600.325/425 — Declarative Methods
Homework 4: Mixed Integer Programming

Spring 2017
Prof. Jason Eisner

Due date: Wednesday, April 26, 2 pm

This homework is about Mixed Integer Programming. You will be using.the ZIMPL modeling language
and the SCIP solver.

Instructions

Academic integrity: As always, the work you hand in _should be your own, in accordance with the
regulations at http://cs. jhu.edu/integrity-code.

325 vs. 425: Problems marked “425” are only required for students, taking the 400-level version of
the course. Students in 325 are encouraged to trysand solve them as well, and will get extra credit for
doing so.

Getting started: To obtain the homework, run the following on a Unix terminal (e.g. ugrad ma-
chines):

wget https://www.cs.jhu.edu/” jason/325/hw4.zip
unzip hw4.zip

Handing in your work: You will submit'a written part and a programming part on Gradescope.
Please do not put your name in either part.

e For the written part: Please submit to Homework 4 Written your solutions to each problem.
After submitting, please mark the area for each question using Gradescope’s interface.

e For the programming part: In your handout directory, run
./make_sol.sh

This will check for the following files: knapsack.zpl, events.txt, homeworks.txt, schedule.zpl,
README, sudokul.zpl, sudoku2.zpl and create a zipped file. Submit this zipped file to Homework
4 Programming on Gradescope.

You are allowed unlimited submissions, but the problems will not be graded until after the deadline. Please
try submitting early (even if it is incomplete) to ensure your output formats are correct.



1. [8 points| Log onto one of the ugrad machines and look at the example ZIMPL programs in the
handout directory. The short transport programs were shown on slides in class, and show succes-
sively better ways of expressing the same small problem in ZIMPL. You can find the ZIMPL manual
at http://zimpl.zib.de/download/zimpl.pdf, and I recommend looking through it as you do this
homework.

Now let’s try SCIP.! Type scip (or rlwrap scip) to start up the interactive interface? of the SCIP
solver. Type help to see what commands are available in the interactive interface.

Let’s solve the transport4 problem as follows. First type read transport4.zpl to load the problem.
To see the variables and constraints in their internal form (translated from ZIMPL), type display
problem (or just di prob®). Next, type optimize (or opt) to run the solver. The solver will show
its progress as it proceeds.*

You probably now want to look at the solution. Type display solution (or just di so) to see the
objective value and the optimal solution; note that variables assigned a value of 0 are not listed. For
each variable that contributes to the linear objective function, its coefficient in the objective function
is also shown.

Answer in your writeup:

[1 point] What is the minimum transportation cost that can be achieved?
b

(c
(d

(a)
(b) [1 point] In this optimal solution, which producer is not operating at full capacity?

) [1 point] Which consumers are using multiple suppliers to meet their demand?

) [1 point] What is the most expensive (cost per unit) transportation route that is actually
getting used?

Type display statistics to learn more about what the SCIP solver did on this problem. You can
see from all of the zeros that SCIP didn’t have to do much of anything! Since this is just a plain
linear programming (LP) problem, SCIP merely had to call the underlying LP solver (namely CLP)
a single time to solve it.

Note: If you want to do the above sequence of commands without going through the interactive
interface, just type scip -f transport4.zpl at the Unix command line.’

Answer in your writeup by studying the “LP” section of the statistics:

(e) [1 point] How many iterations (i.e., iterations of the simplex method) did the LP solver need
to solve this problem?

Tt is installed on the ugrad and masters machines. If you want to install SCIP on your own machine, it is at http:
//scip.zib.de/download.shtml. Just downloading a binary executable file is probably easiest. Any version compiled with
ZIMPL support should be okay. The version installed on ugrad and masters is compiled with CLP to use as its LP solver,
but other choices of solver ought to work too.

20One can also call SCIP as a library directly from C+4+.

3Commands in SCIP can be abbreviated to unambiguous prefixes.

