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is paper we present some experiments on the use of a probabilistic model to tag English text, r

0 assign to each word the correct tag ( part of speech) in the context of the sentence. The main

Ity of these experiments is the use of untagged text in the training of the model. We have

a simple triclass Markov model and are looking for the best way to estimate the parameters

is model, depending on the kind and amount of training data provided. Two approaches in
lar are compared and combined: = - ' ' '

using text that has been tagged by hand and computing relative frequency counts, |

' uéing text without tags and training the model as a hidden Markov process, - L
according to a Maximum Likelihood principle. '

riments show that the best training is obtained by using as much tagged text as possible. They .
how that Maximum Likelihood training, the procedure that is routinely used to estimate
1 Markov models parameters from training data, will not necessarily improve the tagging
acy. In fact, it will generally degrade this accuracy, except when only a limited amount of
tagged text is available. B ' ’ o

ntroduction

of effort has been devoted in the past to.fhe problem of tagging text, i.e. assigning
ch word the correct tag (part of speech) in the context of the sentence. Two main
vaches have generally been considered: :

rule-based (Klein and Simmons 1963; Brodda 1982; Pault}séen and
Martin 1992; Brill et al. 1990)

probabﬂistit (Bahl and Mercer 1976; Debili 1977; Stolz, Tanmenbaum, and
Carstensen 1965; Marshall 1983; Leech, Garside, and Atwell 1983; '
Derouault and Merialdo 1986; DeRose 1988; Church 1989; Beale 1988;

Marcken 1990; Merialdo 1991; Cutting et al. 1992).

ore recently, some work has been proposed tsing neural networks (Benello,
‘g, and Anderson 1989; Nakamura and Shikano 1989). - : ‘
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Through these different approaches, some‘ common points have emergedi

practice, performance at sentence level is generalfy lower than performance at word

since. all the words have to be tagged correctly for the sentence to be tagged
e For any glven word, only a few tags are p0351ble, a list of which can be

found either in the drctlonary or through a morphologlcal analysts of the

The standard measure used in the literature is performance at word Ievel and tlfus
word

he one considered here.

. When a word has several pos51ble tags, the correct tag can generally be
chosen from the local context, using contextual rules that define the valid
- sequences of tags. These rules may be given priorities so that a Setechon

probabﬂistic formulation of the tagging problem we assume that the alignments
can be made even when several rules apply '

enerated by a probabilistic model according to a probabrhty dlstrrbutron
Tﬁese kinds of considerations fit nic‘ely inside a probabilistic fofrnulation ol (W, T)
problem.(Beale 1985; Garside and Leech 1985), which offers the foﬂowmg advant}

this case, dependmg on the cnterron that we choose for evaluation, the optimal
g procedure is as follows: . ,

g

a sound theoretical framework is provided

- the approximations are clear for evaluation at sentence level, choose the most probable sequence of
tags for the sentence - ‘

the probabilities provide a straightforward way to disambiguate

e probabiliti be estimated automatically from data. | , ¥
the probablhtles can be .es imated auto y ¢(W) - argmax p(T/w) _ argmax (W N
- In this paper we present a partlcular probabﬂlstlc model, the triclass model,
resuIts from expenments involving different ways to estimate its parameters, witt
intention of maximizing the ability of the model to tag text accurately. In pa
we are interested in a way to make the best use of untagged text i in the trammg
model. :

~ We call this procedure Viterbi taggmg Itis achieved using a dynamic
j programmmg scheme. ‘ '

for evaluation at word. Ievel choose the most probable tag f’or each word -
. in the sentence I

2. The Problem of Taggmg ¢(W)I _ argitnax s — t/w) _ argltnax Z W)
We suppose that the user has defined a set of tags (attached to words). Cons : » .
sentence W = wyw,...w,, and a’ sequence of tags T = tify. . .t,, of the same ]
We call the pair (W, T) an ulzgnment We say that word w, has been assrgned the
in this alignment.
We assume that the tags have some Imgurstlc meanmg for the user, so that
all possible alignments for a sentence there is a smgle one that is correct f
grammatical point of view. :
A tagging procedure is a procedure ¢ that selects a sequence of tags (and so
an alignment) for each sentence.

