
601.465/665 — Natural Language Processing

Homework 6: Tagging

Prof. Jason Eisner — Fall 2021
Due date: Tuesday 23 November, 11 pm

In this homework, you will build taggers based on a Hidden Markov Model (HMM) and then
on a Conditional Random Field (CRF). Moreover, your CRF tagger will extract useful context
features using a bidirectional recurrent neural network (biRNN).

Your code could be used for many kinds of tagging, but you’ll evaluate it on the traditional
task of tagging a word sequence with a part-of-speech sequence.

This is not the first time you’ll be writing code to predict structures using dynamic program-
ming. But last time, the grammar weights were given to you. This time you’ll have to train the
weights that you’ll use to predict structures. For training, you’ll reuse the backprop and SGD
techniques that you previously used to train a language model for predicting the next word.

Homework goals: This homework ties together most of the ideas from the course: linguistic mod-
eling, structured prediction, dynamic programming, deep embeddings of structures, and training
objectives.
After completing it, you should be comfortable with modern structured prediction methods, includ-
ing different training objectives (supervised and semi-supervised; generative and discriminative),
different modeling techniques including neural nets, and different decoders.
As a result, you should be able to see how to apply the same methods to other kinds of structured
prediction (PCFG trees and FST paths).

Collaboration: You may work in pairs on this homework. That is, if you choose, you may
collaborate with one partner from the class, handing in a single homework with both your names
on it. However:

(a) You should do all the work together, for example by pair programming. Don’t divide it up
into “my part” and “your part.”

(b) Your README file should describe at the top what each of you contributed, so that we know
you shared the work fairly.

(c) Your partner for homework 6 can’t be the same as your partner from homework 4 (parsing).
In any case, observe academic integrity and never claim any work by third parties as your own.

Materials: We provide spreadsheets, some of which were shown in class. You should use Python
for this assignment, since we’ll be using PyTorch, and we provide Python starter code. The ma-
terials can be found in http://www.cs.jhu.edu/~jason/465/hw-tag/. Data for the assignment
are described in reading section H.

Reading: First read the long handout attached to the end of this homework!

https://www.cs.jhu.edu/academic-programs/academic-integrity-code/
http://www.cs.jhu.edu/~jason/465/hw-tag/


1 Understanding HMMs and the Forward-Backward Algorithm

The forward-backward algorithm is given in Algorithm 4 of the reading handout, and we encourage
you to play with the spreadsheet that we used in class.

Play as much as you like, but here are some questions to answer in your README:�1

(a) Reload the spreadsheet to go back to the default settings. Now, change the first day to have
just 1 ice cream.

i. What is the new probability (in the initial reconstruction) that day 1 is hot? Explain, by
considering the probability of HHH versus CHH as explanations of the first three days
of data, 133.

ii. How much does this change affect the probability that day 2 is hot? That is, what is that
probability before vs. after the change to the day 1 data? What cell in the spreadsheet
holds this probability?

iii. How does this change affect the final graph after 10 iterations of reestimation? In
particular, what is p(H) on days 1 and 2? (Hint: Look at where the other 1-ice-cream
days fall during the summer.)

(b) We talked about stereotypes in class. Suppose you bring a very strong bias to interpreting
the data: you believe that I never eat only 1 ice cream on a hot day. So, again reload the
spreadsheet, and set p(1 | H) = 0, p(2 | H) = 0.3, p(3 | H) = 0.7.

i. How does this change affect the initial reconstruction of the weather (the leftmost graph)?

ii. What does the final graph look like after 10 iterations of reestimation?

iii. What is p(1 | H) after 10 iterations? Explain carefully why this is, discussing what
happens at each reestimation step, in terms of the 233 paths through the trellis.

(c) The backward algorithm (which computes all the β probabilities) is exactly analogous to
the inside algorithm. Recall that the inside algorithm finds the probability of a sentence by
summing over all possible parses. The backward algorithm finds the probability of a sentence
by summing over all possible taggings that could have generated that sentence.

i. Let’s make that precise. Each state (node) in the trellis has an β probability. Which
state’s β probability equals the total probability of the sentence?

ii. It is actually possible to regard the backward algorithm as a special case of the inside
algorithm! In other words, there is a particular grammar whose parses correspond to
taggings of the sentence. One parse of the sequence 2313 would look like the tree on the
left:
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In the tree on the left, what is the meaning of an H constituent? What is the probability
of the rule H → 1 C? How about the probability of H → ε? An equivalent approach uses
a grammar that instead produces the slightly more complicated parse on the right; why
might one prefer that approach?

2 Building an HMM

Write a bigram Viterbi tagger called tag.py that can be run on the English data in the data/

subdirectory. Follow the design described in the reading handout, with the emission probabilities
parameterized in terms of pretrained word embeddings that are read from a lexicon file (see reading
section C.1). You can use a lexicon from Homework 3.

Starter code and detailed INSTRUCTIONS are given in the code/ subdirectory. These walk you
through a simple, reasonable path for building up your tagger, partly using some pieces we’ve
implemented for you, and checking your work against the ice cream spreadsheet from class.

Hand in answers to the following questions:�2

(a) Why does Algorithm 1 initialize αbos(0) and βeos(n) to 1?

(b) If you train on a sup file and then evaluate on a held-out raw file, you’ll get lower perplexity
than if you evaluate on a held-out dev file. Why is that? Which perplexity do you think is
more important and why?

(c) V includes the word types from sup and raw (plus oov). Why not from dev as well?

(d) The accuracy on known words wasn’t stellar. What about the design of the model (and
perhaps how it differed from what we discussed in class) limited the performance on known
words? Why might we still prefer this modeling decision?

(e) Did the iterations of semi-supervised training help or hurt overall tagging accuracy? How
about tagging accuracy on known, seen, and novel words (respectively)?

(f) Explain in a few clear sentences why you think the semi-supervised approach helped where
it did. How did it get additional value out of the enraw file?

(g) Suggest at least two reasons to explain why the semi-supervised approach didn’t always help.

(h) Experiment with different training strategies for using enraw. For example, you could train
on enraw alone, or a combined corpus of ensup+enraw, or ensup+ensup+ensup+enraw
(so that the supervised data is weighted more heavily). And you could do staged training
where you do additional training on ensup before or after this. What seems to work? Why?

3 Open-Ended Improvements

Before handing in your tagger, implement an --awesome flag that makes it actually do a good job
at tagging. With this flag turned on, it should work better than the baseline method described in
reading section I.3.

Again, instructions are given in the INSTRUCTIONS file.
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You only need one good improvement. Your improvement should demonstrate intellectual
engagement with the problem of how to improve your tagging accuracy or speed. It doesn’t have
to be complicated, but a one-line change such as switching lexicons or optimization algorithms is
not enough by itself. More successful or interesting solutions will get more credit.

A good starting point is to study the output on the English data. As a previous question noted,
our basic tagging architecture seems to get a lot of known words wrong. Think about why it might
incorrectly tag a certain word as a determiner, even though that word only appeared as a noun in
training data.

With this in mind, here are some things you might try. Some of them are based on the fact that
in natural language, the emission matrix B is sparse. Most words have only a few possible tags,
and some tags (the “closed-class” tags) can emit only a small set of words. Thus, many entries in
B are zero (or at least very small).

• Use constraints on inference, so that a word that is known from supervised training data can
only be tagged with one of its supervised tags.1

• Use better features that go beyond word embeddings. These might look at the spelling of the
word, or its behavior in training data. Maybe the word actuary is a noun because it ends
in ry, or because it has often been tagged as a noun in training data, or because actuaries

appears in training data as a noun.

• Come up with some way to bias HMM training towards a sparse transition matrix.

• Use a higher-order HMM, e.g., trigram transition probabilities instead of bigrams.

Your tagger might still fall short of the state-of-the-art 97% for English tagging, even though
the reduced tagset in Figure 1 of the reading means that you’re solving an easier problem than the
state-of-the-art taggers. Why? Because you only have 100,000 words of training data (together
with embeddings).

What to hand in:

• Submit the source code for this version of tag.py (together with all other source files needed�3

to make it run). It should be able to run both with and without the --awesome flag.

• Upload the trained model you’d like us to use on the test data. You need to upload�4

ic hmm.pkl, en hmm.pkl, en hmm raw.pkl, en hmm awesome.pkl 2 .

• Describe what you did.�5

• Include your endev.output file. Unless you tell us otherwise, we will assume that you trained�6

your system using tag.py as shown in the INSTRUCTIONS, and tested it as shown on endev,
but using the --awesome flag for both training and testing.

• Do a simple ablation experiment of your choice and report the result.�7

1In other words, set τj to a restricted set of tags that depends on wj . This can be made reasonably fast by
precomputing a multi-hot “tag dictionary” vector for each word type. α(j) can be multiplied by wj ’s tag dictionary
vector to zero out the tags that are not allowed for wj .

2For the supervised training on toy example, supervised training on english, semi-supervised training on english,
and awesome training on english.
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In this homework, the leaderboard will probably show performance on endev. This development
data is being used to help develop everyone’s systems.

For actual grading, however, we will evaluate your code on test data entest that you have never
seen (as in Homework 3). The autograder will run your code to both train and test your model. It
will compare the actual output generated by your tagger to the gold-standard tags on the entest
data.

As a warning, too much experimentation with the dev data may lead to overfitting. Thus, you
might consider splitting the dev data into two parts, holding some of it out to check that your final
system actually works on a new dataset.

4 Conditional Random Field Tagger

Finally, add a CRF tagger to your codebase, again following the INSTRUCTIONS file. It should begin
as a fairly straightforward modification of your HMM tagger, to support discriminative training
(maximum conditional likelihood). After that, you’ll add more useful, contextual features to create
what’s called a biRNN-CRF.

This is a fairly modern architecture. It’s described in reading section G—you’ll want to care-
fully examine reading section G.3 on how to parameterize the potential functions. Some concrete
guidance is given in the INSTRUCTIONS file.

Turn in your updated tag.py program, which now has both HMM tagger and CRF tagger�8

functionalities. (HMM is the default, but --crf switches to CRF.)

