Instructor
Professor Jason Eisner <jason@cs.jhu.edu>
Office hours: After class in the classroom, or by appointment
Office location: Hackerman 324C, or https://wse.zoom.us/my/jeisner1

Teaching Assistants
Head TA: Zhichu (Brian) Lu <zlu39@jhu.edu>
TA: Li (Leo) Du <ldu10@jhu.edu>
CA: Jingyu (Jack) Zhang <jzhan237@jhu.edu>
CA: Ryunosuke Saito <rsaito1@jhu.edu>
CA: Cihan (Boris) Xiao <cxiao7@jhu.edu>
CA: Ming Zhang <mzhan148@jhu.edu>
CA: Weiting (Steven) Tan <wtan12@jhu.edu>
CA: Xinyuan (Henry) Li <xli257@exchange.johnshopkins.edu>
CA: Don Holloway <dhollo11@jhu.edu>
Office hours: TBA. See the class website, http://cs.jhu.edu/~jason/465.
You can reach all the course staff at once via a private post on Piazza, or via cs465-staff@cs.jhu.edu.

Meetings
Monday 3:00–4:15 pm, Shaffer 303
Tuesday 6:00–7:30 pm, Hodson 210 (recitation)
Wednesday 3:00–4:15 pm, Bloomberg 272
Friday 3:00–4:15 pm, Shaffer 303

This class is in the “flexible time slot” MWF 3-4:30. Please keep the entire slot open. Class will usually end at 4, followed by office hours in the classroom from 4-4:30 (stick around to get your money’s worth!). However, class will sometimes run till 4:15 in order to keep up with the syllabus. I’ll try to give advance notice of these “long classes,” which among other things make up for no-class days when I’m out of town.

We also run a once-per-week recitation led by the prof or the TAs. This session is normally held in the Tuesday slot, and will usually focus on solving problems together. It is meant as an efficient and cooperative way to study for an hour: it reinforces the past week’s class material without adding to your homework load. Thanks to recitation, you won’t be startled by the exam style—the discussion problems are taken from past exams and are generally interesting.
We’ll occasionally ask you to watch some video lessons outside of class. (Similar to a required reading. These video lessons were created during a previous attempt to “flip the classroom” for Covid virtual learning.)

If you miss a lecture, please email <eisner@jhu.edu> to get access to a video recording. Watch it promptly so you can follow subsequent lectures. Lecture recordings are also available for review upon request, and will be made available before each exam.

If you click the CC button, automatically generated closed captions will show up on the video. You can also view the full transcript and use it to navigate to a specific part of the video. (The video lessons have manual captions. The lecture recordings have automatic captions; these aren’t perfect, but they might help you understand my words better.)

Recitations will generally not be recorded, but the materials from recitation are available on the class website.

Textbooks
This course does not follow any textbook. The material is covered by the lectures and videos and the reading handouts that are associated with the homework projects, supplemented by in-class discussion.

However, the following textbooks are at an appropriate level. They are usually a good reference to get another written perspective on the material. The website will suggest optional readings from time to time.

• Dan Jurafsky & James Martin (2020), *Speech and Language Processing* (3rd ed.). A draft of the 3rd edition is online here.
• Jacob Eisenstein (2019), Introduction to Natural Language Processing.
• Brian Roark & Richard Sproat (2007), *Computational Approaches to Morphology and Syntax*.
• Chris Manning & Hinrich Schütze (1999), *Foundations of Statistical Natural Language Processing*. PDFs of the full book and the individual chapters are available via the JHU library at this link.

Online Resources
Everything you need will be linked from the class homepage, http://cs.jhu.edu/~jason/465.

Go there now! Make sure to sign up for the Piazza site, and make sure to watch the assigned lecture videos. (And of course, come to class, do the homeworks, take the exams.)

Course Information

• **Catalog description**: This course is an in-depth overview of techniques for processing human language. How should linguistic structure and meaning be represented? What algorithms can recover them from text? And crucially, how can we build statistical models to choose among the many legal answers?