40On a big problem when the solver is taking too long, you can hit Ctrl-C to stop it partway through. (Or you can type
presolve instead of optimize to tell it to stop itself after the presolver stage.) You can then use the display commands to
look at the solver statistics and the best solution so far (if any). To continue after Ctrl-C, type opt again; or to start over,
type newstart and then opt, which will restart the solver but will use any conflict clauses already learned.

50r you can also specify a different sequence of interactive commands via the command line, e.g.,
scip -c ’set display verblevel 0’ -c ’read transport4.zpl’ -c opt -c ’display solution’ -c quit


http://zimpl.zib.de/download/zimpl.pdf
http://scip.zib.de/download.shtml
http://scip.zib.de/download.shtml

You can use other display commands to see more details of what the SCIP solver did with this
problem, as well as the many settings that controlled the solver’s behavior. Type display to see
what those commands are.%

For example, display transproblem shows a preprocessed version of the problem that was used
internally. You will notice that this uses a different set of variables (whose names start with t_, for
“temporary”), and that the variables’ domains have been reduced (by constraint propagation or by
the presolver).

Answer in your writeup:

(f) [1 point] The reduced domains indicate that Alice will send at most 400 units to consumer 2,
while Bob will send at most 300 units. Explain how these limits can be easily deduced from the
problem in transporté4.zpl.

(g) [2 points] Finally, what happens if you allow negative values? By default, variables are con-
strained to be >= 0. Try modifying the line
var send[Producer*Consumer] ;
to
var send[Producer*Consumer] >= -10000;
Discuss the solution that is found in this case.

2. [27 points] Now let’s try a little simple ZIMPL programming. We’ll address the so-called “KNAPSACK
problem.” You are a burglar in an empty house, and you have to decide how to fill your knapsack.
It only holds 80 pounds, so you can’t take everything in the house. Which items should you take?

e You could take the most valuable items. But some of them (like the piano) are too heavy.

e You could take the lightest items. But some of them (like the stale marshmallow under the
table) are not very valuable.

e You could focus on the items that have the greatest value per pound, starting with the jewelry.
This is a good compromise, but still not quite right. You might prefer 20-pound items over 21-
pound items because you can fit 4 of them into your 80-pound knapsack rather than 3 ...even
if the 21-pound ones happen to be slightly more valuable per pound.

Each item has a value and a weight. The point is that there are interesting tradeoffs here. Taking
some items may block you from taking others. So we have a combinatorial optimization problem, of
the sort covered in this class.

It turns out that if all of the weights are small integers (e.g., from 0 to 80), then there is a fast
dynamic programming algorithm for the KNAPSACK problem. But in the general case, the problem
is NP-hard to solve exactly.

Let’s try using integer linear programming. SCIP doesn’t know anything about dynamic program-
ming, but at least it can attack KNAPSACK by using its usual generic branch-and-cut strategies. This
question examines whether that approach is successful on this problem.

(a) [0 points] Read the knapsack.zpl file. Complete the ZIMPL program by filling in the missing
objective function and the missing constraint. This should be easy.

5Type set to see how to change the settings. Type write to see what you can write to a file in a format for other automatic
programs to read.



(b) [1 point] Answer in your writeup: How fast does this program (under SCIP) solve the 10,000-
item problem provided in knapsack.txt? (Note that the filename knapsack.txt is hardcoded
into the program.) Again, this is being done without dynamic programming.

(c) [2 points] You can use display solution to see the value of the objective function, followed
by the very long optimal assignment. What does the objective function represent? What does
the optimal assignment represent?

(d) [4 points] Save the solution you just found to a file by typing write solution soll. Now
change the declaration
var take[I] binary;
to
var take[I] <= 1;

Solve this changed problem, which is a pure LP problem with no integrality requirements, and
do write solution sol2.
Now at the Unix command line, type comm -3 soll sol2. For sorted files, this lists all the
lines that appear only in soll, and all that appear only in sol2, with the latter indented.
i. Study the differences, and describe in English what has changed between the two solutions.
How is s0l12 packing the knapsack differently and why?
ii. How many of the 10,000 take variables turned out to be integers in sol2 even though they
weren’t required to be?
iii. Can you give an intuition as to why this is? (Hint: What would you expect about the
value-to-weight ratio of the taken items in the non-integer case?)
iv. How would you expect this property of sol2 to affect the efficiency of sol11?
When you are done answering the above questions in your writeup, change the program back
to a mixed integer program.