(a) Compare the CRF to the HMM. Does it get better accuracy on endev when each is trained�9

on ensup? Are there any patterns in the errors that one makes and the other doesn’t?

(b) What happens when you include enraw in the training data for your CRF?�10

(c) Did your biRNN-CRF do better than the basic CRF? That is, did adding the RNN features�11

improve your tagging accuracy?

For extra credit, you are welcome to try to improve performance further, by changing the way
the CRF scores the transitions and emissions. Such CRF improvements should be activated by
the --awesome flag, just like your HMM improvements in question 3. For example, your scoring
function could use the biRNN features differently (see footnote 17 in the reading handout), or it
could use hand-crafted features. It’s fine for the --awesome flag to activate many of the same
changes in the HMM and the CRF. Tell us about what you did, why you expected it to help the
CRF, and whether it actually helped.,12

Please upload the trained model you’d like us to use on the test data. You need to upload�13
ic crf.pkl, en crf.pkl, en crf raw.pkl, en crf birnn.pkl 3 .

5 Final Question

What is the maximum amount of ice cream you have ever eaten in one day? Why? Did you get�14

sick?

3For the supervised training on toy example, supervised training on english, semi-supervised training on english,
and birnn model on english with whichever training is better.
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601.465/665 — Natural Language Processing

Reading for Homework 6: Tagging

Prof. Jason Eisner — Fall 2021

We don’t have a required textbook for this course. Instead, handouts like this one are the main
readings. This handout accompanies homework 6, which refers to it.

A HMM Basics

A.1 Notation

In this reading handout, I’ll use the following notation for hidden Markov models (HMMs). You
might want to use the same notation in your program.

• A sentence is a word sequence w1, . . . wn. We also define w0 = bosw and wn+1 = eosw. The
w is for ‘word’.

• The corresponding tags are t1, . . . tn. We also define t0 = bos and tn+1 = eos.

• We sometimes write the ith tagged word as wi/ti, for example in the data files.

• I’ll use “A” to indicate tag-to-tag transition probabilities, as in pA(ti | ti−1).

• I’ll use “B” to indicate tag-to-word emission probabilities, as in pB(wi | ti).

• It is sometimes convenient to put these probabilities into matrices. Suppose we have inte-
gerized the tag types. Then let the transition matrix A be a square matrix defined by
Ast = pA(t | s). Notice that row s sums to 1: it gives a probability distribution over the tags
t that might follow tag s.

• Suppose we have also integerized the word types. Then let the emission matrix B be a
wide rectangular matrix defined by Btw = pA(w | t), so row t gives a probability distribution
over the words w that might be emitted by tag t. Usually this k × V matrix is wider than it
is tall, since the vocabulary (V words) is much larger than the tagset (k tags).

A.2 Probability Model

Now, given a tagged sentence
w1/t1 w2/t2 . . . wn/tn,

the probability of generating it (according to the hidden Markov model) is

p(t,w) =

(
n+1∏
i=1

pA(ti | ti−1)

)
·

(
n∏
i=1

pB(wi | ti)

)
(1)
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Algorithm 1 The forward algorithm. w is the input sentence, and τ is a sequence of sets of
tags. For each j ∈ [1, n], τj denotes the set of possible tags for wj . The algorithm returns∑

t:(∀j)tj∈τj p(t,w). In the standard case, each τj is the set of all k tags, and then the algorithm

returns p(w) (equation (3)). But it can also be made to return Z = p(t,w) (equation (1)) by
taking each τj = {tj}. In general, it returns the likelihood when we observe the words w and we
also observe the fact that each tj falls in τj ; this sums over all tagged sentences that are consistent
with those observations.

1: function forward(w, τ )
2: n = |w|; wn+1 ← eosw; τn+1 ← {eos} . add eosw to input

3: . all α values are initially 0

4: αbos(0)← 1 . “start” node of the graph

5: for j ← 1 to n+ 1 :
6: . note: the loops below could be replaced by tensor operations (see equation (12))

7: for tj ∈ τj :
8: for tj−1 ∈ τj−1 :
9: . find total prob of prefix paths ending in tj−1tj; add it to total prob of prefix paths ending in tj

10: p← pA(tj | tj−1) · pB(wj | tj) . probability of the tj−1 → tj arc

11: αtj (j) += αtj−1(j − 1) · p . extend prefix paths starting with tj−1; keep a running total

12: Z ← αeos(n+ 1) . total prob of all complete paths (from bos,0 to eos,n+ 1)

13: return Z

We can also write this as a product of 2n+ 1 matrix entries,

p(t,w) =

(
n+1∏
i=1

Ati−1,ti

)
·

(
n∏
i=1

Bti,wi

)
(2)

where the subscripts are the integers that represent these tags and words.
The first product is the prior probability of generating the tag sequence under a bigram model,

and the second product is the probability of generating the observed words once we have chosen the
tags. We don’t have to generate t0 = bos because it is given, just as root was given in homework 1
and bosw was given in homework 3. However, just as in homework 3, we do have to generate eos,
in order to know when the sentence ends: n ≥ 0 is the first natural number such that tn+1 = eos.

In the above equations, we omitted the trivial factors pB(w0 | t0) = pB(bosw | bos) = 1 and
pB(wn+1 | tn+1) = pB(eosw | eos) = 1. However, our pseudocode will include the latter factor, for
convenience.

A.3 Marginal Probabilities

The probability of generating the words w—marginalizing out the tag sequence that produced
those words—is

p(w) =
∑
t

p(t,w) =
∑
t1

· · ·
∑
tn

(
n+1∏
i=1

pA(ti | ti−1)

)
·

(
n∏
i=1

pB(wi | ti)

)
(3)

where we have observed t0 = bos and tn+1 = eos but have to sum over all possible taggings for
the n positions in between. With k possible tags at each position, there are kn possible taggings

R-2



to sum over! Yet as we saw in lecture, this grand summation can be computed in O(nk2) time by
the forward algorithm (Algorithm 1). Basically, the trick is that we can express (3) as

p(w) = αeos(n+ 1) (4)

if we first define αtj (j) for any time step j ∈ [1, n+ 1] and any possible tag tj at that time step:

αtj (j)
def
=
∑
t1

· · ·
∑
tj−1

(
j∏
i=1

pA(ti | ti−1)

)
·

(
j∏
i=1

pB(wi | ti)

)
(5)

This represents the total probability of all prefix tag sequences for w1, . . . , wj that end with tj . It
can be rearranged and written as an efficient recurrence:

αtj (j) =
∑
tj−1

∑
t1

· · ·
∑
tj−2

(
j−1∏
i=1

pA(ti | ti−1)

)
·

(
j−1∏
i=1

pB(wi | ti)

) · pA(tj | tj−1) · pB(wj | tj) (6)

=
∑
tj−1

αtj−1(j − 1) · pA(tj | tj−1) · pB(wj | tj) (7)

where to make the j = 1 case work out, we must take as the base case

αbos(0) = 1 αt0(0) = 0 if t0 6= bos (8)

A.4 Matrix Formulas

For efficiency, let’s rewrite equation (7) to use vector and matrix operations. First, we switch to
using the parameter matrices A and B. (We also rename tj−1 and tj to s and t for simplicity.)

αt(j) =
∑
s

αs(j − 1) ·Ast ·Btwj (9)

Since the B term doesn’t depend on s, we can write this as

αt(j) =

(∑
s

αs(j − 1) ·Ast

)
Btwj (10)

If we regard ~α(j) and ~α(j − 1) as row vectors indexed by tags, this is

~αt(j) =
(
~α(j − 1) ·A

)
t
·Btwj (11)

or, if we want to express and compute this for all t at once,

~α(j) = (~α(j − 1) ·A)�B·wj (12)

where B·wj denotes column wj of B, and the � operator performs elementwise multiplication of

two vectors (that is, if ~c = ~a�~b, then ct = at · bt for each t).1
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Algorithm 2 The Viterbi algorithm, which finds argmaxt:(∀j)tj∈τj p(t,w). Compare Algorithm 1.

1: function Viterbi(w, τ )
2: n = |w|; wn+1 ← eosw; τn+1 ← {eos} . add eosw to input

3: . all α̂ values are initially 0 (or −∞), and all backpointers are initially None

4: α̂bos(0)← 1 . “start” node of the graph

5: for j ← 1 to n+ 1 :
6: for tj ∈ τj :
7: for tj−1 ∈ τj−1 :
8: p← pA(tj | tj−1) · pB(wj | tj) . probability of the tj−1 → tj arc

9: if α̂tj (j) < α̂tj−1(j − 1) · p : . keep a running maximum

10: α̂tj (j)← α̂tj−1(j − 1) · p . increase the maximum

11: backpointertj (j)← tj−1 . and remember who provided the new maximum

12: . follow backpointers to find the best tag sequence that ends at the final state (eos at time n+ 1)

13: tn+1 ← eos
14: for j ← n+ 1 downto 1 :
15: tj−1 ← backpointertj (j)

16: return t

A.5 The Viterbi Algorithm

Algorithm 2 famously finds the most probable tagging of w. Where the forward algorithm uses the
semiring (⊕,⊗) = (+,×) to find the total probability of all taggings, the Viterbi algorithm uses
(⊕,⊗) = (max,×) to find the maximum probability of all taggings. To avoid confusion, we refer to
this as α̂ rather than α. It then follows backpointers to extract the argmax—that is, the tagging
that achieves this maximum.

If you want to use tensor operations instead of nested loops to compute the α̂ probabilities at
position j, try to express equation (12) in PyTorch where you express matrix multiplication without
using the @ operator, instead using * and sum. Then for Viterbi, replace sum with max (and figure
out how to use argmax for the backpointers). Hint: The * operation is broadcastable.