 The course covers methods for trees (parsing and semantic interpretation), sequences (finite-state transduction such as morphology), and words (sense and phrase induction), with applications to practical engineering tasks such as information retrieval and extraction, text classification, part-of-speech tagging, speech recognition and machine translation. There are a number of structured but challenging programming assignments. [Applications]

• **Prerequisites**
 – Data Structures (601.226)
 – Python
 – Basic familiarity with partial derivatives, matrix multiplication, and probabilities

The class aims to be fairly self-contained and teach you everything else you need, presenting it from an NLP perspective. That includes relevant aspects of automata (600.271), probability (553.420/620
or 553.310/311), and machine learning (601.475/675, 601.482/682, ...). So those courses are not formal prerequisites. That said, it may be helpful to have had prior exposure to those concepts.

- **Elective** (Applications)
Course Goals
This course is designed to introduce you to some of the problems and methods of natural language processing, and their relation to linguistics and statistics. At the end you should agree (I hope!) that language is subtle and interesting; feel some ownership over some of NLP’s formal and statistical techniques; and be able to understand research papers in the field. (Caveat: Understanding recent research papers may sometimes require additional background in machine learning.)

In the end, I hope that NLP, like all good courses, stretches your mind and leaves you with new ways of thinking. Not to mention all this.

Specific Outcomes for this course:

- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems.
- Be able to manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- Be able to design, implement, and analyze NLP algorithms.

This course will address the following CSAB Criterion 3 Student Outcomes. Graduates of the program will have an ability to:

1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline.
3. Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.

Course Topics
Please see the class website for a list of topics and resources: http://cs.jhu.edu/~jason/465.

Course Expectations & Grading
Your work will be weighted as follows (although we are considering a fancier scheme):

- 50% homeworks, equally weighted (see lateness policy)
- 15% midterm exam
- 30% final exam
- ≈ 5% participation

Participation includes your contributions to an interesting and useful class discussion, whether synchronously during class sessions, or via public posts or replies on our Piazza discussion website. This includes asking questions, of course. We’ve found that participation has a substantial effect on the final grade.

Homeworks will be submitted via Gradescope. We expect to have about 7 homework projects, which focus on different skills you’ll need to do NLP:

1. writing linguistic grammars
2. manipulating probability formulas
3. implementing and properly evaluating supervised models
4. designing and implementing combinatorial algorithms
5. working with formal meaning representations
6. training unsupervised neural models for structured prediction
7. constructing models algebraically
We plan to have two exams—a midterm exam and a final exam. These will have some challenging questions. In the recitations, you’ll get to work in small groups to solve interesting problems from past exams.

Since some questions are hard or are graded harshly, we use a curve to pull the grades back up. If your grade was already high in absolute terms, it will stay high (so if everyone gets 100, everyone gets an A+, not a C). Extra credit is added only after the curve is determined. Thus, extra credit is not required to do well, although it can help make up for low grades elsewhere.

Late Homework Policy

Since emergencies sometimes arise, I’ll grant extensions on request, in multiples of 24 hours, up to a total of up to 10 “late days” during the term. The full policy and advice on how to use it are at http://cs.jhu.edu/~jason/465/late-policy.html.

Key Dates

Please see the class website: http://cs.jhu.edu/~jason/465.

Assignments & Readings

Please see the class website: http://cs.jhu.edu/~jason/465.

The material below is standard for CS Department syllabi as of Fall 2022, except for portions in this color.

Ethics

The strength of the university depends on academic and personal integrity. In this course, you must be honest and truthful, abiding by the *Computer Science Academic Integrity Policy*:

Cheating is wrong. Cheating hurts our community by undermining academic integrity, creating mistrust, and fostering unfair competition. The university will punish cheaters with failure on an assignment, failure in a course, permanent transcript notation, suspension, and/or expulsion. Offenses may be reported to medical, law or other professional or graduate schools when a cheater applies.

Violations can include cheating on exams, plagiarism, reuse of assignments without permission, improper use of the Internet and electronic devices, unauthorized collaboration, alteration of graded assignments, forgery and falsification, lying, facilitating academic dishonesty, and unfair competition. Ignorance of these rules is not an excuse.

