600.325/425 — Declarative Methods
Homework 3: (Constraint) Logic Programming

Spring 2017
Prof. Jason Eisner

Due date: Friday, April 7, 2 pm

This homework consists of some simple programming exercises. The main'goal is to get you comfortable
doing logic programming and constraint logic programming, not to attack larger-scale problems as in
previous homeworks.

As you know, you have already written Prolog programs for this class; ECLPS¢ is built by adding
features to Prolog, and in this homework you will continue to usé ECL!PS® as your Prolog interpreter. Be
especially sure to do problems 7, 8, and 11. In the next homework, we may try to obtain more efficient
solutions to those problems, using dynamic programming rather than backtracking.

Instructions

Academic integrity: As always, the work you hand in sheuld be your own, in accordance with the
regulations at http://cs. jhu.edu/integrity-code. Partners are not allowed for this homework.

325 vs. 425: Problems marked “425” are only required for students taking the 400-level version of
the course. Students in 325 are encouraged to try and solve them as well, and will get extra credit for
doing so.

Getting started: To obtain the homework files, run the following on a Unix terminal (e.g. ugrad
machines:

wget https://wwwics.jhu.edu/” jason/325/hw3.zip
unzip hw3.zip

The resulting hw3 directory includes some “stub” implementations that you will complete.
Testing your code: You can run some simple tests on your completed implementations with

eclps < runtests.ecl
This pipes a series of queries to the REPL (so you don’t have to type them all out yourself). The provided

tests are extremely limited and you should write a few more of your own.

Handing in your work: You will submit a written part and a programming part on Gradescope.
Please do not put your name in either part.

e For the written part: Please submit to Homework 3 Written a PDF with each problem on a
separate page in your submission. Note that every problem (1 .. 11) has at least one written
question. After submitting, please mark the area for each question using Gradescope’s interface.



e For the programming part: In your hw3 directory, run

./make_sol.sh

This will check for the following files: warmups.ecl, cut.ecl, more_lists.ecl, trees.ecl, runtests.ecl
and create a zipped file. Submit this zipped file to Homework 3 Programming on Gradescope.

You are allowed unlimited submissions, but the problems will not be graded until after the deadline. Please
try submitting early (even if it is incomplete) so that Gradescope can check that your output formats are
correct.

Warmups

[37 or 39 points]

1. For each of the following pairs of terms, what new term—if any—is found by unifying them? And
what variable bindings are produced by the unification?

(Hint: A term like foo(penguin,X,X) can be regarded as standing for the infinite set of terms
that could be obtained by instantiating its variables, such as foo(penguin, any(old,subterm),
any (0ld, subterm)). Then unifying two terms corresponds to intersecting two sets.)

(Hint: In each case, you could use ECLPS® to check most of your answer.)

(a) [2 points] foo(X,X,Y) with foo(A,B,B)?
(b) [2 points] foo(X,Y) with foo(4,B,C)?
(¢) [2 points] [X,2,X,4,Y] with [1,A|B]?
(d) [2 points] £(A,g(B)) with £(h(D),E)?

2. (a) [2 points] Write a predicate greater_than/2 that compares two Peano integers. For example,
greater_than(s(s(z)),s(s(z))) should return No, but greater_than(s(s(s(z))),s(s(2)))
should return Yes.

Your program should only be a very few lines. In fact, that is true for all the programs on this
homework. But you will really have to think declaratively to figure out what those few lines
should be!

Note: This definition would actually work:
greater_than(A,B) :- add(B,s(_),A).

In other words, A > B if you can get from B to A by adding some positive number. However,
for purposes of this question, just write greater_than directly and as simply as possible. Don’t
call add or anything else.

Note: Assume that the documentation for your predicate says “This predicate should be called
with Peano integers as its arguments. There is no guarantee about what the results will be
otherwise.” (This bit of documentation is known as a contract with the caller—if a func-
tion/method/predicate is called in a certain way, then it will guarantee certain things about
the results. A type system could help prevent a caller from violating the contract, e.g., it could



prevent the caller from passing in anything but a Peano integer. But standard Prolog is un-
typed. This is because a variable X means “any term”—there is no way to create a variable that
is only capable of unifying with Peano integers.)