1Can’t we somehow just express equation (9) as a matrix multiplication? Yes, if we first define a new matrix.
For any word type w, define the observable operator P (w) to be the square matrix whose entries are given by
P (w)st = AstBtw. This is basically a copy of A, but where each column t has been reweighted by tag t’s probability
of emitting word w. In the “trellis graph” whose paths correspond to possible taggings, the k × k matrix P gives
the weights of the k2 arcs from time j − 1 to time j. Now we can rewrite equation (9) as ~α(j) = ~α(j − 1)P (wj).
In other words, when we observe the word token wj , we update the ~α vector by multiplying it by wj ’s observable
operator—that is, by a linear transformation.

As the forward algorithm is basically just a sequence of n + 1 such updates, we get we get p(w) =
(
~α(0)P (w1) ·

P (w2) · · · · ·P (wn)P (wn+1)
)
eos

, or less efficiently, p(w) =
(
P (w1) ·P (w2) · · · · ·P (wn)P (wn+1

)
bos,eos

, which represents

the total weight of all paths of length n+ 1 from bos to eos in the graph.
However, that’s probably not the best way to implement it unless you have space to precompute and store the

matrices P (w) for all w. The reason is that each time you construct a copy of P (wj) from A and B, you have to
scale each column of A. Fewer multiplications are used by equation (11), which computes the row vector ~α(j − 1) ·A
first and then scales each element of that row vector (faster than scaling a whole column).
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B Training HMMs2

B.1 Maximum Likelihood Estimation

Let’s model sentences as being generated independently of one another—all by the same HMM with
parameters A,B. Then the probability of generating an observed sequence of sentences w1,w2, . . .
is given by

∏
m p(wm). This is known as the likelihood of the parameters A,B (given this dataset).

To estimate the parameters of a model,3 a pretty good estimation procedure (with a lot of
theoretical justification) is to maximize their likelihood, or equivalently their log-likelihood:

L(A,B)
def
=
∑
m

log p(wm) (13)

But it’s wise to add a regularization term to this objective, to resist overfitting to the training data.
The scale of this regularization term is, as usual, a hyperparameter C that you can tune on dev data.

argmax
A,B

L(A,B)− C ·R(A,B) (14)

In statistics, the likelihood of the parameters is just the probability of generating all the observed
data from those parameters.4 So when you observe more (or less) data, it affects the definition of
L(A,B). Examples:

• If you have more sentences in your training corpus, then equation (13) will have more sum-
mands.

• If for a particular observed sentence wm you also observe the tags tm, then you should replace
p(wm) with p(tm,wm) in equation (13). That is, use equation (1) instead of equation (3).
The probability p(tm,wm) can be regarded as still summing over all the tag sequences that
are consistent with the observations: but now we have enough obserations that there is only
one such tag sequence, so p(tm,wm) is the only summand.

• As an advanced case, if you observe wm and part of tm, then you should modify equation (3)
to marginalize over only the unobserved tags. For example, if you observe that t3 = noun,
then just take t3 = noun in the formula and remove the summation

∑
t3

over all possible
values of t3. Algorithm 1 actually handles this case.

B.2 Discussion: Supervised, Unsupervised, and Semi-Supervised Learning

For the tagging task, we are interested in learning the mapping w 7→ t from a sentence to its
tagging. (This is just an example of the common machine learning problem of learning an x 7→ y
mapping.) But what kind of data do we learn from?

2The training methods discussed in this section are much more general than just HMMs. Very similar methods
apply to PCFGs, for example. They also apply to lots of other models. One nice thing about HMMs (and PCFGs)
is that the probability Z of generating the observed data can be computed efficiently, by the forward (or inside)
algorithm. But the methods can be used even for models where we only have slow or approximate methods for
computing Z.

3An alternative is to “go full Bayesian” and get a posterior distribution over the parameters, rather than just
picking one value for the parameters.

4Here’s a quick explanation of what “likelihood” means in general.
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Supervised learning. If we observe the tags for all sentences, then we have a supervised learning
problem. In that case, you already know how to estimate the probabilities pA(t | tprev) and pB(w | t).

Specifically, if you have a small number of probabilities to estimate, then you can just use the
relative frequencies of the different transitions and emissions. This turns out to be equivalent to
maximizing the log-likelihood.

If you have a larger vocabulary, then you should probably take steps to avoid overfitting. You
could smooth the counts, or maximize the regularized log-likelihood, or use a model of pB(w | t)
that has fewer parameters (see reading section C below).

Unsupervised learning. The name “hidden Markov model” is properly used for the case where
we don’t observe the tags. Although the tags are governed by a Markov model (bigram model),
they are hidden (or unobserved or missing). The log-likelihood in equation (13) is sometimes called
the incomplete-data log-likelihood for this reason.

There are different reasons we might want to estimate an HMM. If you’re using the HMM for
language modeling, then the tags t are latent random variables—unseen forces that we posit to
help explain the observed data w. In that case, we don’t actually care about which tags are used,
only that they are helpful in modeling p(w).

But if we are actually going to evaluate on the tagging task, then this is an unsupervised learning
problem. And it’s hard! We want to predict the correct tags despite never having seen any tags in
training data.

Semi-supervised learning. Seeing even some of the tags makes the unsupervised problem eas-
ier. It is then called semi-supervised. For one thing, we might observe in the tagged sentences that
the usually gets tagged as Det and caviar usually gets tagged as Noun, rather than vice-versa.
(The pure unsupervised learning problem has no information to break this tie—swapping the names
Det and Noun through the model would not change its likelihood function.)

Even a semi-supervised learner never observes caviar/Noun in the tagged sentences, it might
be able to guess this tag based on observing ...the caviar with ... in an untagged sentence. It
knows from the tagged sentences that the/Det and with/Prep are good guesses for those frequent
words—and then it will want to guess caviar/Noun in between, because it knows from other tagged
sentences that Det Noun and Noun Prep are common bigrams.

B.3 SGD

When some or all tags are unobserved, the likelihood function can have multiple local optima.
The global optimum is hard to find. But we can at least try to improve the likelihood. That’s
what you’ll do in the homework, using PyTorch’s backward method to compute the gradient of
log-likelihood.5

The most obvious approach to (locally) maximizing L(A,B) is simply to use stochastic gradient
ascent (SGD). In other words, sample a sentence from the training corpus, and adjust A and B to

5Make sure your log-likelihood function is computed using PyTorch operations. For example, to construct a
PyTorch tensor that represents log p, be careful to write torch.log(p), or the more concise version p.log(), where
p is already a PyTorch tensor. Don’t write math.log(p) or numpy.log(p), because those aren’t PyTorch operations.
They will just return an ordinary scalar that doesn’t remember its dependence on p, so the backward method will
not see that it needs to propagate gradient information back to Z. That will screw up the training of your model.
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improve its log-probability. If the sentence is tagged, its probability is given by equation (1); if it’s
untagged, by equation (3).

The only difficulty is that we need to ensure that the rows of A and B are probability distribu-
tions! The entries of each row have to be non-negative and sum to 1. An SGD update to A or B
might violate these constraints.

Do we have to abandon SGD and switch to a constrained optimization algorithm? No: we
can still use SGD if we change our setup slightly. Instead of taking the transition and emission
probabilities to be parameters of the model, we can define them in terms of parameter matrices
WA and WB, which have the same shape as A and B respectively. Each row of A (or B) is defined
to be the result of passing the corresponding row of WA (or WB) through a softmax function. This
is called a softmax parameterization. In other words,

pA(t | s) =
expWA

st∑
t′ expWA

st′
pB(w | t) =

expWB
tw∑

w′ expWB
tw′

(15)

Each of these formulas is just a very simple conditional log-linear model, with one feature for each
tag-tag bigram or tag-word pair. The weight of this feature is a single matrix element.

The point is that the elements of WA and WB can be arbitrary real numbers, and we’ll still get
well-defined conditional probability distributions. So we don’t have to worry that an SGD update
to WA and WB will give us invalid parameters.

In reading section C below, we’ll look at some fancier options for taking this a little further, by
defining WA and WB in terms of further real-valued parameters.

Unfortunately, you have to recompute the probability matrices A and B each time you update
the parameters. Even with tensor operations, this is a bit expensive: in particular, B is a large
matrix if the vocabulary is large. So you probably don’t want to update the parameters after
every sentence. Instead, it’s probably wise for each SGD update to be the total gradient from a
“minibatch” of several sentences. Then you can recompute A and B less often.

Maximizing likelihood by SGD will be the primary method for this homework. However, the
following subsections draw a connection to the alternative method that you saw in class, namely
maximizing likelihood by EM.

B.4 Monte Carlo Expectation Maximization (MCEM)

The incomplete-data likelihood sums over all possible taggings for each sentence. A variant ap-
proach is to impute the sentence’s tagging, i.e., guess what it might be. This gives us a “supervised”
version of the sentence, and we can train on that by increasing the complete-data likelihood. In
other words, we use imputation to convert the unsupervised learning problem into a supervised
learning problem!

How does this work? We run SGD as before. But once we’ve chosen a sentence wm from the
training corpus, we also randomly sample a guess t̂m of its tag sequence. The guess t̂m should be
sampled from the posterior distribution p(t | wm) defined by the current model parameters. In
other words, we will probably sample a tagging that the model thinks has a high chance of being
correct.

If we pretend that t̂m really is correct, then (t̂m,wm) is a supervised version of the sentence.
We can then take a gradient step to increase the log of its probability p(t̂m,wm) as defined by
equation (1). This is a simple formula that does not have to sum over all possible tag sequences.
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Algorithm 3 Forward algorithm with backward sampling. This is a variant of the forward al-
gorithm (Algorithm 1) that keeps randomized backpointers, and then follows them just as in the
Viterbi algorithm (Algorithm 2).

1: function random-tagging(w, τ )
2: n = |w|; wn+1 ← eosw; τn+1 ← {eos} . add eosw to input

3: . all α values are initially 0

4: αbos(0)← 1 . “start” node of the graph

5: for j ← 1 to n+ 1 :
6: for tj ∈ τj :
7: for tj−1 ∈ τj−1 :
8: p← pA(tj | tj−1) · pB(wj | tj) . probability of the tj−1 → tj arc

9: αtj (j) += αtj−1(j − 1) · p
10: with probability of (αtj−1(j − 1) · p)/αtj (j) . keep a running sample

11: backpointertj (j)← tj−1

12: . follow backpointers to extract a random tag sequence that ends at the final state (eos at time n+ 1)

13: tn+1 ← eos
14: for j ← n+ 1 downto 1 :
15: tj−1 ← backpointertj (j)

16: return t

This property is useful in advanced machine learning models where summation is computationally
expensive, but which do have a more efficient procedure for sampling the latent variable t from the
posterior p(t | wm), either exactly or approximately.