(e) [4 points] You would like to know how many items are in the optimally packed knapsack, what
their total value is, and how much room is left in the knapsack. One way to do it would be to
write a program to analyze SCIP’s output on soll. However, there is an easier way.

Introduce variables count, totalvalue, and spareweight into your ZIMPL program and con-
strain them so that they answer the three questions above, respectively. Note that by default,
variables are constrained to be >= 0. This should allow you to simplify your code.

Now solve the problem again (using optimize). What are the values of those three variables? To
find out without printing the whole assignment, type display value count, display value
totalvalue, and display value spareweight.

Note: It may be easier here and below to type in all the commands on a single line:

read knapsack-solution.zpl opt disp val count disp val totalvalue disp val spareweight

(f) [2 points] Does the solver do the same thing every time? Solve the problem again without
changing the program. You can either start SCIP again, or use the read command to reread
the problem, or use the newstart command. Then you can type opt again.

Were the solver statistics (display statistics) the same as last time? Why or why not?
Were count, totalvalue, and spareweight the same? Why or why not?

(g) [3 points] It will be easier to unpack the knapsack when you get home if it contains fewer items.
Change the linear objective function so that it encourages a large totalvalue (as before) but
also encourages a small count.



What is your new objective function? How does this affect the values of count, totalvalue,
and spareweight in the optimal solution? Why?

[3 points| Argue that the previous problem is actually just solving a different KNAPSACK
problem. That is, explain how your fancy revised problem that encourages fewer items could
be reduced to an plain old KNAPSACK problem and solved with an plain old KNAPSACK solver.

[4 points| Let’s place one additional constraint on the program, so that it is no longer a plain
old KNAPSACK problem. Some items are radioactive. For safety, you must ensure that the total
radioactivity of the knapsack is <= 20. The radioactivity of each item is given in the fourth
column of knapsack.txt.

(Since the radioactivity is a real number rather than an integer, a dynamic programming ap-
proach wouldn’t work at all here.)

Add this constraint to the ZIMPL program. So how fast is SCIP on this problem? How does the
addition of the radioactivity constraint change count, totalvalue, and spareweight? Why?

[4 points] Submit your final program as knapsack.zpl.

[extra credit] Study the solver output and try to figure out where the solver is spending its
time on this problem. You might be particularly interested in the output of optimize, disp
displaycols, disp stats, and disp transproblem. You could comment on things like the
shape of the branch-and-bound tree, the total number of LP (simplex) iterations, the effective
presolving and propagation strategies, etc.

3. [21 points] Here’s a fairly typical kind of MILP problem, so I'll let you work out the details. (A
version of this problem appeared on a previous Declarative Methods exam.)

It’s the end of term and you have too many things to do! You decide to use a MILP solver to plan
your time. Here’s what’s on your mind as you model the problem:

(a)

[0 points] You decide to plan your time for the next week. Hint: start with by defining a set
set Day := {1..7%};

and assume that each day <i> in Day consists of 24.0 hours.

[0 points] For each day, you need to decide how many hours to spend on each of work, sleep,
and play. (There is no reason to require these numbers to be integers.)

[4 points] You need sleep. In particular, in any 3-day period, you must get at least 18 hours of
sleep. (In your writeup, explain how you interpreted this constraint for 3-day periods that are
only partially contained within the week. There is more than one reasonable approach.)

[4 points] Subject to this hard constraint, your objective is to maximize the amount of Fun
you have. Ordinarily, every hour of play will give you base_fun_rate points of Fun:

param base_fun_rate := 1;

However, each day, there exist various special events (such as parties or movie screenings) that
can supply you with Fun at a higher rate. If you attend an event, you must attend the entire
event.