Titi=t

. where ¢( W); is the tag assrgned to word w; by the tagging procedure ¢
in the context of the sentence W. We call this procedure Maximum )
! ’leehhood (ML) tagging. ' -

s mterestmg to note that the most commonly used method is Viterbi taggmg
eRose 1988; Church 1989) although it is not the- ‘optimal method for evaluatlon
d level The reasons for this preference are preso.mab}y that
¢ W __) T = ¢(W) C v - ,Vlterbl taggmg is sxmpler to implement than ML tagging and requrres
_ ‘ v : o ess computation (although they both have the same asymptotic
There are (at least) two measures for the quality of a tagging procedure: omplex1ty ) ,

' ' o ' iterbi tagging provides the best mterpretatlon for the sentence, which is
e _at sentence level linguistically appealing
' ML tagging may produce sequences of tags that are hngulstlcaﬂy

impossible (because the choice of a tag depends on all contexts taken
together). :

perf5(¢) percentage of sentences correctly tagged

e at word level

T, in our experiments, we will show that Viterbi and ML tagging result in very

, pgrfw (¢) = -pereentage of words ‘.correctiy 'tagged performance

T e e e e e e e




" cause of practical limitations. Therefore the models that we construct will or

~ We have the mathematical expression:

F
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Of course, the real tags have not been generated by a probabilistic model ining the Triclass Model »
ever: if they had been, we would not be able to determine this model exactl : g ‘ S : o i
nsider two different types of training: :
approximations of an ideal model that does not exist. It so happens that despite TR ‘ S :
assumptions and approximations, these models are still able to perform reasot Relative Frequency (RF) trainin g o
: well. ‘ ‘ ’ Maximum Likelihood (ML) training which is done via the
4. The Triclass Model orward Ba(?kward (FB) algorithm

elative Frequency Training / C o

e have some tagged text available we can compute the number of times N(w, )
en word. w appears with the tag t, and the number of times N(t;,f,t;) the se-
e (ti,f2,13) appears in this text. We can then estimate the probabilities # and k

p(W, T) = HP,(wi/wltl . w,-_lt,-_lti).p(t,-/wltl cee w,'_1f1'._1)
: L : . uting the relative frequencies of the corresponding events on this data:

=1

The triclass-(or ti-POS [Derouault 1986, o tri-Ggram [Codogno et al. 198

HK) model is based on the following approximations: h,f(tg /h, k) =f (t3 b)) = %‘%—g%’%@l
. . . ) ) i ) : S » B 1,2
~ e The probability of the Eag given the past depends only on the last two - New, 1) .
‘ tags R I . B ky(w/t) =f(w/t) = N(t’).
Cptifwity . wiqtig) = h(ki/tiati_q) : : N

- *  The probability of the word given the past depends only on its tag estimates assign a probability of zero to any sequence of tags that did not

p(wi/wity ... w; 1t 1t;) = k(wi/t;) obability of zero for a sequence creates problems because any alignment that
' . this sequence will get a probability of zero. Therefore, it may happen that,
ome sequences of words, all alignments get a probability of zero and the model
es useless for such sentences. ’ B
0 avoid this, we interpolate these distributions with uniform distributions, i.e.
onsider the interpolated model defined by: - ‘

(the name HK model comes from the nétation chosen for these probabilities).
In order to define the model completely we have to specify the values of all
k probabilities. If Ny is the size of the vocabulary and Ny the number of @iffer
then there are: K ‘ o .
e Np.N;.Nrp vaiugs for the h pr;_c‘;babﬂitiesi . hinter (t3/ ti, k) = Ahy(ts /b, b2) + (1 = A)Humif (t3/11, 12)
¢ Nw.Nr values for the k Probabxhtles. Koo (10/1) = Ny (/1) + (1 - /\)-kun;}‘(W/f)

Also, since all probability distributions have to sum to one, theré: are:
Nr

Kunif (w/t) = number of words that have the tag t

o 1T -
. R . ; - »' L hunif(t3/tlrt2‘),: 'Y
* Nr.Nr equations to constrain the values for the h probabilities - L

¢ Nr equations to constrain the valdes for the k probabilities. -

The total number of free parameters is then: terpolation coefficient ) is comprited using the deleted interpolation algorithm

k and Mercer 1980) (it would also be possible to use two coefficients, one for
terpolation on #, one for the interpolation on k). The value of this coefficient
ected to increase if we increase the size of the traiﬁjng text, since the rela-

(Nw = 1).Nr + (N7 — 1).Nr.Nr.