Even though we are taking a gradient step and it is stochastic, this is not actually an SGD
procedure for maximizing equation (13), because it is not true that ∇ log p(t̂m,wm) is ∇ log p(wm)
on average. Even so, it does turn out to be a correct procedure for (locally) maximizing equa-
tion (13). It is known as Monte Carlo EM.6 Intuitively, we are using the current parameters to
make the guesses, which help us improve the parameters, which mean that future steps will have
better guesses, and so on.

But what is the sampling procedure for HMMs? That is, how do we draw a random tagging from
the posterior distribution p(t | wm)? A “backward sampling” algorithm is shown in Algorithm 3. It
is sort of a randomized version of the Viterbi algorithm—instead of following the best backpointers
to find the most probable tag sequence, it follows random backpointers to find a random tag
sequence. Of course, the tag sequences aren’t all equally probable! If most of the paths to Noun

at token 8 come through Det at token 7, then most of αNoun(8) will be contributed by αDet(7), and
backpointerNoun(8) will probably be Det. However, to figure out which paths contribute most, we
first have to do all the work of the forward algorithm. So in the case of HMMs, sampling is not
in fact more efficient than summing. Therefore, we won’t ask you to use Monte Carlo EM. It’s
smarter to compute the entire sum and improve it by following its gradient (reading section B.3).

6“Monte Carlo” algorithms are algorithms that use randomness. The name was originally a military code name,
referring to a casino in Monaco—casinos also use randomness.
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B.5 Expectation Maximization (EM)

The procedure shown on the spreadsheet in class was the classical EM procedure, which is also
based on summation. The EM procedure can be understood as “MCEM without randomness.”
We’ll average over all ways of guessing the tag sequence, instead of randomly picking one as in the
previous section.

So instead of increasing log p(t̂m,wm) for a particular (random) tag sequence t̂m, EM increases
the expected value of that quantity, namely

∑
t p(t | wm) · log p(t,wm).

Traditional EM doesn’t even have SGD’s randomness of choosing a different examplewm at each
step. Rather, the M step is a “batch” procedure that tries to maximize the expected log-likelihood
of the whole training corpus, i.e., ∑

m

∑
t

p(t | wm) · log p(t,wm) (16)

This looks for parameters A,B that have high log-probabilities log p(t,wm) for the “currently”
probable taggings t. The current coefficients p(t | wm) are held fixed during the M step even though
we are adjusting our parameters. Those coefficients were used in the E step and correspond to
our current guesses.

Once we’ve maximized equation (16), we use these new parameters to make new guesses—
another E step—and then do another M step, and so on. Again, this turns out to be a valid
procedure for (locally) maximizing equation (13).7

The key reason that EM is efficient is that for an HMM, we can compute equation (16) ef-
ficiently.8 We don’t have to iterate over all kn possible taggings for a sentence of length n. It
turns out that to compute equation (16), or its gradient, we only need the total fractional counts
of the transitions and emissions.9 So that is all that the E step computes. For a given sentence,
the forward-backward algorithm of Algorithm 4 computes the fractional counts in O(nk2) time via
dynamic programming. We compute the total counts by running Algorithm 4 on all the sentences.10

One way of thinking about the M step is that it is just like training on a supervised corpus,
where each untagged training sentencewm has given rise to lots of tagged training sentences (t,wm),
which are all “fractionally” in the corpus. Our old supervised training methods work. Specifically,
you can maximize equation (16) by setting the transition and emission probabilities as ratios of

7Why? It can be shown (via something called Jensen’s inequality) that equation (16) is always ≤ equation (13).
So by finding parameters that make the lower bound (16) high, we can ensure that the log-likelihood (13) is also high.
Furthermore, it can be be shown that when EM converges—meaning that two successive E steps return the same
distribution p(t | wm)—the two quantities are equal and both are at a local maximum. Thus, EM locally maximizes
equation (13). Monte Carlo EM (reading section B.4) is essentially the stochastic version of this procedure.

8For fancier models where this is not true, a useful generalization is variational EM. Namely, when there there
is no efficient way to work with p(t | wm) in equation (16), we can use a more tractable distribution qm(t) over the
taggings. No matter what distribution qm we pick, we’ll still get a lower bound on the log-likelihood (still by Jensen’s
inequality). So the variational E step tries to increase the lower bound

∑
m

∑
t qm(t) · log p(t,wm) by reestimating

the distributions qm (while keeping them tractable), and the M step tries to increase it by reestimating the model p.
9Can you prove this? Hint: start by using equation (1) to expand the log p term in equation (16).

10How about a matrix version? Footnote 1 noted that the forward algorithm amounted to computing a sequence
of row vectors via ~α(j) = ~α(j − 1)P (wj), where the base case ~α(0) is the row vector that is one-hot at bos. In the

same way, the backward algorithm amounts to computing a sequence of column vectors via ~β(j − 1) = P (wj)~β(j),

where the base case ~β(n+ 1) is the column vector that is one-hot at eos. We obtain Z as αeos(n+ 1) or alternatively

as Z = βbos(0). The posterior distribution over the tag Tj is given by the vector ~α(j)� ~β(j) /Z.
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Algorithm 4 Forward-backward algorithm for computing emission counts c(t, w) and expected
transition counts c(s, t). This algorithm increases the existing counts c(. . .) with the counts from
this sentence.

1: function forward-backward(w, τ )
2: run Algorithm 1 to compute the α values as well as n, wn+1 τn+1, and Z
3: . now for the backward pass; all β values are initially 0

4: βeos(n+ 1)← 1
5: for j ← n+ 1 downto 1 :
6: for tj ∈ τj :
7: c(tj , wj) += αtj (j) · βtj (j) /Z . increment count by p(Tj = tj | w, τ )

8: for tj−1 ∈ τj−1 :
9: . find total prob of all suffix paths starting with tj−1tj,

and add it to total prob of suffix paths starting with tj−1

10: p← pA(tj | tj−1) · pB(wj | tj) . probability of the tj−1 → tj arc (same as in forward pass)

11: c(tj−1, tj) += αtj−1(j − 1) · p · βtj (j) /Z . increment by p(Tj−1 = tj−1, Tj = tj | w, τ )

12: βtj−1(j − 1) += p · βtj (j) . extend suffix paths starting with tj; keep a running total

fractional counts. Or you can maximize it by gradient ascent.11 If the probabilities are obtained
from a log-linear model (such as equation (15)), the gradient is the usual gradient—the observed
counts minus the expected counts, where we take the “observed” counts to be the fractional counts
we imputed (since we didn’t actually observe anything).

C Parameterization

C.1 Word Embeddings

So far, we have had a separate parameter for every emission probability p(w | t): namely Btw or
the softmax parameter WB

tw (equation (15)). However, with a large vocabulary, this is a lot of
parameters. For words that only appear once or twice in the training data, these parameters may
take many epochs to converge to their final values.

One way to address this would be to initialize the parameters to something reasonable – for
example, get an initial estimate of p(w | t) from supervised data by counting and smoothing, and
take the log of this estimate to get WB

tw.
But perhaps a better way to reduce the number of parameters is to share parameters among

similar words. How do we know which words are similar? We can use pretrained word embeddings!
Let ~w ∈ RD be the embedding of word type w. This contains lots of information about w from
some large unsupervised corpus. Hopefully, it contains enough information to guess which tags will
tend to emit w.

For each tag t, we can learn a weight vector ~θBt . Now we can define

WB
tw = ~θt · ~w (17)

11If you’re following a gradient at the M step, you don’t need to go all the way up to a maximum. It’s enough to
just improve equation (16)—that procedure is known as generalized EM.
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so the matrix WB can be computed “all at once” by

WB = ΘBE> (18)

where ΘB is a matrix whose rows are the d-dimensional weight vectors for the different tags, and
E is a matrix whose rows are the d-dimensional embeddings for the different words. (WB can then
be converted to B by softmaxing each row.)

Notice that equation (15) still gives a log-linear model of p(w | t), with kd features in total.
Each tag t has a separate set of d features, which fire on (t, w) with values corresponding to the
dimensions of ~w.

When the vocabulary is small, as in the ice cream example, you could just take E to be the
identity matrix. In this case, the word-embeddings are one-hot vectors. Now we have WB = ΘB, so
row t of WB can be adjusted freely: it just represents an unconstrained softmax parameterization
of p(w | t).

Fine-tuning the word embeddings. Once the model is trained and the Θ (and WA) parame-
ters are working well, you can optionally adjust the E parameters as well during subsequent SGD
steps. This is the “fine-tuning” stage. It does risk overfitting to the training data and forgetting the
pretrained information. The simplest remedy is to monitor your evaluation metric on development
data, and stop fine-tuning when that metric starts going down.

C.2 Word Frequencies

There is one potential problem here, namely that the embeddings may not contain information
about word frequency. p(w | t) might be just as high for a rare word as for a frequent word, if
those words have similar embeddings! Fortunately, this shouldn’t be a problem, for us, because if
p(w | t) is 50 times too high for all tags, then this just increases the log-likelihood by a constant,
log 50, but doesn’t change the relative probabilities of the taggings. Still, you can fix the problem
by defining

WB
tw = ~θt · ~w + log p̂(w) (19)

where p̂(w) is estimated by counting words in the training data. This means that p(w | t) will be
defined as proportional to p̂(w)·exp(~θt · ~w). Since Bayes’ Theorem says that p(w | t) ∝ p(w)·p(t | w),
this means that really we’re using exp ~θt · ~w to model p(t | w), up to a constant. That seems like a
reasonable thing to do.