You should make a short file events.txt with one row for each special event, listing the relevant
information about the event. Hint: Each special event has a string name, takes place on a



particular day, consumes a certain amount of play time, and provides you with a certain rate of
Fun per hour.

What would the solver do if an event’s fun rate is lower than base_fun_rate?

(e) [4 points] Unfortunately, you also have homework. You should make a short file homeworks . txt
containing the relevant information about each homework. Each homework has a string name, is
due on a particular day, requires a particular number of hours to complete, and has a particular
penalty rate.

If an homework is due on day i, then its hours can be spread out arbitrarily over the days
1,2,...,1 (but not the days later than il).

There’s not a hard constraint to do all of the homework. If an homework requires 10 hours but
you spend only 8 hours total on it, then you’ll just get a lower grade—but this isn’t Fun. For
example, if the penalty is 3 points of Fun per skipped hour, your penalty for skipping the last
2 hours of this homework will be 3 x 2 = 6 Fun points.

(Notice that you might end up with a penalty on day 4 because you chose to party rather than
work on day 2.)

Suppose some parts of the homework are worth more than others. Can you still encode this
situation using the approach above, or do you need a more complicated model?

(f) [5 points] You are a less efficient worker when you get less sleep. We say that you have a
sleep deficit on day i if you have had less than 24 hours of sleep total over the 3-day period
i—2,i—1,i. (Again, in your writeup, explain how you interpreted this constraint for 3-day
periods that are only partially contained within the week.)

On days when you have a sleep deficit, your work is only 75% as efficient as usual. For example,
it takes you 8 hours to do 6 hours’ worth of work.”
(The 75% number should probably be a named parameter, in case you want to play with it.)

(g) [4 points] Hand in your commented ZIMPL model, schedule.zpl, along with data files
events.txt and homeworks.txt that contain the parameters of an interesting scheduling prob-
lem. In addition, hand in a README which states how to run the solver from the command line.
Important: Your data files should result in a non-trivial solution. In other words, the optimal
schedule for your inputs should illustrate the tradeoffs in the situation. This schedule says you
sometimes get enough sleep (no deficit) but not always; you complete some homeworks but not
all of them; you do some of your work before the day it’s due but not all of it; and you go to a
few special events but not all of them. Just like life! (There are no constraints that explicitly
require this kind of non-trivial solution; I'm just saying you should find sample parameters that
happen to elicit such a solution.)

(h) [2 points] In your writeup, discuss the solution that you found.
(i) Extra credit #1: Add a notion of late days. For example, you have a total of k late days that

you can allocate over all the homeworks. Submit a modified version of your schedule.zpl with
discussion.

(j) Extra credit #2: Instead of having a binary notion of “sleep deficit,” devise a more plausible

function to describe how your work efficacy falls off nonlinearly with as the amount of sleep
you’ve gotten recently. Submit a modified version of your schedule.zpl with discussion.

"So if an homework requires 7 hours, then it’s not enough to spend 7 hours on it if you have a sleep deficit during some of
those hours. In fact, even if you spend 8 hours, all on sleep deficit days, then you skipped the last 2 hours of the homework
and will be penalized as above.



(k) Extra credit #3: Instead of considering just a week, plan your time for the next year (365
days). Essentially the same model schedule.zpl, but you will have to construct longer input
files to describe the events and homeworks, for example by using a script with a random number
generator. In your README (not the writeup), state how to generate these files and describe
what assumptions you made. Do you see any evidence of a phase transition in runtime (as with
random 3-SAT) as the problem goes from being underconstrained to overconstrained?

4. [19 points| You may know about Sudoku puzzles (if not, look online to make sure you understand
the rules!). The idea is to fill the cells of a 9 x 9 grid with the digits 1-9, subject to the following
constraints:

e In each row, each of the 9 digits appears exactly once.
e In each column, each of the 9 digits appears exactly once.

e In each of the nine major “blocks” (3 x 3 squares), each of the 9 digits appears exactly once.

