600.325/425 — Declarative Methods
Homework 2: Constraint Programming
for Planning and Scheduling”

Spring 2017
Prof. J. Eisner

Due date: Wednesday, March 15, 2:00 PM

In this homework, you will gain familiarity with encoding real-world problems as instances of
constraint programming, and get a feel for how constraint programming systems.work in practice.

Instructions

Academic integrity and collaboration: You should work on your own for this homework.
As always, the work you hand in should be your own, in accordance with the regulations at
http://cs.jhu.edu/integrity-code.

325 vs. 425: Problems marked “425” are only required-for students taking the 400-level
version of the course. Students in 325 are encouraged to\try<and solve them as well, and will get
extra credit for doing so.

Running ECL/PS®: ECL‘PS¢ is available as eclps on all the ugrad machines.

There is a good deal of documentation available at http://www.eclipseclp.org. For example,
documentation for all of ECL'PS®s built-in predicates is available at http://www.eclipseclp.
org/doc/bips/kernel, and documentation of constraint libraries such as ic and edge_finder
is at http://www.eclipseclp.org/doc/bips/1lib/. You may find this helpful in writing your
programs.

In this homework, you will learn to use ECLPS®, a powerful constraint programming language.
ECL!PS® is'built on top of the logic programming language Prolog, and as such has all the power of
a full-fledged programming language—functions, loops, recursion, data structures, and everything.
However, since we don’t want to force you learn all the details of logic programming (yet) just to
dothis homework, we’re only going to ask you to work using a very simple subset of ECL‘PS®
commands.

Getting started: To obtain the homework files, run the following at a Unix shell prompt (e.g.
on one of the ugrad machines:

wget https://www.cs.jhu.edu/~jason/325/hw2.zip
unzip hw2.zip

All the files you will need for this project are available in hw2.zip. You can also download it
from the URL above. Please do the programming part in the hw2 directory.

*Thanks to John Blatz for co-authoring this homework.

http://cs.jhu.edu/integrity-code
http://www.eclipseclp.org
http://www.eclipseclp.org/doc/bips/kernel
http://www.eclipseclp.org/doc/bips/kernel
http://www.eclipseclp.org/doc/bips/lib/
https://www.cs.jhu.edu/~jason/325/hw2.zip

Handing in your work: You will submit a written part and a programming part on Grade-
scope. Please do not put your name in either part.

e For the written part: Please submit a PDF to Homework 2 Written with each problem
(1, 4, and 6a-c) on a separate page. After submitting, please mark the area for each question
using Gradescope’s interface.

e For the programming part: In your handout directory, run
./make_sol.sh

This will check for the following files: minipuzzles.ecl, probleml.ecl, problem2.ecl,
probleml.solution, problem2.solution and create a zipped file. Submit this zipped file
to Homework 2 Programming on Gradescope.

You are allowed unlimited submissions, but the problems will not be graded until after the deadline.
Please try submitting early (even if it is incomplete) to ensure your output formats are correct.

Getting familiar with ECL/PS¢

Remember in class that we listed three ways to add power to a little language: by expanding
its syntax, by embedding it in a more powerful language, or by using another language to write
programs in it. We’ll be taking the third approach on this homework, although that is not a
requirement. If you know Prolog or are anxious to learn it, then by all means avail yourself of the
documentation on the course website (listed under “Resources” for the constraint programming
unit), and write whatever code you can get to run.

1. Industrial planning and scheduling is an important real-world application of constraint pro-
gramming. This broad class of problems seeks to find the optimal ordering of tasks, subject
to a variety of constraints on the ordering and conditions necessary to complete the tasks.
You can read about the different varieties of problem at http://www.sciencedirect.com/
science/article/pii/S0377221798002045 (free to read from within JHU).

For example, suppose that you are trying to grill bratwurst before settling down to watch
the Bears game. You have to complete the following subtasks, with the time, precedence,
resource, and labor constraints listed below:

e defrost sausages, takes 2 min, requires microwave

e preheat grill, takes 20 min, requires grill

e dice onions, takes 3 min, requires knife and cutting board

e toast buns, takes 1 min, requires grill, grill must be preheated first

e grill sausages, takes 10 min, requires grill, grill must be preheated first, sausage must be
defrosted first, sausage must be pan-broiled first

e add sauerkraut, mustard, and onions, takes 1 min, sausage must be grilled first, sauerkraut
must be pan-broiled first, onions must be grilled first, buns must be toasted first

http://www.sciencedirect.com/science/article/pii/S0377221798002045
http://www.sciencedirect.com/science/article/pii/S0377221798002045

e grill onions, takes 8 min, requires grill, grill must be preheated first, onions must be
diced first

e pan-broil sausage and sauerkraut in beer, takes 15 min, requires stove, sausage must be
defrosted first

It’s a small grill, so you can only have one thing on it at a time.

