1. (a)

(b)

600.405 — Finite-State Methods in NLP
Assignment 2: Semirings etc.

Solution Set
Prof. J. Eisner — Fall 2000

Assume a,b € K are both identities for ®&. Then a ® b = a because b is an
identity, and a @© b = b because a is an identity, so a = b. The proof for ® is
similar.

The interpretation of ({false,true}, A, A): not one but all paths that read a
string would have to reach a final state for the string to be accepted.

As a special case, a string with no paths that read it is accepted by all the paths
that read it, and therefore would be accepted by the machine! (If this strikes
you as odd, notice that the total weight of no paths is always 0, and 0 = true
here.)

But ({false,true}, A, \) is not a semiring because it violates the last axiom
that (Vo € K)r ® 0 = 0 = 0 ® «. Specifically, take x = false and observe that
false A true # true. It does satisfy all the other axioms.

Remark: Of course one could define a different kind of machine—Ilet’s call it a
co-automaton—that accepts a string iif all paths that read that string accept.
There are two ways to see that the languages accepted by co-automata are
regular:

e Given a co-automaton, we can make it complete and deterministic via the
usual subset construction: the only change is that a stateset is final iff all
of its component states are final. Then we can simply interpret it as an
ordinary automaton—which certainly defines a regular language. Why?
Because a complete deterministic machine will define the same language
(function to { false, true}) whether it's interpreted as a co-automaton over
({false,true}, A, A) or an ordinary automaton over ({ false,true}, Vv, A).
This is because in complete deterministic machines, © and 0 are not used
at all, since there is exactly one path reading each string to sum.



e Given a co-automaton accepting L, we can change its non-final states to fi-
nal ones and vice-versa to get an ordinary automaton over ({ false, true}, V, A)
that accepts the complement —L. So —L is regular and therefore L is too.
Of course, flipping the finality of all states is the usual way to take the
complement of an automaton. It’s precisely because it changes the @ op-
eration that this construction is ordinarily applied only to complete de-
terministic machines, where the change in @ is irrelevant as discussed
above.

Similar arguments show that co-automata accept all regular languages, so
they accept exactly the regular languages, just like ordinary automata.

2. (a) Itreturnsthe number of 1’s in the input string, plus 1. (The “plus 1” is because
the start state is not final.)

(b) It returns the length of the input string, plus 1. (The “plus 1” is because the
stopping weight is 1 at both final states.)
(c) *
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Alternatively, make the start state final but give it stopping weight 0.

(We could drop the formal notion of final vs. non-final states; non-final states
are just those that happen to have stopping weight 0. It is nonetheless conven-
tional (and helpful) to draw the two kinds of states differently in diagrams.)

3. (a) Let’'sreview the pumping lemma: any regular language is closed under “pump-
ing” within a sufficiently long prefix. Pumping the substring v of vvw €<
L yields the strings uw, uvw, wwvw, uwvw... = {w'w : ¢ > 0}. v is called
pumpable if all these strings are also in L and v # e. The pumping lemma
states that if L is regular, 3k(L) > 0 such that every string z € L with at least
k(L) characters has a (non-empty) pumpable substring within its first k(L)
characters.'

'Proof sketch: Take k(L) to be the number of states in some FSA for L. When this FSA reads z, the
accepting path must cycle back on itself within the first k(L) characters. The substring read by this cycle
can be pumped.



Suppose L were regular. Then some substring of a’s in the first k(L) characters
of a* L) would be pumpable; but that would mean inter alia that removing
this substring from a*“)b*(1) would give another string of L, which is false.

(Alternate proof: No substring anywhere in a"a" is ever pumpable. Such
a substring would have to have the form a’d’ (i > 0) so that pumping it
would give equal numbers of each symbol, but pumping it once would give
a"'a'bla'b'b" "t & L.)

(b) Erratum: I meant to say that strings in the language (and in the Dyck language
below) should be accepted with weight 1, not 0.

You all got the answer I intended anyway, which accepts L with weight 1 = 0
in the semiring (R U {occ0}, min, +):

al b/-1

- -

Warning: We have defined recognition in a funny way. This machine does not
recognize a"b" in the same sense in which ordinary FSAs do. In particular,
you could write weighted machines to recognize a"b"c* and a*0"c", but you
couldn’t intersect them to get a machine for a"b"c".

(©)

al b/-1

- -

-

Note that the start state must be final so that € is accepted.

(d) (a/1)"(b/ = 1)

(e) * It's hard to recognize the Dyck language using a deterministic automaton
like the one given above. The idea of having left and right parentheses add 1
and -1 to the weight of the path still makes sense, but the path must somehow
crash if its weight ever goes negative.