(b) [2 points] What is the runtime of comparing ground Peano integers greater_than/2, in terms
of the magnitudes n, m of those integers?

(c) [2 points] After testing your predicate in mode (+,+) as above, also try the other basic modes
(+,), (-,+), and (-,-). What happens in each case? Explain.

(d) [2 points] The query
greater_than(s(A),B), greater_than(s(B),A). % A+1>Band B+1> A
enumerates infinitely many answers through backtracking:

A=z, B=2z;

A =s(z), B=s(z);

A = s(s(z)), B = s(s(=2)) ;

A = s(s(s(2))), B = s(s(s(2))) ;

and so on. In each answer, A and B are the same term.

It is tempting to think that this is one of those cases where the standard Prolog solver is just
not all that smart, and that a smarter solver would just return A=B and leave it at that.
However, in fact that would be the wrong conclusion. Any correct Prolog solver would have to
enumerate solutions in this case. Why?

(e) [2 points] [425] When Prolog answers
A = s(s(z)), B = s(s(2)) ;

in the previous question, do A and B point to the same copy of s(s(z))) in memory, or to
two wholly disjoint copies of s(s(z)) in memory, or to two partly shared copies (e.g., with the
same z but different s’s)? To answer this, you should hand-simulate on paper the steps that
the Prolog solver goes through when answering this query.

Remark: In Java, we would say that A.equals(B) because both A and B refer to s(s(z)): they
“compare as equal.” But in Java, we could also ask whether A==B: A and B actually the same
object in memory? That’s what is being asked here.

This is an important question in Java, since if they are the same object, then modifying A would
change B as well. In Prolog, the question doesn’t matter (except for efficiency) because you
can’t modify ground terms like s(s(z)) anyway, even by unification. And as far as I know,
there is no way to ask the Prolog interpreter whether two ground terms are the same object in
memory. But I am asking you to figure it out based on your knowledge of the Prolog solver.

3. (a) [2 points] Write a predicate duplicate/2 that duplicates every element of a list. Query-
ing duplicate([a,b,c], L) should return L = [a,a,b,b,c,c], and querying duplicate (M,
[a,a,b,b,c]) should fail (i.e., answer No).

(b) [1 point] What should be returned by the query duplicate(M, [£(3),f(X),X,Y])? Try it
and see if it works!

! Assume that your version of Prolog doesn’t go to any special trouble to save space by finding and reusing old copies of
ground terms. Although there are probably Prologs that do this, using a technique called “interning” or “hash consing” ...



4. (a) [4 points] Write a predicate swap/2 that nondeterministically chooses two adjacent elements
in a list and swaps them. Querying swap([a,b,c,d], L) should nondeterministically bind L
to [b,a,c,d], [a,c,b,d], and [a,b,d,c]. (That is, you should get these three lists when you
repeatedly press semicolon.) What should swap([a],L) or swap([],L) do, and why?

(b) [2 points] Consider this definition:

mystery(W,Z) :- swap(W,X), swap(X,Y), swap(Y,Z).

What does this do? How many values for L will be returned by mystery([1,2,3,...n],L)7
Are all of these values different from one another? Why or why not?

5. (a) [4 points] Write a Prolog constraint pow(A,B,C) that is satisfied iff ¢ = AB. You may assume
that A, B, and C are all Peano integers.
You should use add (A,B,C) and mult(A,B,C), which we defined in class. However, please state
the exact definitions you are using, because the runtime in a later question will depend on the
exact definitions you choose. (Some versions are more efficient than others!)

(b) [2 points] How will your program answer the query pow(z,z,C)? In other words, what is 0972
(¢) [2 points] What will your program answer if A, B, and C are not all Peano integers?

