanations of this sentence.
 - Other sums over explanations of any sentence (given red stuff).
 - Tractable because $p_G(\cdot \mid PP) = 1$ because G is a PCFG, and red stuff allows us to sum over all root sequences by dynamic programming.



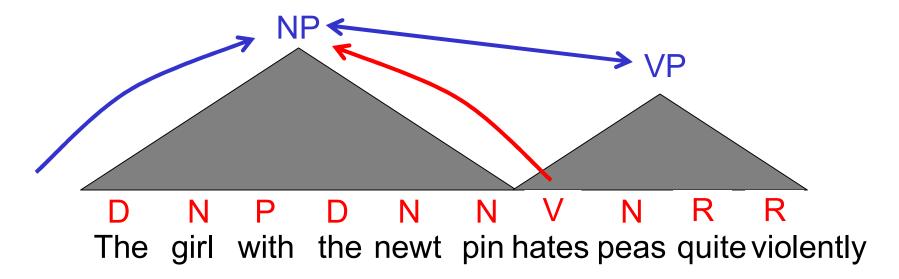
- We jointly learn the model θ of the root sequence and the model G of each tree given its root. Training is still tractable!
 - Gradient is a difference of 2 expected feature vectors.
 - One sums over explanations of this sentence.
 - Other sums over explanations of any sentence (given red stuff).
 - Tractable because $p_G(\cdot \mid PP) = 1$ because G is a PCFG, and red stuff allows us to sum over all root sequences by dynamic programming.



- It's still a circular model: each phrase must be generated after the surrounding phrases that provide its context.
- But we still have the auto-encoder excuse: red stuff is like an ambient field that favors certain root sequences.
- And since a root only looks at context outside itself, this context goes away as we anneal toward a single tree.
 At the end of the day, we have a pure CFG!



- It's still a circular model: each phrase must be generated after the surrounding phrases that provide its context.
- But we still have the auto-encoder excuse: red stuff is like an ambient field that favors certain root sequences.
- And if a root only looks at context <u>outside</u> itself, this context goes away as we anneal toward a single tree.



- It's still a circular model: each phrase must be generated after the surrounding phrases that provide its context.
- But we still have the auto-encoder excuse: red stuff is like an ambient field that favors certain root sequences.
- And if a root only looks at context <u>outside</u> itself, this context goes away as we neal toward a single tree.

at the end, whole sentence is generated by pure CFG; no circularity left

D N P D N N V N R R
The girl with the newt pin hates peas quite violently

Fifth Idea: Stacking

- One thing that the above methods have in common is that they're all local search methods.
 Could prematurely commit to local optima.
- Also, as in bottleneck idea, we'd like to use better and better features as we proceed in training. Why limit ourselves to the contextual tags when we could use phrases?
- So let's put the "deep" back into "deep learning"!

Fifth Idea: Stacking

- Put the "deep" back into "deep learning"!
- Run the learner several times. On each run, take at least one snapshot of <u>that</u> learned grammar.
- These snapshots give additional context features!
 - More "red stuff" to sharpen our root sequence model.
 - We don't know if there's an NP immediately to the left: but we know that grammar #2 thought there was an 80% posterior chance of one, and that's a feature.
- (cf. Christodoulopoulos et al. 2011, who iterate tag induction and dependency grammar induction)

Sixth Idea: Vector-Valued Nonterminals

- Linguists know we need richer symbols!
- And so do we: PCFG generates badly.
- All of the foregoing could be applied to a PCFG-like formalism where the symbols are vectors and the grammar is a CRF that models p(2 children | 1 parent).
- But we haven't implemented it yet.
 - Requires variational approximation.

Summary

- Deep learning in grammar induction doesn't correspond to the depth in the tree.
 - Convolution is "two-dimensional."
- It might correspond to iterated learning.
- Context is important, at least during learning.
- But at the end of the day, we need the tree structure to be largely responsible for the words.
 - That's the only reason we'll learn a good tree structure.
 - Annealing away the effect of context is one solution.