Even better, you can concatenate log p̂(w) onto the vector ~w as an additional dimension. If
training ~θt learns a weight of γ for this dimension, then this means it defines p(w | t) as proportional
to p̂(w)γ · exp(~θt · ~w). We might expect that it would learn γ ≈ 1 (and this might be a good choice
for initialization), but since the other dimensions of ~w already do reflect the frequency of ~w to some
extent, then perhaps it will learn γ < 1.

In the homework, you’ll have the option to take this even farther, and augment ~w with infor-
mation about the frequency with which w had various tags in supervised training data.

C.3 Tag Embeddings

Our tag set is small enough that it’s reasonable to directly learn the k× k matrix WA. However, if
k were large, then it might also be worth reducing the number of transition parameters by learning
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low-dimensional embeddings of the tags. For example, you could define WA
st = θlefts · θ

right
t . Chiu &

Rush (2020) show that HMMs are actually surprisingly good language models—competitive with
neural models—if you use this trick to give them a huge number of states!

C.4 Don’t Guess When You Know

“Don’t guess when you know” is a good general principle. If there are things that can’t or must
happen, then you may as well ensure that their probabilities in your model are 0 or 1, respectively.
You shouldn’t use data to estimate smoothed values of these probabilities in (0, 1) when you know
that the true values are 0 or 1.

It’s not the end of the world if you estimate 0.00001 for something that should be 0, but it’s
good software design to nail down that 0, unless this special case makes the code slow or ugly.

In particular, we know about pB:

• pB(bosw | bos) = 1
• pB(bosw | t) = 0 for t 6= bos
• pB(eosw | eos) = 1
• pB(eosw | t) = 0 for t 6= eos

To avoid all of these special cases, let’s just say that B only includes the emission probabilities
pB(wj | tj) for j ∈ [1, n]. In fact, equation (1) only considers those emission probabilities. (It’s true
that Algorithm 1 line 10 does look up p(eosw | eos), but that factor can be skipped or forced to
1 by a simple “if” test. There’s no need to actually look it up in B.)

Then we don’t need rows in the B matrix for bos and eos. And we don’t need columns for bosw
and eosw—we can actually leave them out of the vocabulary. Then each row of B is a probability
distribution over the vocabulary and cannot give any probability to bosw or eosw. Omitting the
bosw and eosw columns makes it easy to produce each row as a softmax (equation (15)). It also
means we don’t have to worry about the fact that bosw and eosw don’t have embeddings in the
lexicon.

You can physically omit the rows in B for bos and eos if you add them last to the tag integerizer;
then a matrix with k − 2 rows will have rows indexed by the other tags. Alternatively, it’s okay if
those tags have rows in the matrix, but they should never be accessed. Set them to 0, or to NaN so
that you get an error if they are accidentally used.

We also know about pA:

• pA(bos | s) = 0 for any preceding tag s

• pA(t | eos) doesn’t matter (will not be used)

So it would be nice to omit the bos column and the eos row from the A matrix.
The problem is that ~α(j) should have k elements—one for each tag including bos (nonzero for

j = 0) and eos (nonzero for j = n+ 1). So if we’re going to multiply by A to transform that vector
(equation (12)), we need A to be k × k.

The best option is probably to force the bos column to be 0. For example, if you set the bos
column of WA to −∞, then exponentiating it will give a column of zeroes in A. Then you can set
the eos row to be NaN.

(In Python, use math.nan and -math.inf, or float("nan") and float("-inf").)
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D Numerical Issues

For long sentences or large vocabularies, the α and Z probabilities for a sentence will be quite
small. You’ll need a method for preventing underflow. Here are a few options.12

D.1 The Scaling Trick

A simple, efficient, and effective option is to just scale the probabilities up when they get small.
Recall our update rule (equation (12)):

~α(j)← (~α(j − 1) ·A)�B·wj (20)

Suppose after we compute this, we divide it by a small constant κj :

~α(j)← ~α(j) / κj (21)

Now Z in Algorithm 1 will be off by a factor of
∏
j κj . But you can easily multiply that back

in at the end of the algorithm (line 12).

Z ← αeos(n+ 1) ·
∏
j

κj (22)

except that to avoid underflow, you should switch to the log domain:

logZ ← logαeos(n+ 1) +
∑
j

log κj (23)

So you just have to keep a running total
∑

j log κj as you go. Since this is just adding a constant to
logZ, it doesn’t even affect the gradients in reading section B.3 or equation (27). The only reason
to keep this running total is to report logZ accurately so that you can watch this log-likelihood
improve over time.

You could choose κj to be any positive number. An elegant choice is κj =
∑

t αt(j) because
then the rescaled ~α(j) then gives the relative probabilities of the tags (i.e., they sum to 1). Another
reasonable choice would be κj = maxt αt(j), in which case the rescaled ~α(j) will have a max value
of 1.

A couple of fancy improvements you could consider:

• At steps j where this sum or max is not very small, you could optionally just skip the rescaling
step (equivalent to taking κj = 1). This means you only have to rescale every so often, when
the probabilities are in danger of underflowing.

• You could ensure that κj is a power of 2, which means that there are especially fast ways to
multiply ~α(j) by κj . (This is probably not worth it, unless you’re writing low-level code, but
it connects nicely to the discussion in reading section D.3 below.)

12These methods can also help prevent overflow. Overflow could arise during exponentiation in equation (15) or
equations (40)–(45) if you have allowed the weights to get too large. However, if the weights are really large enough
to cause overflow, then it probably means you’ve taken too large a gradient step or you haven’t regularized enough.
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Whatever value of κj you choose, it’s just a bookkeeping convenience to prevent underflow. For
our purposes, it’s just some constant that you picked. You should make it a scalar rather than a
tensor, so that PyTorch will not waste time back-propagating through it.

Note that this trick works for tagging specifically. How would you make it work for parsing?
(The most obvious approach is wrong. I can see a solution, but it took a little thought!) The next
solution is more general, but also more annoying.

D.2 Log Probabilities

A common general trick for avoiding underflow is to store your probabilities “in the log domain.”
That is, when you see something like p = q · r, implement it as something like lp = lq + lr, where
lp, lq, lr are variables storing the logs of the probabilities. Note that log 0 = −∞ (which is a valid
floating-point number).

Addition in the log domain. The forward algorithm requires you to add probabilities, as in
p← p+ q. But you are now storing these probabilities p and q as their logs, lp and lq.

You might try to write lp ← log(exp lp + exp lq), but the exp operation will probably
underflow and return 0—that is why you are using logs in the first place!

Instead, the function logaddexp(lp, lq) is available in numpy and PyTorch. It safely does the
computation above. That is, it adds two values that are represented in the log domain. (If you
want to sum a whole sequence of values, use logsumexp.) How does it work?

logaddexp(x, y)
def
=

{
x+ log(1 + exp(y − x)) if y ≤ x
y + log(1 + exp(x− y)) otherwise

(24)

You can check for yourself that this equals log(expx+ exp y); that the exp can’t overflow (because
its argument is always ≤ 0); and that you get an appropriate answer even if the exp underflows.

The sub-expression log(1 + z) can be computed more quickly and accurately by the specialized
function log1p(z) = z − z2/2 + z3/3 − · · · (Taylor series), which is usually available in the math
library of your programming language (or see http://www.johndcook.com/cpp_log_one_plus_x.
html). This avoids ever computing 1 + z, which would lose most of z’s significant digits for small z.

Make sure to handle the special case where p = 0 or q = 0 (see above).

Matrix operations. Recall that equation (12) involves a product of the row vector ~α(j−1) with
the square matrix A. But if the inputs are represented in the log domain, you can’t use the ordinary
matrix product operator @. You need a version that uses + and logsumexp (in place of the usual *
and sum). You’ll have to figure out how to do this efficiently with PyTorch tensor operations. Just
as in reading section A.5, a good first step is to try to implement @ using only * and sum.

Since A and B are now represented as matrices lA and lB whose entries are in the log domain,
the softmax formulas (15) become

log pA(t | s) = WA
st − logsumexpt′W

A
st′ log pB(w | t) = WB

tw − logsumexpw′W
B
tw′ (25)

In other words, each row of lA is obtained by shifting the corresponding row ofWA by its logsumexp,
and similarly for lB .
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What kind of logs? To simplify your code and avoid bugs, this section has recommended that
you use log-probabilities rather than negative log-probabilities. Then you won’t have to remember
to negate the output to log or the input to exp. (The convention of negating log-probabilities helps
to keep minus signs out of the printed numbers; but when you’re coding, it’s safer to keep minus
signs out of the formulas and code instead.)

Similarly, I recommend that you use natural logarithms (loge) because they are simpler than
log2, slightly faster, less prone to programming mistakes, and supported by library functions like
logsumexp.

Yes, it’s conventional to report − log2 probabilities, (the unit here is “bits”). But you can store
loge x internally, and convert to bits only when and if you print it out: − log2 x = −(loge x)/ loge 2.
(As it happens, you won’t be required to print any log-probabilities for this homework, only per-
plexities: see equation (49).)

Problem with log 0. You may find that your gradient contains partial derivatives of nan . NaN or
nan stands for “not a number”; this special floating-point value is used to represent an indeterminate
quantity (see https://en.wikipedia.org/wiki/NaN).

The issue arises from the behavior of the logsumexp or logaddexp operator when all its argu-
ments are −∞. (That case arises when you are summing up the paths to a tag that is impossible—
such as bos at a position j > 0. Each of these paths has a log-alpha value of log 0 = −∞.)

I’ve reported this problem at https://github.com/pytorch/pytorch/issues/49724, with a
detailed explanation of why it happens. Hopefully it will get fixed. If you are still running into it,
just use either of the following workarounds:

• I built an improved version of logsumexp that treats −∞ properly during backprop. To get
it, do import logsumexp safe. This will redefine the logsumexp and logaddexp operations
so that they accept a new keyword argument safe inf=True, which makes the nan values
turn into 0 when appropriate.