Note that this number grows only linearly with respect to the size of the voca
which makes this model attractive for vocabularies of a very large size.
~ The triclass model by itself allows any word to have any tag. However, i
have a dictionary that specifies the list of possible tags for each word, we can use
information to constrain the model: if f is not a valid tag for the word w, then wi
sure that ’ o ‘

thing.”. .
oothing is performed as follows:

Some quantity of fag.ged tex,f from the training data is not used in the

k(w/t) = 0. computation of the relative frequencies. It is gaHed,the “held-out” data.

There are thus at most as, many nonzero values for the k probabilities as th
possible pairs {word, tag) allowed in the dictionary.

The coefficient ) is ‘chosen to -makimi_ze the probability of emission of ‘the ,
held-out data by the interpolated model. A

in the training data. But such sequences may occur if we consider other texts. -

equencies should be more reliable. This interpolation procedure is also called ’
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- , (FB) or Baum-Welch algorithm (Baum and Eagon 1967; Jelinek 1976;
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7. Experirhe_n't‘s

' The main objective of this paper is to compare RF and ML training. This

-
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e This maximization can be performed by the standard Forward-Backward: :
‘ ‘ Table 1 .
Bahl, Jelinek, and Mercer 1983; Poritz 1988), by considering Aand 1 = X RE training on N sentences, Viterbi tagging,

as the transition probabilities of a Markov model. - .

Training data ' Interpolation -~ Nb of errors - % correct

e ’ . o o v (sentences) coefficient A (words) - tags
It can be noted that more complicated interpolation schemes are possible. ‘ 5 — 15808 T

example, different coefficients can be used depending on the count of '(ti,‘fz), wi v T 100 .o 48 4568 90.0 -

_intuition that relative frequencigs canbe trus__ted‘mo;‘e when this count is hlgh. Ano 3\9":, +2 ‘ gggg _ | gg %;‘112 L gg;

possibilitity is to interpolate also with models of different orders, sgch as hy(fs/ 2l "o 10000 ‘90 1555 ove

hy(ts). : DR ' 2 ' L o 20000 - .92 1419 99
Smoothing can also be achieved with procedures other than interpolation.

all oo 94 1365 970

example is the “backing-off” strategy prqpos.ed by Katz (1987). ‘

5.2 Maximum Likelihood Training _ o y | .
Using a triclass model M it is possible to compute the probability of any sequ

ing any improvement in practice. One concerns the difference between Viterbi
words W according to this model:

tagging, and the other concerns the use of constraints during training.
o ‘ shall begin by describing the textual data that we are using, before presenting

pm(W) = z pm(W,T) erent tagging experiments using these various training and tagging meﬂ'md&
where the sum is taken over all possible alignments. The Maximum ;Li)ke_lihoq , v
- training finds the model M that maximizes the probability of the training text e million words) from the Associated Press. These sentences have been tagged
' g ‘ ' o : S lly at the Unit for Computer Research on the English Language (University of
max [ [ pm(W) et UK., in collaboration with IBM U.K. (Winchester) and the IBM Speech
M W R on group in Yorktown Heights (USA). In fact, these sentences are not only
where the product is taken over all the sentences W in the training text.
problem of training a hidden Markov model (it is hidden because the sequen
is hidden). A well-known solution to this problem is the Porward—B.ackwa;
Baum-Welch algorithm (Baum and Eagon 1967; ].elin’ek 1976; IB‘ahl, Jelinek, an
1983), which iteratively constructs a sequence of modelg that improve the p
of the training data. =~ : ) ‘ oA
The advantage of this approach is that it does not require any tagging of
but makes the assumption that the correct model is the one in which tags.
best predict the word sequence. . o

eebank 159 different tags are used. These tags were projected on a smaller
6 tags designed by Evelyne Tzoukermann and Peter Brown (see Appendix).
ts quoted in this paper all refer to this smaller system. o
a dictionary that indicates the list of possible tags for each word, by
e words that occur in this text and, for each word, all the tags that are
it somewhere in the text. In some sense, this is an optimal dictionary for
ce a word will not have all its possible tags (in the language), but only
it actually had within the text. : ' . '
ated this data into two parts:
6. Tagging Algorithms : , o
. . ’ ‘ of 40,186 tagged sentences, the training data, which is used to build
dels : ' ’ :

t of 2,000‘tagged‘ sentences (45,583 words), the test data,‘ which is
to test the quality of the models. ‘

