1. a. \[-\sum_{m=1}^{30} \log (A(x_m) / \sum_{x'} A(x'))\]

 where \(x'\) ranges over all strings, or equivalently, over all
 strings accepted by \(A\) (since \(A(x') = 0\) for the other).

 b. reduces BIAS, but at the cost of greater VARIANCE

 c. Option 1: Use a regularization term that penalizes the
 difference between the new parameters and the old ones.
 Thus, training will be reluctant to change parameters
 and will only do this if it substantially helps to
 predict the training examples of Trumpy English.

 Option 2: Early stopping before the parameters have
 converged.

 Either way: you have a hyperparameter to tune. In option 1, it
 is the regularization constant. In option 2, it is the number
 of epochs. Either way, you can select this hyperparameter using
 a dev corpus of Trumpy English.

 Notice that choosing the hyperparameter for option 2 is very
 efficient -- you just keep training until the cross-entropy on
 the dev corpus starts getting worse. For example, you evaluate
 on the dev course after 15 epochs of training, 16 epochs of
 training, etc. It’s cheap to find out whether 16 epochs gives a
 good model because you don’t have to train a new model from
 scratch: just start at the 15-epoch model and train for one more
 epoch.

2. a. The matrix \(V\), the vector \(\theta\), the word embeddings, and the
 initial hidden state vector \(h_0\).

 b. The number of rows is \(d\). The number of columns is \((1 + d +
 dimensionality of the word embeddings)\).

 c. We’ll say that the hidden vectors \(h_j\) represent the upper layer,
 so (1) can be unchanged. Change equation (2) to replace \(w_j\)
 with \(g_j\), where \(g_j\) is a hidden vector at the lower layer.
 Add equation (3):
 \[g_j = \sigma(U [1; g_{j-1}; w_j])\]

 d. This is a tricky question! The goal is to see how an RNN
 can track properties of the input over time, just like the FSA
 in the previous question. We saw in class how nodes in neural
 nets can implement AND/OR operations, and we’ll do that here.

 Note that the typesetting of this answer omits the vector arrow,
 so it does not distinguish properly between the word \(w_j\) and
 its embedding \(w_j\) (which should have a vector arrow).

 In this answer, we will assume that a \(d\)-dimensional vector
 has indices 1...\(d\), as indicated in the last line of the question.
 This is common in mathematical notation, in contrast to Python’s
 indices 0...(\(d-1\)). (We accepted either style in your answer, though.)

 We can see that
 \[h_j[3] = \sigma(v \cdot [1; h_{(j-1)}; w_j])\]
 if \(v\) denotes row 3 of matrix \(V\).

 Therefore, we need
 \[v \cdot [1; h_{(j-1)}; w_j]\]
to be strongly negative if $w_j = \text{Trump}$

or if $h_{(j-1)[3]}$ is close to 0 (meaning that $w_i = \text{Trump}$

close to 0)

for some $i < j$),

but it should be strongly positive otherwise.

We shouldn’t pay attention to the other elements of $h_{(j-1)}$,

so we can set $v[2, 3, 5, 6, \ldots, d+1]$ to 0.

Then we have

$$v \cdot [1; h_{(j-1)}; w_j] = v[1] + v[4] \cdot h_{(j-1)[3]} + v[d+2, \ldots] \cdot w_j$$

We want $v[4]$ to be strongly positive so that if $h_{(j-1)[3]}$

is close to 1 (meaning that we haven’t seen Trump yet),

then the dot product will be strongly positive and thus

$h_j[3]$ will also be close to 1.

However, this should be overridden if $w_j = t$ in

which case we want $v[d+2, \ldots] \cdot w_j$ to be negative enough

to drive the dot product negative. We can do this by

setting $v[d+2, \ldots] = -c \cdot t$ for some large positive c.

That ensures that $v[d+2, \ldots] \cdot w_j$ is much more negative

when $w_j = \text{Trump}$ than for any other w_j (because

when $w_j = \text{Trump}$, $t \cdot w_j$ is positive and larger than

for any other w_j, according to the problem).

So, choose a large c, and then solve for $v[1]$ and $v[4]$ to ensure that the dot product is (for example)

< -5 when it is supposed to be strongly negative and also > 5 when it is supposed to be strongly positive.

(This ensures that $h_j[3]$ will be < 0.01 and > 0.99, respectively.) This is a system of inequalities

in two variables. If there is no solution, then make

c larger so that there is a solution.

(Also, the initial hidden state vector h_0 should have $h_0[3] = 1$,

to make the setup work.)

To ensure that almost every sentence contains Trump, we need to ensure that $w_{(j+1)} = \text{EOS}$ is improbable if $h_0[3] = 1$. We can do this by setting $e_{(j+1)[4]}$ to be very negative.

Note that this is just a demonstration that the architecture has the ability to achieve the desired behavior, with appropriate parameters. In practice, we will rely on training to find good parameters.