We have provided an ECL!PS¢ program bratwurst.ecl which will find the optimal ordering
of subtasks and return the minimum amount of time required to complete them all. The
syntax of this program is fairly straightforward; take a look at it and make sure that you
basic understanding of what it does.

Run this program in ECL/PS® by doing the following:

(a) Make sure you are in the hw2 directory and you have ECL!PS€ installed (it is by default
on ugrad machines).

(b) Run eclps (or rlwrap eclps) at a command prompt to start up ECL/PS®.

(c) Compile and load the program by issuing the command [bratwurst]. at the command
prompt (note the . at the end).

(d) Type schedule(EndTime). to find a solution. This will print the value of EndTime that
satisfies all the constraints listed in schedule.

Alternatively, you can run the whole thing from the command line with the “batch” command
eclps -b bratwurst.ecl -e ’schedule(EndTime)’, and you can redirect this output to a
file or program of your choice in the usual way. However, ECL'PS® will then run rather
quietly and you won’t see progress messages as it works.

(a) [5 points]| If kickoff is at noon, at what time should you start preparing your bratwurst
so that you don’t miss any of the game?

Note: If you have trouble understanding how this program works, please come see the TA or
professor ASAP. You'll need to write your own (very similar) program later in the homework.
The purpose is for you to be able to figure out what constraints you need, not to get bogged
down in trying to figure out ECL'PS® syntax. We’ll be studying logic programming later in
the course, so we don’t expect you to have mastered it yet. You may want to run a couple
other examples off the ECL'PS® examples page, http://www.eclipseclp.org/examples;
there’s even a section on planning and scheduling. Feel free to discuss the ECLPS® website’s
examples on the class mailing list!

http://www.eclipseclp.org/examples

2. [30 or 50 points] Now that you've actually used ECL'PS, here are a few warm-up problems
to get you started writing your own code. Pick any three (3) of these five math problems,
and write ECL‘PS® code to solve them. If you are in 425, you have to solve five (5) of them
instead. Write your solutions in the file minipuzzles.ecl. There are helpful instructions
within that file.

(a) [10 points] The numbers 1 through 9 can be arranged in the
triangles labeled a through ¢ illustrated on the right so that the numbers

a
in each of the 2 x 2 triangles sum to the same value n; that is
b\¢/d
a+b+c+d=b+e+f+g=d+g+h+i=n.
e\JS g h/i

For what values of n is there a solution to this puzzle?'

(b) [10 points] Given two integers x and y, let (z||y) denote the concatenation of x by
y, which is obtained by appending the digits of y onto the end of z. For example, if
x = 218 and y = 392, then (z||ly) = 218392. Find 3-digit integers x and y such that
6+ (z|ly) = (yllz).”

By “3-digit integer,” we mean an integer between 100 and 999; that is, the first digit
may not be 0. Please ensure that your encoding respects this constraint.

Note that there are two ways to solve this problem: one uses 6 variables, the other uses
2 variables. Try both!

No, ECL?PS® doesn’t (yet) support constraints on strings. You should figure out how
to solve this string concatenation problem with the kinds of constraints you do know
about ...

(c) [10 points] Find three isosceles triangles, no two of which are congruent, with integer
sides, such that each triangle’s area is numerically equal to 6 times its perimeter.’

(d) [10 points| The number 12148 has a fun feature: The sum of the first four digits equals
the units digit. How many EVEN five-digit numbers have this property?*

(e) [10 points] Find the smallest square number (perfect square) that uses each digit
(0,1,2,3,4,5,6,7,8,9) once and only once.’

(f) [10 points] Find all integer tuples [a,b,c,d,e] that solve the following system of
integer linear equations.® The search space is infinite—include a short explanation of

From USAMTS ’04-'05, Round 2, Question 1. www.usamts.org.

2From USAMTS ’04-05, Round 3, Question 1 (a). www.usamts.org.