Academic honesty is required in all work you submit to be graded. Except where the instructor specifies group work, you must solve all homework and programming assignments without the help of others. For example, you must not look at anyone else’s solutions (including program code) to your homework problems. However, you may discuss assignment specifications (not solutions) with others to be sure you understand what is required by the assignment.

If your instructor permits using fragments of source code from outside sources, such as your textbook or on-line resources, you must properly cite the source. Not citing it constitutes plagiarism. Similarly, your group projects must list everyone who participated.

Falsifying program output or results is prohibited.

Your instructor is free to override parts of this policy for particular assignments. To protect yourself: (1) Ask the instructor if you are not sure what is permissible. (2) Seek help
from the instructor, TA or CAs, as you are always encouraged to do, rather than from other students. (3) Cite any questionable sources of help you may have received.

On every exam, you will sign the following pledge: "I agree to complete this exam without unauthorized assistance from any person, materials or device. [Signed and dated]". Your course instructors will let you know where to find copies of old exams, if they are available.

In this class (NLP), some homeworks will indicate that they do allow collaboration. For a collaborative homework, you are expected to do the work together, not divide it up: if you didn’t work on a question, you don’t deserve credit for it! Your solutions should emerge from collaborative discussions with the whole group present (whatever “present” means in online learning).

In this class (NLP), practice exam problems will be provided for you. You should not otherwise make use of homeworks or exams from previous years.

Report any violations you witness to the instructor. You may consult the associate dean of student conduct (or designee) by calling the Office of the Dean of Student Life at 410-516-8208 or via email at <studentconduct@jhu.edu>.

You can find more information about university misconduct policies on the web at these sites:

- For undergraduates: https://studentaffairs.jhu.edu/policies-guidelines/undergrad-ethics/
- For graduate students: https://homewoodgrad.jhu.edu/academics/policies/

Personal Wellbeing

Illness. If you are sick, in particular with an illness that may be contagious, please notify me by email but do not come to class. I will provide you with a video recording of the lecture. We can make additional accommodations should this affect your ability to complete assignments or participate in assessments.

The Student Health and Wellness Center is open and operational for primary care needs. If you would like to speak with a medical provider, please call 410-516-8270, and staff will determine an appropriate course of action. See also https://studentaffairs.jhu.edu/student-life/student-outreach-support/absences-from-class/illness-note-policy/

The Johns Hopkins COVID-19 Call Center (JHCCC), which can be reached at 443-287-8500 seven days a week from 7 a.m. to 7 p.m., supports all JHU students, faculty, and staff experiencing COVID-19 symptoms. Primarily intended for those currently within driving distance of Baltimore, the JHCCC will evaluate your symptoms, order testing if needed, and conduct contact investigation for those affiliates who test positive. More information on the JHCC and testing is on the coronavirus information website.

COVID-19 Policies. Because of the ongoing COVID-19 pandemic special requirements may be in effect this term, and these may vary during the term. Please keep updated with these at the following sites:

- University information: https://covidinfo.jhu.edu/
- Whiting School of Engineering information: https://engineering.jhu.edu/covid-19/

COVID-19 vaccination is required unless an exception has been granted by the university for health or religious reasons.

Disabilities. All students with disabilities who require accommodations for this course should contact me at their earliest convenience to discuss their specific needs. If you have a documented disability, you must be registered with the JHU Office for Student Disability Services (101 Shaffer Hall; 410-516-4720; http://web.jhu.edu/disabilities/) to receive accommodations.
Mental Health. Students who are struggling with anxiety, stress, depression or other mental health related concerns, please consider connecting with resources through the JHU Counseling Center. The Counseling Center will be providing services remotely to protect the health of students, staff, and communities. Please reach out to get connected and learn about service options based on where you are living this fall at 410-516-8278 and online at http://studentaffairs.jhu.edu/counselingcenter/.