The Viterbi algorithm is easily implemented using a dynamic programn
(Bellman 1957). The Maximum Likelihood algorithm appears more com
glance, because it involves computing the sum of the probabilities of a lar,
of alignments. However, in the case of a hidden Markov model, the§e c
can be arranged in a way similar to the one used during'the FB algorithm,
overall amount of computation needed becomes linear in the length of
(Baum and Eagon 1967). . ‘ : -

14

periments S '
Viterbi tagging : o :
iment, we extracted N tagged sentences from the training data. We then
_the relative frequencies on these sentences and built a “smoothed” model
procedure previously described. This model was then used to tag the 2,000
ning . We experimented with different values of N, for each of which we
Section 7.2. We also take advantage of the envirt_mment that we have set '
other experiments, described in Section 7.3, that have some theoretical inte;

ed words. Results are indicated in Table 1.~

S ST ~ir e

the “treebank” data‘ described in Beale (1988). It contains 42,186 serntences

ut also parsed. However, we do not use the information contained in the

e value of the interpolation coefficient and the number and percentage of k
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As expected, as the size of the training increases, the mterpolatlon coefficie
creases and the quality of the tagging improves.

When N = 0, the model is made up of uniform dlstnbuhons In this ca!
ahgnments for a sentence are equally probable, so that the choice of the corre
'is just a choice at random. However, the percentage of correct tags is relatively
‘(more than three out of four) because'

. ahnost half of the words of the text have a smgle possible tag, S0 that n
mxstake can be made on these words

s abouta quarter of the words of the text have only two p0551b1e tags so
that, on the average, a random ch01ce is correct every other hme

Note that thls behavior is obviously very dependent on the ‘system of tags thatis

It can be noted that reasonable results are obtained quite rapxdly Usmg
tagged sentences (less than 50,000 words), the tagging error rate is already less
Using 10 times as much data (20,000 tagged sentences) prov1des an improve

only 1.5%.

ML trammg, Vlterbl taggmg
In ML training we take all the trammg data available (40 186 sentences) but‘

use the word sequences, not the associated. tags (except to. compute the initi
as will be described later). This is possible since the FB algonthm is able toh
model using the word sequence only.

In the first experiment we took the model made up of umform dlstnbutl ]
initial one. The- only constraints'in this model came from the values k(w/t) th
set to zero when the tag t was not possible for the word w (as found in the dict
We then ran the FB algorithm and evaluated the quality of the tagging.
are shown in Figure 1. (Perplexity is a smeasure of the average branching

* probabilistic models.)

This figure shows that ML training both improves the perplexaty of the
reduces the tagging error rate. However, this.error rate remains at a relati
level—higher than that obtained with a RF training on 100 tagged sentence

Having shown that ML training is able to improve the uniform mode
wanted to know if it was also able to improve more accurate models. We
took as the initial model each of the models obtained previously by RF tr
for each one, performed ML training using all of the training word seq
results are shown graphically in Figure 2 and numencaﬂy in Table 2.

These results show that, when we use few tagged data, the model o
relative frequency is not very good and Maximum Likelihood training is 2
prove it. However, as the amount of tagged data increases, the models
Relative Frequency are more accurate and Maximum Likelihood training
on the initial iterations only, but after detenorates. 1f we use more than 5,0
sentences, even the first iteration of ML training degrades the tagging.
is of course. dependent on: both the parncular system of tags and the kin
in this experiment).

- These results call for some comments ML training is a theoreticall
cedure, and one that is rou‘anely and successfully used in speech ecOg!

sequences of phonemes an& ‘ sign
to improve perplexzty, perplexity i is fiot necessarﬂy related to
it_ic_nnecihle to tmbprove. one- 4150, in the Casej

Taggmg English Text with a Probabilistic Medel

L —— L 1 £ M 1

20 25
Itexrations

ing from various initial points.