3From USAMTS ’04-°05, Round 3, Question 2. www.usamts.org.

4White House Kids Math Challenges, www.whitehouse.gov/kids/math/. Designed by David Rock of UMass-
Dartmouth and Doug Brumbaugh of UCF.

*Tbid.

5From USAMTS ’11-12, Round 1, Question 2. www.usamts.org.

how you know you have found all the solutions (this may involve a tiny bit of math).

a2=a+b—2c+2d+e—8,
b’ = —a—2b— ¢+ 2d + 2e — 6,
& =3a+2b+ c+2d+ 2 — 31,
d®>=2a+b+c+2d+2e —2,
e2=a+2b+3c+2d+e—8.

Hint: If you write a function solve(X) that constrains X to be a solution of some problem, you
can type solve(X). at the ECLPS® prompt to find a solution, and repeatedly press ‘;’ to find
more solutions. You can alternatively type “findall(X, solve(X), List).” toset List to a list
of all solutions, or “findall(X, solve(X), List), length(L, N).”, to also set N to the number
of solutions.

Hint: If there are a lot of solutions, as in problem 2a, then List will be too long and ECL‘PS¢
will only print the beginning of it followed by “...”. Here are some helpful ways you could print
all solutions (any one of these is fine):

e findall(X,solve(X),List), printf ("%Dw", [List]).

This has an explicit formatted print command as in the bratwurst.ecl example. The "%Dw"
format says to print List in full. You can check the ECL’PS® documentation if you want to
know more about the printf command.

e setof (X,solve(X),List).

setof is more or less like findall, but the resulting List is a set: that is, duplicate values of
X have been eliminated from it. This may make List short enough that ECL*PS® will print
it in full without special coaxing.

e solve(X), print(X), nl, fail.

This funny idiom means: find a solution X (using solve(X)), print it (write(X)), print a
newline (nl), and then decide that the solution isn’t good enough and backtrack to find
another one (fail)!

This approach has the advantage that it prints the solutions as it finds them, without first
constructing a List of all of them. We’ll learn more about fail when we study Prolog later.

If you prefer, you could replace the write(X), nl part by a printf command as above.

Hint: If you still get a lot of output (particularly in the scheduling problems below), then you
can redirect the output of eclps to a file. You can then use any tools you like to analyze the
output. (E.g., python, or Unix commands like sort, uniq, and wc.)

Resource Constrained Project Scheduling (RCPS)

Now let’s look at a larger, real-world problem. Barry Fox and Mark Ringer of the American
Association for Al have put together a series of benchmark problems in planning and scheduling,
to test how good solvers are. In this section, we will use ECL‘PS® to solve some of these problems.

Their description of the problem is in hw2/rcps/rcps.pdf. Read through it, paying particular
attention to the description of the data format and to problems 1-3.

You may want to take a look around their website, which is mirrored at http://cs. jhu.edu/
~jason/325/hw2/benchmrx/rcps.html.” The data files are already in hw2/rcps, so you won't
need to download them again. If you find the C++ helper files they provide useful, you are free to
make use of them.

The idea behind the problem is as follows. You are the manager of a factory, and in order to
manufacture some product, there are 575 different subtasks that you need to accomplish. These
subtasks are given names of the form asm_1.step_575. Each task requires a certain amount of
time to complete, certain types of laborers, can only be done using certain machinery (“in a certain
‘zone’ ”), and can only be done after certain other subtasks have been completed (“precedence
constraints”). There are limits on the types of laborers available at different times (“labor con-
straints”), and on the amount of work that can be done in each zone at any given time (“zone
constraints”, a.k.a. “resource constraints”). All of these constraints restrict the possible ordering
of the tasks, just as in the bratwurst example from section 1.

3. [0 points] You don’t need to turn anything in for this question; just read rcps.pdf, which
is included in the handout directory.

4. [25 points] Solve the first problem from the benchmark set using ECL‘PS®. The data file
you’ll use is rcps.data, and its format is described in rcps.pdf. You should be able to do
this by simply modifying the constraints listed in bratwurst.ecl, although you’ll probably
want to write a small script to convert the constraints into ECL?PS¢ format.

For this problem, you need to consider only the precedence constraints in section 2 (and the
time constraints in section 1); you may ignore the labor and zone constraints.

A reference solution is provided in rcps_sl.data.