The same problem will arise if you ever backpropagate through log(softmax(...)). In
particular, be careful not to take the log of the A and B matrices. You can revise updateAB

in hmm.py so that instead of computing attributes A and B using softmax (corresponding
to equation (15)), it computes attributes lA and lB using log softmax (corresponding to
equation (25)).

• Alternatively, represent a 0 probability by log 1e-45 instead of log 0, where 1e-45 is a number
very close to 0. This is a hack, but it’s a simple way to avoid the problem.

D.3 High Precision Arithmetic

A final possibility is to use a type of number that won’t underflow. 32-bit floating point numbers
can get as small as 10−38, and 64-bit floating point numbers can get as small as 10−308. But there
are Python libraries for high-precision arithmetic, such as mpmath, bigfloat, and mxNumber. These
use more than 64 bits to represent a number—indeed, they can expand the size of the representation
as necessary.

Recall that a floating point number stores a fixed-point mantissa together with an integer
exponent which is basically the log2 of the number (rounded towards zero). So to avoid underflow,
really what we want is to have a lot of bits in the exponent.
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The previous alternatives can be actually thought of specialized floating-point representations13

that focus on the exponent:

• In the scaling trick of reading section D.1, the running total
∑j

i=1 log κi can be regarded as
a possibly large, possibly non-integer exponent that is shared by all of the values in ~α(j).

• The log-domain trick of reading section D.2 can be thought of as a numeric representation
where the mantissa is 1 and the exponent is itself a floating point number (allowing it to be
very large). Indeed, logaddexp is actually rather similar to floating-point addition.14

Using the general high-precision arithmetic libraries is probably too slow and unnecessarily
precise, and won’t work with PyTorch.

E Posterior Decoding

Decoding refers to extracting a prediction from the model. Recall that a Viterbi decoder (reading
section A.5) finds the single most likely overall sequence. By contrast, a posterior decoder will sep-
arately choose the best tag at each position—the tag with highest posterior marginal probability—
even if this gives an unlikely overall sequence.

In Algorithm 4, the probability that tag Tj has value tj is computed at line 7 (which adds it
to c(tj , wj)). The posterior marginal distribution over all possible tags at position j can be found

efficiently as ~α(j) � ~β(j) /Z. See also reading section F for some ways to compute this without
implementing Algorithm 4 (the backward pass).

Here’s an example of how posterior decoding works (repeated from the HMM slides in class).
Suppose you have a 2-word string, and the HMM assigns positive probability to three different tag
sequences, as shown at the left of this table:

score if predicted sequence is . . .
prob actual sequence N V Det Adj Det N Det V . . .

0.45 N V 2 0 0 1 . . .
0.35 Det Adj 0 2 1 1 . . .
0.2 Det N 0 1 2 1 . . .

expected score 0.9 0.9 0.75 1.0 . . .

The Viterbi decoder will return N V because that’s the most probable tag sequence. However,
the HMM itself says that this has only a 45% chance of being correct. There are two other possible
answers, as shown by the rows of the table, so N V might be totally wrong.

So is N V a good output for our system? Suppose we will be evaluated by the number of correct
tags in the output. The N V column shows how many tags we might get right if we output N V: we

13Indeed, the previous alternatives could be packaged up as numeric classes. For example, you could make a PosNum

class that stores any positive number p as log p (and perhaps stores 0 as −∞), which enables it to represent very small
probabilities. You’d then implement arithmetic operations such as *, +, and max. You’d also need a constructor that
turns a nonnegative real into a PosNum (using log), and a method for extracting the real value of a PosNum (using exp).

14Before adding two numbers, floating-point addition has to multiply the mantissa of the smaller number by 2y−x,
where y−x ≤ 0 is the difference between the integer exponents. This is similar to equation (24). But in the floating-
point case, multiplying the mantissa by 2y−x—which is an integer power of 2—is easily accomplished by right-shifting
the bits of its binary representation.
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have a 45% chance of getting 2 tags right, but a 55% chance of getting 0 tags right, so on average
we expect to get only 0.9 tags right. The Det Adj or Det N columns show how many tags we’d
expect to get right if we predicted those sequences instead.

It’s not hard to see that with this evaluation setup, the best way to maximize our score is to
separately predict the most likely tag at every position. We predict t1 = Det because that has a
0.55 chance of being right, so it adds 0.55 to the expected score. And we predict t2 = V because
that has an 0.45 chance of being right, so it adds 0.45—more than if we had chosen Adj or N.

Thus, our best output is Det V, where on average we expect to get 1.0 tags right. This is not
the highest-probability output—in fact it has probability 0 of being correct, according to the HMM!
(That’s why there’s no Det V row in the table.) It’s just a good compromise that is likely to get a
pretty good score. It can never achieve the maximum score of 2 (only the three rows in the table
can do that), but it also is never completely wrong with a score of 0.

F Back-Propagation As An Alternative to the Backward Pass

If you want fractional counts, either to use in EM or for some other purpose such as posterior
decoding, it’s not actually necessary to implement the backward pass from Algorithm 4. It turns out
that the back-propagation algorithm (available as backward() in PyTorch) automatically computes
the same quantities—in fact, it computes them in the same way!

First run the forward algorithm to compute Z for a given sentence. The β probabilities are
actually just the partial derivatives of Z:

βt(j) =
∂Z

∂αt(j)
(26)

This falls out from the fact that Z =
∑

t∈τj αt(j) · βt(j), i.e., the sum of all paths through tag t at
time j. Moreover, it turns out that

c(s, t) =
∂ logZ

∂ logAst
c(t, w) =

∂ logZ

∂ logBtw
(27)

where c(. . .) represent the fractional counts for the given sentence. (If you want the total fractional
counts for a batch or minibatch of sentences, replace ∂ logZ with ∂

∑
m logZm.)

Fundamentally, equations (27) work because the HMM probability p(t,w) (equation (1)) is a
log-linear function of the counts of the different types of transitions and emissions in the tagged
sentence (t,w), where the weights of these transition and emission types are log-probabilities.
Remember that in a log-linear model, the partial derivatives of logZ with respect to the feature
weights are just expected feature counts. That’s where (27) comes from.

F.1 Computational Details

If you computed logZ from logAst and logBtw, then calling back-propagation on logZ will directly
compute (27) for you. (First compute logZ, making sure that gradients are being tracked.15

15Gradient tracking will have been turned off for efficiency if your fractional-count method is called in the context
“with torch.no grad():” . . . for example, if it’s called while train() is evaluating the loss() in the hmm.py starter
code. So a fractional-count method that uses back-prop will need to override this, by indenting the computation of
logZ under a line “with torch.enable grad():” (such a line in Python is a context manager that does some setup
before running a block of code and some cleanup afterwards).
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Then call the retain grad() method on the tensors holding the log-probabilities, before calling
the .backward() method on logZ. Finally you can look at the .grad attributes of the tensors
holding the log-probabilities. The .grad attributes usually only stay available at leaf nodes of the
computation graph, but retain grad lets you keep them at intermediate nodes as well.)

Alternatively, if you only have easy access to the probabilities Ast and Btw and not their logs,
then you can use those instead, through the following change of variables:

c(s, t) =
∂ logZ

∂ logAst
c(t, w) =

∂ logZ

∂ logBtw

=
∂ logZ

∂Ast
· ∂Ast
∂ logAst

=
∂ logZ

∂Ast
·Ast =

∂ logZ

∂Btw
· ∂Btw
∂ logBtw

=
∂ logZ

∂Btw
·Btw (28)

F.2 Position-Specific Counts

There’s one more trick you need to know about. Equation (27) considers the effect on logZ of
changing a weight. That’s the total effect through every position in the sentence—so it gives a
fractional count that’s summed over all positions. But what if you just want to know whether a
certain transition or emission happened at a particular token position j? For example, you’d want
that for posterior decoding (reading section E).

Well, you could get this by equation (27) if there were a particular log-probability or probability
that was only used at position j. And you can arrange that! Just use a temporary copy of that
log-probability or probability in your computation.

For example, when you look up p(wj | tj) in matrix B at Algorithm 1 line 10, you can assign it
to a temporary variable like this:

twprob[j][tj]← Btjwj + 0 . adding 0 or calling .clone() makes a new Tensor with same value (29)

twprob[j][tj].retain grad() (30)

Then after you call Z.log().backward(), you will find the partial derivatives with respect to
twprob[j][tj] and Btjwj in their respective .grad fields. The former partial derivative is position-
specific, and the latter collects the sum of all the position-specific partial derivatives. You can use
the trick of equation (28) to convert these partial derivatives into fractional counts.

If you were storing B in the log domain as a matrix lB (reading section D.2), then your code
can look more like

twlogprob[j][tj]← lBtjwj + 0 (31)

twlogprob[j][tj].retain grad() (32)

and you won’t need the trick of equation (28).

F.3 Generalizations

This connection between gradients and expected counts also holds for the CRF models that we’ll
see next in reading section G. And it’s also true for fancier probabilistic models based on CFGs
and FSTs and more. If you’re curious to understand the details, I published a tutorial paper that
explains all of this in detail—looking at the inside-outside and forward-backward algorithms.

R-18

https://www.cs.jhu.edu/~jason/papers/#eisner-2016


G Linear-Chain Conditional Random Fields (CRFs)

G.1 HMMs versus CRFs

An HMM defines p(t,w). It also defines the conditional distribution

p(t | w) = p(t,w) / p(w) (33)

This is the ratio of equations (1) and (3); the denominator p(w) can be computed by the forward
algorithm. Posterior decoding and Viterbi decoding depend only on p(t | w)—they are trying to
find the individual tags or tag sequences that are most probable given w.

A linear-chain CRF is a variant that directly defines p(t | w) and has no opinion about p(w).
(That is, it is a discriminative model, whereas the HMM is generative.) Thus, we can’t train it
to maximize the incomplete-data log-likelihood

∑
m p(wm), nor the complete-data log-likelihood∑

m p(tm,wm). However, as long as we have supervised data, we can train it to maximize the
conditional log-likelihood:

L(A,B)
def
=
∑
m

log p(tm | wm) (34)

Of course, one could also train an HMM discriminatively, to maximize only equation (34).