Unfortunately the path doesn’t “know” its own weight, i.e., the availability
of arcs cannot depend on the current path weight but only on the state.
Amazingly, we can recognize the Dyck language using nondeterminism (Cortes
& Mohri, forthcoming). The following automaton over (R U {oco}, min, +) as-
signs weight 0 (= 1) to exactly the strings of the Dyck language D:
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Claim that if w € D, then it has a 0-weight path and no negative-weight paths
(so min = 0), while if w ¢ D, then it has a negative-weight path (so min < 0).
These three claims establish correctness of the automaton, and they have very
short proofs.”

If we insist on a deterministic machine, as most of you tried to do, then we
have to arrange by semiring addition rules that a bad path (one that has read
more right than left parentheses) can never recover (get back to weight 1 by
reading more symbols).

What's hard is to do this while satisfying the semiring axioms, such as asso-
ciativity of ®. In particular, a string in the Dyck language may have many
substrings that are not in the Dyck language, such as ) and ))))((

The most straightforward approach is to let the weights be strings of paren-
theses. The ® operation should be able to repeatedly delete substrings of the
form () : so we want ))((( ® N = N . In fact, with this kind of
automatic cancellation, every path weight will be a string of the form ) “( /. It
is clear that paths with weight 1 = ¢ are exactly those that read strings of the
Dyck language.’

One might prefer to reprsent the weight ) ?(7 more concisely as just the or-
dered pair (7, j). So the monoid (X, -) we have just defined on strings is iso-
morphic to (N?, ®) where

- [ g ik
(,7) ® (k,0) = { (i, (j — k;)j+ 0) otherviise

So here are two drawings of the deterministic machine to recognize the Dyck
language: one uses the string notation, the other uses the ordered-pair nota-

2Try it! Use the fact that w € D iff, as one reads successive characters of w, the excess of left over
right parentheses stays > 0 and ends up at 0. Also take advantage of symmetries of the language and the

automaton.

SMathematically speaking, we are defining a monoid (K, -) as the quotient of (X*,-) by the equation
() = e. This is a monoid whose elements are equivalence classes of ¥* under the relation u() v = uv for
any u, v. It is then convenient to denote an equivalence class by its unique member of the form ) ?( 7. Note
that ( has a right inverse ) in this monoid, whereas it does not in £*.
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(b)

(©)

tion. Strings of the language are assigned the weight 1, which is € or (0, 0) in
the respective notations.

)b) ):<1,0>

5 %

Because the machines are deterministic, the definition of & is irrelevant (see
the discussion of problem (1b) above): there is always just one path to sum
over. However, we do need to establish that there is some @ such that the
semiring axioms are satisfied. An @ that always works is set union: if the

multiplicative monoid we want is (KX, ®), then use the semiring (P(K), U, ®’)

where A®' B Y {a®b:a € A, be B}. The usual semiring for string-to-string

transducers is lifted from the monoid (¥*, ) in exactly this way.

Specialized idiosyncratic semirings like this one can have expensive & and
® operations (so be careful). They are also of limited use, since machines
over different semirings can’t be composed or intersected with one another.
However, the quasi-determinization and minimization algorithms do apply.
A machine like this one is also useful for illustrating that a computation can
be performed with little memory (here, a finite state and two unbounded in-
tegers) and—when the machine is deterministic—bounded lookahead.

a b a b

@a@b@

The minimization has 3 states. Note that is not just a matter of removing
the unreachable state above (which you can do with fsmconnect in the




FSM package), since the machine above is nondeterministic. Determinization
yields the following (and minimization does not change it further):

O

(d) The regexps X*ax* and ¥*bX* can be realized by 2-state machines. The inter-
sected language consists of all strings containing both a and b, in either order.
This requires 2 - 2 states to remember whether a has been seen yet and also
whether b has been seen yet.

Another nice answer is that (a™)* N (a™)* = (a™™)* if n and m happen to be
relatively prime. The minimal automata for these languages are simple cycles
with n, m, and nm states respectively.

(a) _ o _ -
5
(- brh @ ° gp @
(b)
L<R1) - {(ba h)a (Clb, gh)a (aaba ggh)a sy (bbv hh)v (abbv ghh)v (aabb7 gghh)7 .- }
{(a'v’,g'W) :i>0,5 >0}
L(Ry) = {(g,p),(gh,pq), (ghh,pqq), ..., (99,pp), (99h, ppq), (99hh, ppaq), ...}
= {(¢'W,p'¢):i>0,5 >0}
(g

= {(9,p),(99.pp), ..., (gh,pa), (g9h,ppq), ..., (ghh,pqq), (9ghh, ppaq), ...}

(Notice that the latter ordering for L(R;) matches the ordering for L(R;) bet-
ter.)

(©)

L(Rl © R2) - {(abJPQ)v (aab7pp(D7 BRI (abbJPQQ)v (aabb>pPQQ)7 . . }
= {(aV,p'¢’):1>0,j >0}



6.