(a) [20 points] Turn in your ECL‘PS® code, named probleml.ecl, as well as your list of
task start times. If you wrote a script to generate the ECL/PS® code, make sure that
script is included in your submission too.

Your list of start times should be in a separate file called probleml.solution. Make
sure your output is in the correct format.

You should encode each start time as an integer representing the number of work minutes
since the overall manufacturing process began. For example, your output file should
begin like this (the numbers are made up):

Found a solution with cost 600
asm_1.step_1 324
asm_1.step_2 131
asm_1.step_3 111

"The original URL was http://www.neosoft.com/~benchmrx/rcps. html.

http://cs.jhu.edu/~jason/325/hw2/benchmrx/rcps.html
http://cs.jhu.edu/~jason/325/hw2/benchmrx/rcps.html
http://www.neosoft.com/~benchmrx/rcps.html

If you prefer, you can also include end times as in the bratwurst example:

Found a solution with cost 600
asm_1.step_1 324 - 356
asm_1.step_2 131 - 133
asm_1.step_3 111 - 400

(b) [5 points] Include in your writeup a description of what you did, as well as the total
time your ordering requires to complete all the tasks.

Note: The time format of rcps_s1.data can be a little hard to understand-times are encoded
in the form ‘11/2+03:25’, which means ‘3 hours and 25 minutes into shift 2 of day 11°. There
are 60 minutes in an hour, 7 hours and 30 minutes in a shift, and 2 shifts in a day. This
format is needed for scheduling problems that have additional constraints that consider how
days are divided into shifts.

However, in this homework, we don’t care about the shift schedule. (First, we have no
constraints that care whether a job is done during day shift or night shift. Second, we have
no constraints that require work to be finished during the shift it began: you may interrupt
work at the end of a shift and pick up where you left off at the start of the next shift.)

So you probably just want to encode each time as an integer representing the number of work
minutes since the manufacturing process began. For example, 11/2+03:25 becomes simply
9655 [= 25 + 3%60 + 450 + 10*2*450]). You'll use this simpler format throughout your
solution and in your final schedule.

. [0 points] Write ECL'PS® code to solve the second problem from the benchmark set. For
this problem, you must still respect the precedence constraints from the previous problem,
but now you must make sure that zone occupancy never exceeds the limits listed in section 4
of rcps.data. You can do this using the cumulative constraint in the edge_finder library.
You may still ignore the labor constraints.

This is still essentially the same problem as the bratwurst example; there we had constraints
on the ordering of tasks and on zone occupancy (only one thing was allowed on the grill at a
time).

Try to run your code. If your code uses the same constraints as the bratwurst example,
ECL'PS® will be far too slow to solve it. We’ll deal with this in the next section.

. [40 or 45 points] Why is your program so slow? Isn’t this what ECL'PS® is made for? To
understand the problem, we’ll need to take a look at what is going on behind the scenes.

The culprit is the line minimize(labeling(Al1lVars), EndTime). This tells ECL'PS® to
find a labeling of A11Vars that makes EndTime as small as possible. It does this using the
branch and bound algorithm: first, it finds any labeling of Al1lVars, and notes the value v
of EndTime. It now continues with the backtracking search, but first adds a new constraint
that EndTime < wv;. If it can find another labeling with the added constraint, with some
value EndTime = vy < v, then it continues backtracking with an added constraint that

EndTime < wy. It continues in this fashion until it cannot find a labeling. The last labeling
found is the optimum solution.

In this way it is guaranteed to find the best solution. Now, we know that the general prob-
lem of optimal constraint satisfaction is NP-complete, so that should be a tip-off that this
algorithm is not always going to be very fast. We'’re dealing with a real-world problem here,
which means that it’s too big to be solved using exponential-time algorithms.

Of course, we can get an approximate algorithm from this iterative procedure; after some
timeout, simply stop execution and return the best labeling found so far. How do you get
ECL/PS® to do this? The easiest way is this hack: minimize prints the costs v1,vs, ... of
the intermediate solutions it finds.® So just stop execution at some point, let’s say after
1 intermediate solutions, and then solve the problem again with an additional constraint
EndTime = v;, this time asking ECL‘PS®¢ to find and print out a labeling rather than to
minimize EndTime.

Unfortunately, this is not good enough; even the last step 1labeling(AllVars) may be unus-
ably slow. Not only can we not find an optimal solution, we can’t find a solution at all!