(d) [3 points| In general, how efficient is it to answer a query of mode pow (+A,+B,-C)? (This mode
means that A and B are ground terms representing Peano integers, whereas C is a variable that
Prolog must fill in.) What is the Prolog solver doing internally? Give the asymptotic complexity
of this query as a function of the integers A and B.

(e) [3 points] How would you use your pow constraint to ask about roots or logarithms? What
happens when you try these queries out, with the above definitions? What is the Prolog solver
doing internally?

The Prolog Cut

6. [10 points| Let’s experiment a little with the Prolog cut. Remember that the cut is not declarative—
it is a way of controlling the backtracking behavior of the Prolog solver. Specifically, it tells the solver
not to backtrack in certain circumstances, “cutting off” the alternative branches of the backtracking
search tree. If there are no solutions to the constraint problem on those alternative branches anyway,
it is a “green cut” that simply speeds up the solver. If it kills off what would otherwise be solutions,
it is a “red cut.”

(a) [0 points] The member/2 function is already built in (because it is so useful). Try the following
queries at the ECL!PS® prompt, using semicolon to get all the solutions:
e member (X, [a,b,c,b]).
e member (b, [a,b,c,b]l).
e member (b, [a,Y,c,b]l).
Feel free to experiment with other queries as well, such as member (X, [Y,Z]) or
member (£ (0,X), [a,£(0,1),£(0,2),£(Y,3)].

(b) [0 points] Now try these versions with an added ! subgoal, the cut:

2The mathematical “right” answer isn’t obvious since ordinarily 0™ = 0 while n° = 1.



e member (X, [a,b,c,b]), !.
e member (b, [a,b,c,b]), !.
e member (b, [a,X,c,b]), !.
(c) [0 points] Let’s package up the above pattern like this:

cutmember (X,List) :- member(X,List), !.

Make sure that that works as expected:
e cutmember (X, [a,b,c,b]l).
e cutmember (b, [a,b,c,b]l).
e cutmember (b, [a,X,c,b]).
You do not have to hand anything in for the above experiments.
(d) [2 points]| Describe in words what cutmember does. Is the cut here red or green? If you want to

check whether a ground integer appears in a long list of ground integers, what are some reasons
to prefer cutmember over member?

(e) [0 points] Now try the following. Try to predict what they will do before you try them!
e cutmember (L, [[a,b],[],[c,d]]), member(X,L).
e member (L, [[a,b],[], [c,d]]), cutmember(X,L).
e member (L, [[],[a,b], [c,d]]), cutmember(X,L).
(f) [6 points] You might expect the following three to do the same thing as the ones above. Do
they? Why or why not?
e member (L, [[a,b],[],[c,d]]), !, member(X,L).
e member (L, [[a,b],[],[c,d]]), member(X,L), !.
e member (L, [[], [a,b], [c,d]]), member(X,L), !.

(g) [2 points| Based on your experiments (and any further experiments you might try), explain in
words how the cut interacts with subroutine calls.

7. [10 points] Here is a problem that we may return to if we cover Dyna this year.

We'd like to write a predicate uniq/2 that eliminates duplicates from a list. This might be useful in
using lists to represent sets, for example.

The desired behavior is best explained by a few examples. The query
uniq([a,a,b,b,b,b,b,c,c], L) should return L = [a,b,c]. The query
uniq([1,a,b,2,3,4,b,5,6,a,7], L) should return L. = uniq([1,2,3,4,b,5,6,a,7]). Only the
last copy of each element survives.

The following comes pretty close. It says that the first element can be thrown away if it is not an
element of the rest of the list, and that the rest of the list should be unigified.

uniq([], [1).
uniq([X|Xs],Ys) :- member(X,Xs), uniq(Xs,Ys).
uniq([X|Xs], [X|Ys]) :- uniq(Xs,¥s).

(a) [2 points] What goes wrong with the above solution?



(b) [2 points] To see why this problem can’t be solved in pure Prolog, consider the query uniq([3,X]1, [3,X]).
What would you like it to return, if it could? Can Prolog do this?