G.2 Defining a CRF

The CRF formula and algorithms are very similar. Instead of equations (1) and (3), we have

p̃(t,w) =

(
n+1∏
i=1

φA(ti−1, ti)

)
·

(
n∏
i=1

φB(ti, wi)

)
(35)

Z(w) =
∑
t

p(t,w) (36)

p(t | w) = p̃(t,w) /Z(w) (37)

In this handout, we’ll systematically use p̃ as in equation (35) to denote an unnormalized probability
distribution—just like a probability distribution, but it might not sum to 1. (We referred to this
as u in the log-linear handout.) We’ll use p to denote the normalized version, which in this case is
the conditional distribution (37).

The factors in equation (35), which must be ≥ 0, are returned by the potential functions φA
and φB. Equation (1) is just a special case where these factors are conditional probabilities (with
the result that p̃ is actually a probability distribution over tagged sentences:

∑
t,w p̃(t,w) = 1).

A more compact way of writing equations (35)–(37) is to use the “proportional to” symbol ∝.
The constant of proportionality is understood to be “whatever ensures that

∑
t p(t | w) = 1.”

p(t | w) ∝

(
n+1∏
i=1

φA(ti−1, ti)

)
·

(
n∏
i=1

φB(ti, wi)

)
(38)

So far, we haven’t gained anything. It turns out that any CRF distribution with potentials
defined as in (38) could also have been obtained as the conditional distribution (33) of some HMM

R-19



(Smith and Johnson (2007)). Thus, maximizing the conditional log-likelihood of a CRF is no better
than maximizing the conditional log-likelihood of an HMM.

However, let’s change equation (38) to allow the potential functions to also depend on the
sentence and the position in it:

p̃(t | w) ∝

(
n+1∏
i=1

φA(ti−1, ti,w, i)

)
·

(
n∏
i=1

φB(ti, wi,w, i)

)
(39)

Now we have a much more powerful model, because now when a potential function evaluates a
transition (ti−1, ti) or an emission (ti, wi), it can look at the context in w of that transition or
emission. Information from the whole sentence can help inform our local tagging judgment.

Equation (39) is called a linear-chain CRF, because the random variables that we are trying to
predict—T1, T2, . . . , Tn—are linked together in a chain by the φA potential functions, making each
tag interdependent with the next one. The φB potential functions link the tags to the words.16

G.3 Parameterization

What kind of potential functions should we learn? We have lots of choices, but here is a straight-
forward approach.

We don’t need to use a softmax parameterization for φ, because potential functions don’t need
to sum to 1. They only need to be ≥ 0. We can just replace equation (15) with its numerator

φA(s, t) = expWA
st φB(t, w) = expWB

tw (40)

where WA is defined as before (reading section C.3) and so is WB (equation (18)). But that’s just
for the simple case (38); it doesn’t give us any dependence on context as allowed by (39).

So let’s introduce such dependence. The obvious way to generalize equation (40) along the lines
of equation (18) is to build unnormalized log-linear functions:

φA(s, t,w, j) = exp
(
~θA · ~fA(s, t,w, j)

)
φB(t, w,w, j) = exp

(
~θB · ~fB(t, w,w, j)

)
(41)

Here each ~f function returns a feature vector. We could hand-craft those features, but it’s easier to
let a neural network discover the relevant features. That is, ~f should construct a vector embedding
of the argument tuple—the transition or emission in context.

Here’s one way to do that. First, let ~hj be a (row) vector embedding of the sentence prefix

w1 · · ·wj , and let ~h′j be a (column) vector embedding of the sentence suffix wj+1 · · ·wn. We can
get these using left-to-right and right-to-left RNNs. Those familiar computations are actually very
similar to the computations of ~α and ~β, particularly the versions in footnotes 1 and 10:

~hj = σ(M
[
1;~hj−1; ~wj

]
) ~h′j−1 = σ(M ′

[
1; ~wj ;~h

′
j

]
) (42)

The most important difference from ~α, ~β is that the definitions of ~h,~h′ include a nonlinearity, the
σ (“sigmoid”) function. This is defined by σ(x) = 1/(1 + exp(−x)), and is applied separately

16Actually the φB factors don’t actually add any power, because the φA functions can look at the words just as
well. But it may still be convenient to keep the φB factors, because they provide a kind of backoff (from tag bigrams
to tag unigrams), and because they may be parameterized differently from the φA factors.

R-20

https://www.aclweb.org/anthology/J07-4003/


(“elementwise”) to each element of its argument. The square-bracket-semicolon notation denotes
concatenation of multiple column vectors into a column vector. The subscripts on ~hj−1 and ~h′j
denote the inter-word positions immediately before and after wj (similar to our convention in pars-

ing). The matrices M and M ′ are parameters, as are the vectors used for the base cases ~h−1 (just
before w0 = bosw) and ~h′n+1 (just after wn+1 = eosw).

Now we’ve got prefix and suffix embeddings. Let’s suppose we also have a vector embedding ~t
for each tag t, and a vector embedding ~w for each word w. We can then combine these to construct
our embeddings of the argument tuples used in (45):

~fA(s, t,w, j) = σ(UA
[
1;~hj−2;~s;~t;~h

′
j

]
) (43)

~fB(t, w,w, j) = σ(UB
[
1;~hj−1;~t; ~w;~h′j

]
) (44)

For example, equation (43) is encoding a tuple of the form (prefix, s, t, suffix). That is, ~hj−2 encodes

the prefix before the tag bigram st at position j, and ~h′j encodes the suffix after that tag bigram

token. So equation (43) encodes this tag bigram token in context.17

In each of equations (42)–(44), we are essentially following the standard recipe from class for
encoding tuples: concatenate the embeddings of the tuple’s elements, then apply a sigmoided affine
transformation. The tag embeddings ~s,~t and the matrices UA, UB are additional parameters. The
word embeddings ~w may be pretrained vectors that are held constant, although they too could be
treated as parameters and fine-tuned.

Summary: We switched to discriminative training of our HMM, and then switched from an
HMM to a CRF, which can examine the entirety of w when figuring out how to tag wj . The old
way to build a CRF was to design feature templates so that each feature would fire on certain tags
and tag bigrams in the context of certain specified patterns in w. But in practice, such features
rarely looked at much of w (usually just the local context around the tag or tag bigram). Our more
modern approach just uses a biRNN (42) to scan w for useful patterns. These patterns combine
with the tags or tag bigrams through a further neural network (43)–(44) to define the feature vectors
~f . This whole system is trained via equation (34) so that the neural machinery is encouraged to
extract whatever features turn out to be useful for the tagging task. If you have hand-designed
features that you expect to be useful as well (why guess when you know?), you can simply append
them to the feature vectors in (43)–(44), and equation (45) will learn ~θ-weights for them too.

17Of course, you don’t have to do it this way. There are other reasonable ways to embed a tag bigram in context:
for example, instead of ~hj−2 and ~h′j , you could use ~hj and ~h′j−2, so that the prefix and suffix embeddings also include
the two words that are being tagged by st. Or you could simply drop the prefix and suffix embeddings altogether
from equation (43), in which case the resulting φB in equation (45) does not consider context any more than it did
in equation (40). The point is, you have a lot of options, just as when you define features for a log-linear model.

Also, a common choice is to replace equation (45) with something like

φA(s, t,w, j) = exp
(
~θA,s,t · ~fA(w, j)

)
φB(t, w,w, j) = exp

(
~θB,t,w · ~fB(w, j)

)
where the vectors ~θA,s,t and ~θB,t,w are learned embeddings of the possible transitions and emissions, akin to the
learned embeddings of possible vocabulary words that we’d use if we were predicting a word. The advantage of this
architecture is that the context encodings ~fA(w, j), ~fB(w, j) of position j can be reused for all the possible transitions
and emissions at position j. We no longer need to embed each transition or emission separately in context. So this
architecture is a little more efficient than equation (45), though also a little less flexible.
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G.4 Algorithms

To compute the CRF’s conditional log-likelihood (34), the expensive part is computing the nor-
malizing constant Z(w) (36). Since this sums over all taggings, we would like to still do this by
running some small variant of the forward algorithm (Algorithm 1).

Remember that the core of the forward algorithm is the successive update of ~α vectors by
equation (12). We’ll just replace that equation with a slight variant:

~α(j) =
(
~α(j − 1) ·A(j)

)
�~b(j) (45)

where A(j) is a matrix of potentials for bigrams at position j in the given input sentence w, and
~b(j) is a vector of potentials for unigrams at position j in the given input sentence w.

All we have to do is to package up the appropriate potentials that were defined in equation (45):

A
(j)
st = φA(s, t,w, j) b

(j)
t = φB(t, wj ,w, j) (46)

In short, the new idea is that A and B are no longer fixed throughout a sentence or a minibatch of
sentences. At each position j in a sentence, we construct contextual versions A(j) and ~b(j), which
depend on the sentence w and the learned parameters. This is the main trick of CRFs.

Crucially, the transition and emission potentials at position j don’t depend on the tags at
positions other than j − 1 and j. (It’s still considering only tag bigrams.) They can therefore be
reused across exponentially many taggings. We can still use dynamic programming algorithms to
efficiently work with the CRF distribution (37), taking advantage of the linear chain structure of
equation (39).

In particular, for training, we can use the forward algorithm to compute the conditional log-
likelihood (and then compute its gradient by back-propagation and follow it by SGD, as usual).
The forward algorithm should use A(j) and~b(j) at step j. For extracting actual taggings, the Viterbi
algorithm, the backward sampling algorithm, and posterior decoding can be similarly extended to
use the same A(j) and ~b(j). You can lazily compute each matrix “on demand” only when you first
need to use it. Or alternatively, you can eagerly compute all the matrices needed for the minibatch
as soon as you receive the minibatch, and then look each matrix up when you need to use it.

H Data Resources for the Homework

There are three datasets, available at http://cs.jhu.edu/~jason/465/hw-tag/data).
The datasets are

• ic: Ice cream cone sequences with 1-character tags (C, H). Start with this easy dataset.

• en: English word sequences with 1-character tags (documented in Figure 1).