Zﬁmber of tagged sentences. used for the initial model

0~ 100 2000 5000 10000 20000 il

Iter Correct tags (% Words) after ML oniM words . (- v s hﬁﬁ 'G)

0 ;770 {900 ]954 1962 1966 1969 970 & ‘@N’ o = %(’fei |
1 1805 19269958 X963 | 966 |967 968 ' ;
2 1818 {930 7957 [961 |93 |94 |94

3 8307931 {954 [958 | 961 |92 |oen

4 1840 T930 [952 (955 {958 |960 | 960,

51848 |99 951 (954 956 | 958 |o58

6 (853 [928 (949 [952 | 955 | 956 | on7 /

7 | 858 | 928 |947 [951 | 953 | 955 | o055

8 1861 |97 946 950 | 952 | 954 | 954 i f
9 863 1926 {945 |949 | 951 | 953 | 953

10 V866 1926 | 944 950 | 952 |os2

948

S
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) Table 3 S - ‘
Viterbi vs. ML tagging.
16 » Tagging errors out of 45,583 words
Iter. Viterbi . ML - Vit. - ML
| 0 % nb, % nb nb
; 0 9701 135 9701 1362 3 E
. 1 9676 1477 9675 1480 -3 ‘
B 2 96.44 1623 96.47 1607 16
. 3 96.23 1718 96.23 1719 —1
L 4 9600 1824 9602 = 1812 12
-] ‘5 195.82 1906 9585 1892 14
6 95.66 1978 ~ 95.68 1970~ -8
7 95.51 2046 95.54 2031 15
8 9539 2100 95.42 2087 13
9 9530 2144 9531 = 2140 4
10 9521 2183 9522 2177 6
o T . " Table4 ' IR ' ) i
» » feerations S Standard ML vs. tw-constrained ML training, E
- . Tagg'mgb errors out of 45,583 words
Tter. ML  two ML ‘ ’ B
Figure 2 : e ot 0 % nb _» nb
ML trammg from various initial pomts ( top lme corresponds to N=100, bottom line to N—aH 0 5701 55 o T .
v : ; 96.76 1477 96.87 1427
. o . o - 96.44 - 1623 96.71
the relations between words and tags are much more precise than the relatig 3 09623 1718 96.57 ‘ igg;
tween phonemes and speech signals (where the correct correspondence is h 4 96.00 1824 9643 1626
define precisely). Some characteristics of ML training, such as the effect of smo 2 gg 22 ‘ ig(?)g 96.36 - L6l ‘
robabilities, babl re suit d t ech than to ta; - 2629 1690 .
probabilities, are probably mo ed to spe gging. 7 95.51 2046 9622 1723 .
o 8 95.39 2100 " 96.18 1741 2
7.3 Extra Experiments 9 195.30 2144 9612 1768 i
Viterbi versus ML tagging e R T %P il

For this experiment we considered the initial model built by RF trammg overt
 training data and all the successive models created by the iterations of M
. For each of these models we performed Viterbi tagging and ML tagging onit

test data, then evaluated and compared the number of tagging errors prod

these two methods. The results are shown in Table 3.

- The models obtained at different iterations are related, so one should
strong conclusions about the definite superiority of one tagging procedure.
the difference in error rate is very small, and shows that the choice of
procedure is not as cr1t1cal as the kind of training material.

i

xad

if w is frequent, the relative frequency provuies a ?i eshmate for
w) and the training should not change it. Pﬁs’@é‘ (A
:second one keeps the marginal distribution p(t) constant and is A“f sorfrds o

d on a similar reasoning. We call it ¢- constraint. . cf@c T !

-~ Constrained ML trammg '
Following a suggestion made by E Jelinek, we investigated the effect of co;
the ML training by imposing constraints on the probabilities. This idea c
the observation that the amount of training data needed to properly esh
model increases with the number of free parameters of the model. In
little training data, adding reasonable constraints on the shape of the mo
looked for reduces the number of free parameters and shouId improve th
the estimates.

ained ML trammg is similar to the standard ML training, except that the
(t/w) are not changed at the end of an iteration.

in Table 4 show the number of tagging errors when the model is trained
lard or tw-constrained ML training. They show that the tw-constrained
il degrades the RF tranung, but not as quickly as the standard ML. We
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5 Table 5
Standard ML vs. constramed ML training.