(c) [2 points] So let’s go to impure Prolog. Where should you insert a cut or cuts into the program
above, so that uniq/2 will do the right thing, at least if its first argument is ground? Do this
in cut.ecl.

(d) [2 points] What does your modified program do on the query uniq([3,X],L)? How about the
query uniq([3,X], [3,X]1)7 Why?

(e) [2 points] Unlike your cutmember queries in the previous problem, some uniq queries may unify
with 2 or more clause heads. (This is true both for queries from the ECL'PS® command line
and queries that appear as subgoals in the body of another clause.) So Prolog would ordinarily
backtrack through all these choices of matching clause head, just as it also can backtrack through
ways of satisfying the constraints in a given clause body.

Based on your experience above, explain how the cut affects this process. Does the order of the
clauses matter? (Try it out!)

More Lists

8. [15 or 20 points] Here is a problem about increasing subsequences that we may return to if we
cover Dyna this year.

(a) [9 points] Write a predicate inc_subseq/2 that is true whenever its first argument is a ground
list of integers and its second argument is a strictly increasing subsequence of that list. You
may assume that the first argument will be ground.

For example, the query
inc_subseq([3,5,2,6,7,4,9,1,8,0], S)

should yield (among other things) S = [3,5,6,7,9], S = [3,5], S = [5,6,7,8].
Make sure your code is capable of generating all strictly increasing subsequences, and make sure
your subsequences are strictly increasing (i.e. use ‘<’ instead of ‘=<’).

One option would be to write inc_subseq(Xs,Ys) :- subseq(Xs,Ys), ordered(Ys), and then
define subseq/2 and ordered/1. Don’t actually do it this way, as it’s too inefficient to generate-
and-test all 2" subsequences. However, you can get some inspiration for your answer from the
definition of ordered/1 that we developed in class: notice that that definition sometimes looks
at the first two elements of a list, treating length-1 lists separately.

(b) [2 points] The following query finds all increasing subsequences of the specified list and tells
you how many of them there are.

findall(S,inc_subseq([3,5,2,6,7,4,9,1,8,0],8),List), length(List,N).
Note that length/2 is built-in.
Modify this query to find and count only subsequences of length 3.

(c) [2 points] In your answer to the previous question, is it more efficient to process the “length=3"
constraint before or after the “inc_subseq” constraint? Explain.



(d) [2 points] The built-in ECL‘PS® predicate minimize/2 tries to find the minimum-cost satisfy-
ing assignment of some query; minimize (Pred, X). will assign to X the minimum value that
satisfies Pred. To use this, you will have to load the branch_and_bound library by putting the
command :- lib(branch_and_bound). at the beginning of your program. Naturally, you can
use minimize/2 to maximize a function by negating the cost. For example,

minimize( (member(X,[4,6,8,4,8,2]), Cost is -X),
Cost) .

will return X = 8 (and Cost = -8).

Give a command that you could run to find the longest increasing subsequence of a given list.
In the next part of the homework, we will discover a much more efficient way to compute this.

(e) [425] [5 points] Your inc_subseq program uses <, which only works on numeric variables that
have already been instantiated.® Change this to #< and add :-1ib(ic) at the beginning of
your program. You are now doing constraint logic programming.

The program should still work on all the examples it worked on before. But now the first
argument can contain uninstantiated variables.

Explain the meaning of the following query. Then try it and report the results. Are they
correct? What do you conclude about how ECL!PS® handles the interaction between Prolog’s
usual backtracking (used in inc_subseq) and ECL‘PS®’s constraint store?

Vars=[A,B,C,D,E], Vars::1..4, inc_subseq(Vars, [E,C,A]),
labeling(Vars).

Now try the query with the final “labeling(Vars)” omitted. Remember that “labeling(Vars)”
says to instantiate all the uninstantiated variables in a way that satisfies the ‘#<’ constraints.
So you are now skipping that step, but Prolog’s usual backtracking still happens.

The results will now have an odd format. Explain what is going on. You may find it helpful to
try a simpler query first, such as

X::1..10, inc_subseq([7,X,3],8).