Usually a few of the numbers are given, i.e., a few cells are constrained to have particular values.
Then you have to fill in the rest of the cells consistent with the above constraints. Many people find
this addictive.

It is pathetically easy to solve Sudoku puzzles published for humans by using constraint programming
approaches (although Sudoku is NP-hard in general, and there is some interesting work on designing
powerful propagators for the general problem). So we’ll give the solver some harder challenges below.

For generality, let’s deal with n? x n? puzzles whose cells must be filled with the numbers 1 through
n?; taking n = 3 gives the usual case.

(a) [5 points] You can find an incomplete ZIMPL program in sudoku.zpl. Finish it. How long
does SCIP take to solve the “very hard” problem in sudoku.txt?

To view the result, pipe the output of SCIP through the sudoku-decode program that is pro-
vided. That is, at the Unix command line, write

scip -f sudoku.zpl | ./sudoku-decode

Submit your program as sudokul.zpl.

(b) [1 point] Include the decoded solution in your writeup, checking that it does indeed satisfy the
requirements.

Now let’s have a little fun by constraining the solution not with some given numbers, but instead in
other entertaining ways.

Copy your program to sudoku2.zpl. Delete the givens constraint that forces the assignment to
respect the givens.

Instead, add a rotsymm constraint that forces the assignment to be 180° rotationally symmetric. (For
example, the lower right corner should have the same digit as the top left corner, and in fact the
bottom row should just be the top row backwards.)

The solver should discover that the problem is infeasible (that is, UNSAT).

(c) [1 point] In your writeup, give a simple argument in English that demonstrates that no valid
9 x 9 sudoku can be 180° rotationally symmetric. (Hint: Think about the constraints being
placed on the central 3 x 3 block.)



(d) [4 points] The previous argument doesn’t apply to the n = 4 case, however, since none of the
sixteen major 4 x 4 blocks of a 16 x 16 grid is in the center.

So is it possible to have a rotationally symmetric 16 x 16 sudoku? Use SCIP to find out! If yes,
include the decoded solution in your writeup. If it is still UNSAT, give a different argument in
English that explains why.

Either way, hand in the program as sudoku2.zpl. How long did SCIP take to finish?

(e) [4 points] Even though it’s not possible to have a rotationally symmetric 9 x 9 grid, use SCIP
to find one that is as close to rotationally symmetric as possible. Specifically, you should try
to minimize the number of cells that are not equal to their rotational counterparts.® How close
can you get to rotationally symmetric?

(Hint: You may find vabs to be helpful here (see section 4.13 of the ZIMPL manual).)

(f) [2 points] Your solution to the previous problem is only one of a family of symmetric solutions.
For example, if you changed all the 5’s to 8’s and vice-versa, you would still have a valid Sudoku
that is as close to rotationally symmetric as before. In fact there are n! different ways to permute
the digit values, none of which change the quality of the solution.

Add a symmetry-breaking constraint no_permute_digits that blocks these permutation sym-
metries. Explain your strategy in your writeup, and report whether adding this constraint
speeds up SCIP or slows it down (in principle either is possible). Hand in your program as
sudoku3.zpl.

(Hint: Think about getting the first row into a standard form.)

(g) [extra credit] There are other symmetries that one ought to break. For example, permuting
the rows or columns in certain ways is guaranteed to preserve the validity of the Sudoku and
the amount of rotational symmetry. Add constraints to break these symmetries as well. Hand
in your program as sudoku3_ec.zpl and discuss in your writeup.

(h) [2 points] Now go back to n = 3. Suppose you allow the x variables to be real numbers in
the range [0, 1], rather than requiring them to be integers. Now you could have a solution that
satisfies all the constraints including rotsymm. What is the “simplest” such solution? (There is
no need to change the program or run SCIP; just think about it!)