(d)

(a)

o

Finite-state machines are not very good at moving or copying substrings around,
because they need special states to remember them.One could extend the reg-
ular expression language, or the automaton formalism, with registers that can
save substrings for later emission. If there are finitely many registers of finite
size, the result is still finite-state. The following regexp seems likely to be
broadly useful for solving such problems:

define Paraa| b b|cc|dd|]ee|ff|lgg]|hh.,;
This centralizes the pain of listing cases. It's now easy to get funky:

define Triple Pair ? & ? Pair; # aaa,bbb,...
define PairX [Pair .0. [[..] -> X || ? _ ?]]l; # aXa,bXb,...

define Palindrome3 [PairX .o. [X->7?]].l; # a?a,b?b,...
define Palindrome5 [PairX .o. [X->Palindrome3]].l;# radar, etc.

define Redup4 Palindrome3 ? & ? Palindrome3; # mama, etc.

Pair starts you off with one state per letter; then the automata operations let
you build bigger memories.

The Pig Latin problem could be solved as follows, starting with Pair and
Letter only:

define PairSkip Pair ./. ?; # a?*a,b?*b,...
define MoveChar ?* 0:? .o. PairSkip .0. ?:0 ?* # 1st char to end
define Vowel alelilo|u;
define Cons Letter - Vowel;
define PigWord Letter+ .0. [Cons ?* .0. MoveChar 0:{ay}]
| Vowel 7?%];
define NonWord \Letter+;
define Latinize (NonWord) [PigWord NonWord]* (PigWord);

Remark: One would really like to simplify the last 3 lines to this:

define PigWord Cons Letter+ .0. MoveChar 0:{ay};
define Latinize @PigWord || EdgeOfWord _ EdgeOfWord;



(b)

(©)

where the last line is intended to generalize A @-> B || L _ R (directed
replacement). It is meant to denote a transducer that applies PigWord as of-
ten as possible throughout its input, using greedy left-to-right longest-match
to pick out substrings of the input that are in the domain (upper language)
of PigWord and are flanked by EdgeOfWord . This construct is not available
in xfst, but could be built up as a macro in the FSA utilities (anyone want to
try?).

For the record, everyone in the class wrote machines that explicitly copy a
particular consonant from the start of a word to the end: for example,

[..] -> bay || EdgeOfWord b Letters _ EdgeOfWord
or
b Letters -> ... bay || EdgeOfWord _ EdgeOfWord

where the capitalized symbols are the names of simple regexps. You then
composed these together and composed the result with a transducer that
deleted word-initial consonants.

As a matter of convenience, it was not necessary to compose the replacement
rules pairwise as many of you did. The compose command will compose an
entire stack of machines. As one of you noted, you could also have written all
the replacements in parallel, like this:

b Letters -> ... bay, ¢ Letters -> ... day|| Edge _ Edge

Also, the directed replacement operator ->@ carries out longest-match re-
placement, so it would have saved you from specifying EdgeOfWord as the
right context.

bcdefg {} (C...notay)

quay — {} (C...Vay)
abcdefg << {abcdefg } (V...notay)

aquay {aquay } (V... Vay)
belay {lba } (C...Cay)
ebay «—~ {be,ebay} (V...Cay)

Compose three copies of your movement transducer. Each copy moves an
initial consonant (if present) to the end of the word.

This is a little tricky, since you need to append a single copy of ay if 1,2, or 3
(but not 0) consonants were moved to the end.



(d)

A clean solution: Start out by appending ay to all words that start with a
consonant. Write the movement transducer to replace in the context Edge-
OfWord _ a y EdgeOfWord .

Other approaches: There are many solutions that start by introducing spe-
cial symbols, known as marks, which are later deleted. For example, one
might mark consonant-initial or vowel-initial words and make the subse-
quent transducers sensitive to these marks. Another way to use marks: have
each movement transducer append a mark Y after every moved consonant,
and then you can fix things up after all the movements, replacing final Y’s
with ay and deleting the others.

No finite-state machine can remember an arbitrarily long string of conso-
nants; it has only finitely many states with which to remember things!

There is a small escape hatch if the rest of the word is guaranteed to be short.
We are trying to swap the initial consonant string, u, with the rest of the word,
v. We have seen that bounded u can be swapped with unbounded v. The con-
verse is also true—at least in a nondeterministic machine: (i) Guess a bounded
string vy and write it on the output. (ii) Remember what we wrote by going
to a state associated with vy. (iii) Read v and copy it to the output. (iv) Read
the real v and crash if v # vy.

What FSTs can’t do (but Perl regexps can) is to swap unbounded strings. For
example, you can argue in the fashion of the pumping lemma that no finite-
state transducer can transduce a'b’ — b’a’ for all i, j € N. Try it!

A couple of you wanted to compose unboundedly many copies of your move-
ment FST. But that does not yield another FST: it is much more powerful.
A Turing machine can be represented by a simple FST on strings such as
abbab3aab (representing tape abbabaab in state 3 with the tape head at the po-
sition of the 3). The FST is designed to carry out a single move of the machine
(deterministically or not). The composition of unboundedly many copies (if
it existed) would compute the function described by the machine, but this is
not necessarily a rational function— it may not even halt!