9. [15 or 20 points] Let’s do a little more on constraint logic programming.

(Note: The constraints defined below could be handled more efficiently by specialized propagators,
but I haven’t shown you how to write your own propagators in ECL'PS®.)

(a) [2 points] Explain what this mystery predicate p/2 does. (Feel free to try it out, or to try part
(b), which uses it.)

:— lib(ic).
pCll,1).
p([XIXs],A) :- p(Xs,B), A #= Xx*B.

(b) [2 points] Explain what the following mystery predicate q/2 does. Note that it is defined in
terms of p/2 above. You may want to try a query such as q(L,20).

31f you try to run it on a list that contains variables, you will get an Instantiation Fault.



Trees

q(List,N) :- p(List,N), List::2..N, labeling(List).

[2 points] The definition of p/2 appears to set up a constraint program with exactly three
numeric variables (A, B, X). Explain why this is false. How large is the constraint program,
really?

[4 points] Explain why q([7,R],20) returns “no” while while q([7|Rs],20) fails to halt.
What, in detail, is the latter query doing as it runs forever?

[425] [5 points] We saw in class that the following attempted definition of the “alldifferent”
constraint is incorrect:

:— lib(ic).
adiff ([1).
adiff ([X]).
adiff ([X|Xs]) :- member(Y,Xs), X #\=Y, adiff(Xs).

This definition says only that each list element must differ from some subsequent element. The
particular subsequent element is chosen nondeterministically by backtracking in member/2. You
can actually see this happen if you try the query adiff ([X,Y,Z]). The first answer has delayed
goals X # Y)Y # Z. The second answer has delayed goals X # Z)Y # Z instead.

Fix the definition so that it has the appropriate meaning: each list element must differ from
all subsequent elements. This means setting up n(n — 1)/2 constraints without undoing any of
those constraints by backtracking.

Thus, if you try the query adiff ([X,Y,Z]) with your revised definition, you should see 3 delayed
goals X #£Y, X # Z,Y # Z. And if you try adiff ([V,W,X,Y,Z]), you should see a total of
5(5—1)/2 = 10 delayed goals.

(Hint: Define a helper function to say that X must differ from all members of Ys.)

10. [11 points] Enough with lists. Prolog terms can represent arbitrary trees, so let’s do a tree problem.

Two binary trees T and T” (not necessarily search trees) are called isomorphic if there exists a one-
to-one correspondence between nodes of T and nodes of T”, such that if n € T corresponds to n’ € T”,
then (1) n and n/ have the same label, and (2) the parent of n also corresponds to the parent of n’
(or else neither one has a parent).

For example, the following trees are isomorphic:

b b
/ \ / \
a ¢ c a
/ \ / \
b b b b
/ \ / \
e f £ e



“Isomorphic” literally means “same shape.” Note that our definition considers the shape to be
unchanged if the two children of a node are swapped. That is, we don’t care about the order of
siblings.*

By contrast, the following trees are not isomorphic. Even though they both contain the same collec-
tion of labels (a, b, b, ¢, d), the parent-child relations are quite different.

b c
/ \ / \

a C d a

/\ \
d b b

The following trees are not isomorphic either:

b a
/ \ / \

a c b ¢

(a) [8 points| In Prolog, we can represent binary trees using structures of the form t(Label,
Left, Right), where Label denotes a label for the root node, and Left and Right are either
‘nil’ or are tree structures themselves.

Define isotree/2 so that isotree(T1, T2) should be true iff T1 and T2 are isomorphic. For
example, your function should return ‘Yes’ for the query

isotree(
t(d, t(a, nil, nil), t({d, t(b, nil,nil), t(c, nil, nil) ) ),
t(d, t({d, t(b, nil,nil), t(c, nil, nil) ), t(a, nil, nil) ) ).

since the two trees in question are isomorphic.

For the query

isotree(
t(d, t(X, nil, nil), t(d, t(b, nil,nil), Y ) ),
t(d, t(d, t(b, Z ,nil), t(c, nil, nil) ), t(a, nil, nil) ) ).

your program should return the assignments to X, Y, and Z that make the trees isomorphic,
namely X = a, Y = t(c, nil, nil), and Z = nil.