Other Concerns. Student Outreach & Support helps students manage physical and mental health concerns, personal and family emergencies, financial issues, and other obstacles that may arise during their college experience. Students can self-refer or refer a friend who may need extra support or help getting connected to resources. To connect with SOS, please visit this website: https://studentaffairs.jhu.edu/student-life/student-outreach-support/ or email <deanofstudents@jhu.edu>, call 410-516-7857, or students can schedule to meet with a Case Manager by visiting the Student Outreach & Support website and filling out a referral form online.

Classroom Climate
As your instructor, I am committed to creating a classroom environment that values the diversity of experiences and perspectives that all students bring. Everyone here has the right to be treated with dignity and respect. I believe fostering an inclusive climate is important because research and my experience show that students who interact with peers who are different from themselves learn new things and experience tangible educational outcomes. Please join me in creating a welcoming and vibrant classroom climate. Note that you should expect to be challenged intellectually by me, the TAs, and your peers, and at times this may feel uncomfortable. Indeed, it can be helpful to be pushed sometimes in order to learn and grow. But at no time in this learning process should someone be singled out or treated unequally on the basis of any seen or unseen part of their identity.

If you ever have concerns in this course about harassment, discrimination, or any unequal treatment, or if you seek accommodations or resources, I invite you to share directly with me or the TAs. I promise that we will take your communication seriously and to seek mutually acceptable resolutions and accommodations. Reporting will never impact your course grade. You may also share concerns with the Department Head (Randal Burns, <randal@cs.jhu.edu>), the Director of Undergraduate Studies (Joanne Selinski, <joanne@cs.jhu.edu>), the Director of Graduate Studies (Scott Smith, <scott@cs.jhu.edu>), the Assistant Dean for Diversity and Inclusion (Darlene Saporu, <dsaporu@jhu.edu>), or the Office of Institutional Equity (<oie@jhu.edu>). In handling reports, people will protect your privacy as much as possible, but faculty and staff are required to officially report information for some cases (e.g. sexual harassment).

Family Accommodations Policy
You are welcome to bring a family member to class on occasional days when your responsibilities require it (for example, if emergency childcare is unavailable, or for health needs of a relative). Please be sensitive to the classroom environment, and if your family member becomes uncomfortably disruptive, you may leave the classroom and return as needed.

University Policy on Incompletes
There are important revisions to the Incomplete Grade policy in effect for UNDERGRADUATES for the 2022–2023 academic year. The full policy is available here: https://e-catalogue.jhu.edu/engineering/full-time-residential-programs/undergraduate-policies/academic-policies/grading-policies/ The following text is an excerpt:

(1) A request for an Incomplete grade must be initiated by the student no later than the last day of classes via the Incomplete Grade Contract available in SIS
The required elements on the Incomplete Grade Contract are listed below; all of these topics should be included in the conversation between the student and the instructor.

- The reason for the request for an incomplete grade
- A description of all outstanding work that must be completed
- Date the work is due from the student
- The reversion grade if the student does not complete any of the outstanding work

Instructors are required to submit the new grade to the Office of the Homewood Registrar no later than 45 calendar days after the last day of classes. If the Incomplete grade is not resolved within 45 calendar days after the last day of classes, the Incomplete grade is automatically converted to the reversion grade.

The significant change here is that there is an Incomplete Grade Contract available to students in SIS to request an incomplete grade. This is how all incomplete grades must be initiated now. The other significant change is the timeline for completion of an incomplete grade, now set at 45 calendar days after the last day of classes. Formerly, the default deadline was the end of the third week of the following semester. See the full catalogue entry for considerations for students on academic probation and graduating students.

Deadlines for Adding, Dropping and Withdrawing from Courses

Students may add a course up to September 9, 2022 (independent academic work such as research may be added until October 9, 2022). They may drop courses up until October 9, 2022 provided they remain registered for a minimum of 12 credits. Between October 10, 2022 and November 11, 2022 a student may withdraw from a course with a W on their academic record. A record of the course will remain on the academic record with a W appearing in the grade column to indicate that the student registered and then withdrew from the course.

For more information on these and other academic policies, see https://e-catalogue.jhu.edu/engineering/full-time-residential-programs/undergraduate-policies/academic-policies/grading-policies/.