• cz: Czech word sequences with 2-character tags.

This homework will focus on the en dataset. The ic dataset is to help you test your code.
The cz dataset is provided just so that you can see what a harder tagging task looks like.

The tagset is larger due to the morphological complexity of Czech (in fact, the original tags had 6
characters), and spelling features are more important in Czech than in English. You are welcome
to try your code on it!

Each dataset consists of three files:
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C Coordinating conjunction or Cardinal number
D Determiner
E Existential there
F Foreign word
I Preposition or subordinating conjunction
J Adjective
L List item marker (a., b., c., . . . ) (rare)
M Modal (could, would, must, can, might . . . )
N Noun
P Pronoun or Possessive ending (’s) or Predeterminer
R Adverb or Particle
S Symbol, mathematical (rare)
T The word to
U Interjection (rare)
V Verb
W wh-word (question word)

bos Context for the start of a sentence
eos Marks the end of a sentence

, Comma
. Period
: Colon, semicolon, or dash
- Parenthesis
‘ Open quotation mark
’ Close quotation mark
$ Currency symbol

Figure 1: Tags in the en dataset. These are the preterminals from wallstreet.gr in homework 3, but
stripped down to their first letters. For example, all kinds of nouns (formerly NN, NNS, NNP, NNPS) are simply
tagged as N in this homework. Using only the first letters reduces the number of tags, speeding things up
and increasing accuracy. (However, it results in a couple of unnatural categories, C and P.)

• sup: tagged data for supervised training (ensup provides 100,000 words)

• dev: tagged data for testing (25,000 words for endev); your tagger should ignore the tags
in this file except when measuring the accuracy of its tagging

• raw: untagged data for reestimating parameters (100,000 words for enraw)

The file format is quite simple. Each line has a single word/tag pair separated by the / character.
(In the raw file, only the word appears.) Punctuation marks count as words.

H.1 Tag and Word Vocabularies

Take the tag vocabulary to be all the tag types that appeared at least once in sup. For simplicity,
we will not include an oov tag. (oot?) Thus, any novel tag will simply have probability 0 (even
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with smoothing).18

Take the word vocabulary to be all the word types that appeared at least once in sup ∪ raw
(or just in sup if no raw file is provided, as in the case of vtag), plus an oov type in case any
out-of-vocabulary word types show up in dev.19

As in homework 3, you should use the same vocabulary size V throughout a run of your
program, that your perplexity results will be comparable to one another. So you need to construct
the vocabulary before you Viterbi-tag dev the first time (even though you have not used raw yet
in any other way).

You are strongly encouraged to test your code using the artificial ic dataset. This dataset is
small and should run fast. More important, it is designed so you can check your work: if you
run the forward-backward algorithm, the initial parameters, intermediate results, and perplexities
should all agree exactly with the results on the spreadsheet we used in class. If you are training
with SGD, then you should still converge to the same place as EM converges to.

• icsup has been designed so that your initial unsmoothed supervised training on it will yield
the initial parameters from the spreadsheet (transition and emission probabilities).

• icdev has exactly the data from the spreadsheet. Running your Viterbi tagger with the above
parameters on icdev should produce the same values as the spreadsheet’s iteration 0:20

– α̂ probabilities for each day

– weather tag for each day (shown on the graph)21

I Measuring Tagging Performance

There are various metrics that you could report to measure the quality of a part-of-speech tagger.

18Is this simplification okay? How bad is it to assign probability 0 to novel tags?

• Effect on perplexity (reading section I.2): You might occasionally assign probability 0 to the correct tagging
of a test sentence, because it includes novel tag types of probability 0. This yields perplexity of ∞.

• Effect on accuracy (reading section I.1): The effect on accuracy will be minimal, however. The decoder will
simply never guess any novel tags. But few test tokens require a novel tag, anyway.

19It would not be safe to assign 0 probability to novel words, because words are actually observed in dev. If any
novel words showed up in dev, we’d end up computing p(~t, ~w) = 0 for every tagging ~t of the dev corpus ~w, and we
couldn’t identify the best tagging. So we need to hold out some smoothed probability for the oov word.

20To check your work, you only have to look at iteration 0, at the left of the spreadsheet. But for your interest, the
spreadsheet does do reestimation. It is just like the forward-backward spreadsheet, but uses the Viterbi approximation.
Interestingly, this approximation prevents it from really learning the pattern in the ice cream data, especially when you
start it off with bad parameters. Instead of making gradual adjustments that converge to a good model, it jumps right
to a model based on the Viterbi tag sequence. This sequence tends never to change again, so we have convergence
to a mediocre model after one iteration. This is not surprising. The forward-backward algorithm interprets the
interpreting the world in terms of its stereotypes but then uses those interpretations to update its stereotypes. The
Viterbi approximation turns it into a blinkered fanatic that is absolutely positive that its interpretation of each
sequence is correct, and therefore it learns less, particularly when it has only one sequence to learn from.

21You won’t be able to check your backpointers directly.
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I.1 Accuracy

In these task-specific metrics, you look at some subset of the tokens in your evaluation sentences
(dev or test) and ask what percentage of them received the correct tag.

accuracy looks at all test tokens, except for the sentence boundary markers bosw and eosw. (No
one in NLP tries to take credit for tagging eosw correctly with eos!)

known-word accuracy considers only tokens of words (other than bosw and eosw) that also
appeared in sup. So we have observed some possible parts of speech.

seen-word accuracy considers tokens of words that did not appear in sup, but did appear in
raw untagged data. Thus, we have observed the words in context and have used EM to try
to infer their parts of speech.

novel-word accuracy considers only tokens of words that did not appear in sup or raw. These
are very hard to tag, since context at test time is the only clue to the correct tag. But they
constitute about 9% of all tokens in endev, so it is important to tag them as accurately as
possible.

vtagem’s output must also include the perplexity per untagged raw word. This is defined on
raw data ~w as

exp

(
− log p(w1, . . . wn | w0)

n

)
Note that this does not mention the tags for raw data, which we don’t even know. It is easy to
compute, since you found Z = p(w1, . . . wn | w0) while running the forward-backward algorithm
(Algorithm 4). It is the total probability of all paths (tag sequences compatible with the optional
dictionary) that generate the raw word sequence.

I.2 Perplexity

As usual, perplexity is a useful task-independent metric that may correlate with accuracy.
Given a tagged corpus, the model’s perplexity per tagged word is given by22

perplexity per tagged word = 2cross-entropy per tagged word (47)

where

cross-entropy per tagged word =
− log2 p(w1, t1, . . . wn, tn | w0, t0)

n

Since the power of 2 and the log base 2 cancel each other out, you can equivalently write this using
a power of e and log base e:

perplexity per tagged word = exp (−log-likelihood per tagged word) (48)

= exp

(
− log p(w1, t1, . . . wn, tn | w0, t0)

n

)
(49)

22Using the notation from reading section A.1.
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This is equivalent because e−(log x)/n = (elog x)−1/n = x−1/n = (2log2 x)−1/n = 2−(log2 x)/n.
Why is the corpus probability in the formula conditioned on w0/t0? Because the model only

generates w1/t1, . . . , wn/tn. You knew in advance that w0/t0 = bosw/bos would be the left context
for generating those tagged words. The model has no distribution p(w0, t0). Instead, Algorithm 2
explicitly hard-codes your prior knowledge that t0 = bos.
When you have untagged data, you can also compute the model’s perplexity on that:

perplexity per untagged word = exp (−log-likelihood per untagged word) (50)

= exp

(
− log p(w1, . . . wn, | w0t0)

n

)
where the forward or backward algorithm can compute

p(w1, . . . wn, | w0, t0) =
∑

t1,...,tn

p(w1, t1, . . . wn, tn | w0, t0) (51)

Notice that

p(w1, t1, . . . wn, tn | w0, t0) = p(w1, . . . wn | w0, t0) · p(t1, . . . tn | ~w, t0) (52)

so the tagged perplexity (48) can be regarded as the product of two perplexities—namely, how
perplexed is the model by the words (in (50)), and how perplexed is it by the tags given the words?

To evaluate a trained model, you should ordinarily consider its perplexity on held-out data.
Lower perplexity is better. Of course, likelihood-based training is equivalent to seeking low per-
plexity on training data.

I.3 Baselines and Ablations

When you build a system, you should compare it with simpler methods, to make sure that all of
the work you put into it is worthwhile.

In the case of an HMM tagger, a very simple baseline method is to tag each word with its
most frequent tag from supervised training data. If the word didn’t appear in supervised training,
just back off and tag it with the most frequent tag overall.

If you can’t improve over this baseline, where the improvement is evaluated on held-out data,
then there was no point to all of the HMM stuff!

In addition, if you build a fancy system, you should try turning off parts of it to see whether they
helped. This is called an ablation experiment. For example, you could see whether pretrained
word embeddings really improved your accuracy, compared to simple one-hot embeddings.

One good ablation for an HMM is to replace the bigram transition probabilities pA(ti | ti−1)
with unigram transition probabilities pAt(ti). The bigram case is the plain-vanilla definition of an
HMM. It is sometimes called a 1st-order HMM, meaning that each tag depends on 1 previous tag—
just enough to make things interesting. A fancier trigram version using pA(ti | ti−2, ti−1) would be
called a 2nd-order HMM. So by analogy, the unigram case can be called a 0th-order HMM. The
order refers to how far we look back when determining the current tag.

Since the unigram HMM throws away the tag-to-tag dependencies, it is really just tagging each
word in isolation. To be precise, the best path maximizes pA(ti) · pB(wi | ti) at each position i
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separately. But that is simply the Bayes’ Theorem method for maximizing p(ti | wi). So this is
really just the baseline method again—picking the most probable tag for each word! The only
difference is that it uses smoothed probabilities (which might be better, for example if they use
pretrained word embeddings).

Note that a unigram HMM can actually be implemented to be very fast. The most probable tag
for each word type can be precomputed. then the tagger can just look up each word token’s most
probable part of speech in a hash table—with overall runtime O(n). No dynamic programming is
needed.
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