Note that there are two ways for t (X, L1, R1) and t(X, L2, R2) to be isomorphic—we could
have L1 = L2 and R1 = R2, or else L1 = R2 and R1 = L2.

(b) [3 points] Give an example isotree query (on two constant trees) that demonstrates that Prolog
may have to do an exponential amount of work to determine that two trees are not isomor-
phic. Your example should “tease” Prolog, leading it down many long blind alleys—apparently
promising options that consume a lot of time but never actually work out.

4The trees above could both be family trees of the same family. Each shows a matriarch, b, with children a and c. The
c child has twin daughters of his own, both named b (after his mom). The trees are the “same” — they just sometimes make
different choices about which sibling to draw on the left and which to draw on the right.

Or you could think of them as two drawings of the same hanging mobile. As the mobile twists in the wind, sometimes the
left and right subtrees of a node may switch places. Still, you can see from the drawings that the mobile always retains its
overall shape, including the labels.



11. [12 or 18 points] After that warmup, here is another problem that we may return to if we cover

Dyna this year.

As you remember from your data structures class, a binary tree is a binary search tree if every node
has the property that its label is greater than all of its descendants on its left branch, and its label
is less than all of its descendants on its right branch.

As an exercise, we will use Prolog to construct binary search trees in various ways.

(a)

[6 points] Write a predicate inorder1(Tree,List) that is true if List is the set of node labels
of Tree produced by an in-order traversal. For example,

inorder1(t(d,t(b,t(a,nil,nil),t(c,nil,nil)),t(e,nil,nil)), List).

yields List=[a,b,c,d,e].
Hint: Use append/3, which is built-in.

[6 points] You should be able to use inorderl to construct a binary search tree, by requiring
that the tree’s node labels must be your desired set of search keys, in the correct order:

inorder1(Tree, [a,b,c,d,e]).

This is one of the coolest things about declarative programming: when you wrote inorderl, you
were probably thinking about how to map deterministically from trees to lists, but you can then
use it backwards, to map nondeterministically from lists to possible trees!

However, although this is correct in principle, it will run into an infinite recursion. Why?
Write a new version, inorder2, that can handle this query. It should use the same constraints
as inorderl but in a different order. What is accomplished now by your call to append/3?
Use inorder2(Tree, [a,b,c,d,e]) under the control of findall to determine how many legal
binary search trees there are.

What happens if you try inorder2 on the example of problem 11a? Why?

[425] [6 points] Searches in a binary tree are more efficient if the node being searched for is
closer to the root of the tree. Deeper nodes take longer to find: navigating to a node at depth d
requires visiting its d ancestors first. (The root is said to have depth 0, its children have depth
1, etc.)

Write a function total_depth/2 that computes the total depth of all non-nil nodes in a tree.
(Read that carefully: Not the depth of the deepest node, but the sum of the depths of all nodes.)
This is proportional to the amount of time it would take to search once for each element.

Use minimize/2 from the branch_and bound library to construct inorder3, which constructs
a tree like inorder2 but requires it to have minimum total depth. (The result should turn out
to be a complete binary tree, except that the deepest layer of nodes need not be left-aligned.)

[extra credit challenge] The above method for building efficient search trees is inefficient:
it constructs every possible binary search tree, and from them chooses the one with minimum
depth. In short, it’s generate-and-compare. You can build the trees faster if you're willing to
make your program less declarative.

Write a Prolog predicate inorder4 that constructs complete binary trees (or balanced trees, if
you prefer) without using the generate-and-test method. How fast does this run, compared with
your answer to the previous problem?

10


http://xlinux.nist.gov/dads//HTML/completeBinaryTree.html

Note: If some elements are searched more than others, then a complete tree may no longer
be optimal. If we know how often each element will be searched then we should minimize the
average depth of a searched element. Do you have any ideas about how to do this efficiently?
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