(i) [extra credit] Construct some other cool sudoku grids and show them off! For example, you
could try to require each n x n block to be a magic square (so that each row and each column
within the block has the same numeric sum). Or you could require additional “pretty” sets of
n? cells—mnot just rows, columns, and blocks—to contain the numbers 1 through n? exactly once
each.

5. [425; extra credit for 325] [15 points| The point of this question is to give you some practice in
thinking about the dual of an LP problem. Typically, the dual problem will have some interesting
interpretation that is not so obviously related to the original problem. (E.g., the dual of max-flow
can be interpreted as min-cut, and vice-versa.)

Returning to the standard KNAPSACK problem (no radioactivity), consider the LP relaxation (i.e.,
drop the integrality constraints). This is a maximization problem with n variables (x1,...z,) and

8You can get a solution that is prettier (in my opinion) if you instead try make each cell be numerically close to its rotational
counterpart, so that if the cell is 3, then its rotational counterpart should best be 2 or 4 (rather than 9) if it can’t be 3. Try
it if you like—it’s only a very small change!



n+1 constraints (other than the implicit constraints x; > 0). One constraint gives the capacity of the
knapsack, and n constraints have the form x; <1 (since the original ILP problem had z; € {0,1}).

(a) [1 point] Why can the relaxed LP problem get a higher value of the objective than the original
LP problem? Specifically, how does it make your job easier as a robber with a physical knapsack?

(b) [4 points] Derive the dual LP problem. Since duality swaps constraints and variables, and swaps
max and min, this should be a minimization problem with n + 1 dual variables (yo,y1,---Yn)
and n dual constraints. Starting with the primal problem, you should be able to mechanically
write out the dual constraints and dual objective.

Write your answer in mathematical notation or in ZIMPL. (If you write it in ZIMPL, you can
actually try it.)

(c) [1 point] What can you say about the minimum value of the dual objective? (Will it equal the
weight, or the value, of the optimally filled knapsack? Higher? Lower?)

(d) [2 points] What interpretation can you give to dual variable yo?

Hint: Note that yg is the shadow price for the capacity constraint, in other words, the derivative
of the primal objective with respect to the capacity. Figure out what this means in terms of the
knapsack.

Further hint: The following terms may help you phrase your answer. Define the density of each
item to be its value per pound. Given the optimal solution to the LP relaxation, there is some
item that you’d most like to add “next” (or continue adding if it is already partly added) if the
capacity were to increase slightly. Call this the borderline item.

(e) [2 points] What interpretation can you give to dual variables yi,...y,?

Hint: Again, it helps to start by regarding these as shadow prices, and then translating that
idea to the physical setting of the knapsack problem. For y;, what increases slightly is not the
knapsack capacity, but rather something (what?) that is related to item .

(f) [2 points] Suppose for the sake of argument that yo is fixed to some constant. Now consider
dual variable y; where 1 < i < n. There will now be two constraints on y;, including the implicit
constraint y; > 0. When the dual objective is minimized with respect to these constraints, what
value will y; take on (as a function of yy)? For which values of y; will y; > 07

(g) [3 points] The above question shows that once yg is chosen, the values for the other y; will be
fully determined. The remaining question is how yg will be chosen.

But you've already characterized the optimal value of 39 in your answer to question 5d.

What about the dual problem forces gy to this optimal value in the dual solution? Specifically,
what prevents yg from being too big? What prevents it from being too small?

What would these too-big and too-small values of yg correspond to in the primal setting?

Note: Originally, instead of Sudoku, this homework’s main problem was going to be about graph
drawing—choosing positions in the (z,y) plane for the vertices and edges of a directed graph so that the
edges tend to (1) be short, (2) point downward, (3) avoid crossing other edges, (4) avoid bending too
much. This combines several NP-hard challenges into a single mixed integer programming (MIP) problem.
Other aesthetic criteria can easily be incorporated into the program. This is a harder but very satisfying
problem that really exercises the MIP solver, with binary, integer, and real variables, and ought to produce
cutting-edge results in graph drawing (though not necessarily fast). Unfortunately, I wasn’t able to get
graph data and visualization tools for you in time.