My

Taggmg errors out of 45,583 words (biclass model)

Iter. ML tc. ML
0 "% nb - % ‘ : nb
0. 96.87 © 1429 - 96.87 ; 1422 .
1 - 9651 1592 96.54 1571
/2 96.18 - © 1743 » 9623 . v 1718 Wthhever occurs first.
'3 96.00 1824 '96.03 - . 1810
4 - 95.84 1896 = 9590 BT 7
5 95.67 1972 ‘ 95.77 ; ‘ : 1928 .. wledgments
s 9552 2044 2559 : gggz d like to thank Peter Brown Fred
7 2z 2087, 95.23 . 0087 ohn Lafferty, Robert Mercer, Salim
8 233 2129 iy 4 . 2126 and other members of the -
' ‘lgb .24 27 5.3 ' nous Speech Recognition group for

9518 - 219% 3 95.30 _ o 2141 iitful discussions I had with them

ut this work. I also want to thank
the referees for his ]udlmous

have not tested what happens when sma]ler trammg data is used to build the.
model. v » v
t-constraint alit R., and Mercer, Robert L. (1976).
t-constrain

This constraint is more difficult to Jmplement than the prev1ous one because
abilities p(t) are not the parameters of the model, but a combination of these
ters. With the help of R. Polyak we have designed an iterative procedure tha
the likelihood to be improved while preserving the values of p(t). We do no
sufficient space to describe this procedure here. Because of its greater compu
complexﬁy, we have. only apphed it to a biclass model, i. e.a model where

Wwiatisg) = h(f‘/ti—l)'-

The initial model is estimated by relahve frequency on the whole trammg 2
Vlterbl tagging is used.

" As in the previous expenment the results in Table 5 show the number of
errors when the model is trained with the standard or t-constrained ML
They show that the t-constrained ML training still degrades the RF trainin
as quickly as the standard ML. Again, we have not tested what happens when
training data is used to bu1ld the initial model. = - i
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8. Conclusion
The results presented in thls paper show that estlmatmg the parameters of the

the best tagging accuracy.
Maximum Likelihood training is guaranteed to improve perplex1ty, but
necessarily improve tagging accuracy. In our experiments, ML trammg degr
performance unless the initial model is already very bad.
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s get as much tagged (by hand) text as you cén afford

-of speech assignment by a statistical -
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get as much untagged text as you can afford -
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terminer singular (this, that, little, much, former)
eterminer plural (these, few, several, many)
uperlative determiner (least, most)

tential there |

oreign words (ipso, facto)

ition (general) ' » ‘

osition that can also be used as a conjunction (since, after)
preposition for »

e (small, p}'etty) . . » ' ‘ ‘ g -
ative adjective (smaller, prettier) -
tive adjective (prettiest, nicest)
ing coordinator (both, either, neither) ,
al number
number (first, second)
thout number (english) o | | B
| noun (cat,_ mén') }
-noun (cdts, men)
Oper noun (paris, fred)
};dverb of direction (south,-west) or time (now, tomorrow, tﬁesday} ’
i ative pronoun (ndize, anyone, oneself) - : | T

vhom, whoever, whomever
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PNI* mdefxmte pronoun (anyone, unybody) “have as a conjugated form

“prg* possessive pronoun (mine, yours) . Z"‘ has as a conjugated form
PP*O personal pronoun ob)ec’t (e, him) | modals (can, would, ought, used)
PP*S personal pronoun subject (1, you, we) . ' : . non-aux verb in -ing
PP*SS personal pronoun subject 3rd person singular (he she) | * past participial form of non-aux verb
PUNCTI* end of sentence (12-)
PUNCT2* non terminal punetuatlon (, )
QUOT* quote

R* adverb (here, slow[y)

AST* preterit of non-aux verb ,
non-third-PerSBn-smgul&r'form of non-aux verb and infinitivg -

Z* tlﬁrd—person—singu}ér form of non-aux verb

R*Q wh-adverb (where ‘when, why, how, whenever wherever)
R*R comparative adverb (better longer) ‘
RG* degree adverb (zzery, s0, too, enougfh mdeed)
RGQ* wh- -degree adverb (how)
RGR* comparahve degree adverb (more, less worse) ’
- RP* adverb that can also serve as a preposition - .
SIGN* sign (8, c., ct, %)
TO* to as pre-infinitive
UH* interjection (gee)
VBDR* were _ ‘
VBDZ* was
VBG* bbeing -
VBI* inﬁmtlve form of be and 1mperat1ve
VBM* am
VBN?* been
VBR* are
VBZ* is
VDG* doing _
VDN*;past participiai form of dd (did)
VDPAST* past form of do (dzd)
VDO* doasa con}ugated form and infinitive
VDOZ* does as a con]ugated form
VHG* having
VHN* past participial form of have (had)
: .VHI’AST* past form of have (had)