This is because of the way that labeling works. As we saw in the animations of graph
coloring in lecture, the order in which we select variables for constraint propagation is very
important. Without being given a better plan, labeling will select the first variable in the
list, assign it the lowest value in its current domain, and propagate as far as it can from
that variable assignment. When it finishes propagating, it moves to the next variable in the
list, assigns it the lowest value in its domain, and propagates. If propagation ever causes a
contradiction, it will backtrack to the most recent assignment, and try assigning the next
value.

When ECL/PS® runs slowly for you, this is usually because it is making poor choices of start
times for the first few tasks it decides to assign, and takes a while to discover that there is no
way for it to arrange the remaining tasks (given the constraint EndTime < v;). We saw the
same problem in the graph-coloring animations in class.

If you were trying to schedule these tasks by hand, without using ECL'PS®, you would
probably do a pretty good job of ordering variables and values, so this wouldn’t be much of
a problem. Think about how you would do it by hand!

Fortunately, ECL'PS® gives you some control over variable and value ordering. For our
purposes, the command you want instead of labeling is as follows:

search(List, 0, Select, Choice, Method, OptionList),

where List is the list of variables that you are finding a labeling for. Select is the strategy
for ordering the variables, chosen from, among others, input_order, first_fail, smallest,
largest, occurrence, and most_constrained. Choice is the strategy for choosing values to
assign to variables—you can have it start with the smallest value, the largest value, the middle
value, a random value, or a couple other things. Method allows you to bound the backtracking
in various ways.

8 As long as you use ECL!PS® interactively. You should probably avoid the “batch” option discussed earlier (e.g.,
eclps -b bratwurst.ecl -e ’schedule(EndTime)’), as it would suppress these messages.

Take a look at the full documentation of this predicate to see the other options:
http://www.eclipseclp.org/doc/bips/lib/ic/search-6.html. See if you can find a search
option that does something similar to the way you would intuitively approach the problem.

Replace your use of labeling from the previous problem with some version of search, so
that your minimization line will be:

minimize(search(AllVars, O, o, o, o, []), EndTime).

Experiment with the parameters of search until you find a strategy that will allow you to
solve the problem.

Answer the following questions, even if you did not ultimately find a solution:

(a) [5 points] Discuss how well your solution did by answering in your writeup:

e What is the lowest-total-time schedule that you can find that satisfies all the con-
straints?

e Describe briefly the constraints you used.
e What parameters did you use in your call to search()?
e What was the best total time you were able to find?

e How long did it take you to find that solution on ugrad2? (approximate is okay if
it’s really long)

(b) [15 points] Describe clearly how your search method works, and why you thought it
would be effective.

(c) [425 only] [5 points] If you weren’t constrained by the choices given to you by search,
how might you want to choose a variable and value ordering to solve this problem most
efficiently?

(d) [20 points] Make sure your code is in problem2.ecl and your best ordering is in
problem2.solution following the format described in problem 4. Also include addi-
tional scripts you may have used to generate your ECL!PS® file. Please submit even if
you did not find a solution.

Hint: You can do pretty well even with Method=complete, which gives a standard backtracking
search as we’ve studied in class. It’s certainly possible to get your first solution (e.g., with time 42383)
within about 5 minutes, and several better solutions within 15 minutes. If you're taking a half-hour
without outputting anything, you can do better.

We realize it can be frustrating to sit and watch the computer do nothing for 15-20 minutes. It’s not
our intention to make this painful for you. Try some things and do your best to make it work, but if
you can’t find an effective strategy, you can still answer most of the questions and get partial credit.

7. [Extra credit] You may have noticed in the documentation for search that you are in
fact allowed to create custom variable selection and value choice methods. See if you can
implement a heuristic that allows you to achieve a better labeling. There will be a prize for
the student who finds the best ordering.

If you do this part, submit your code and optimum ordering as problem2-ec.ecl and
problem2-ec.solution, and describe your method and results in your writeup just as in
the previous problem.

So how can you write your own custom heuristics? The standard heuristics supplied to
you by ECLiPSe are actually just the names of ECLiPSe functions. For example, one of
those variable selection heuristics is the function largest/2 (where the /2 is a conventional
notation for “with 2 arguments”). The first argument is a particular variable X that search/6
is considering whether to select. The second argument, Crit, is used to return a number that
indicates how bad it would be to choose X. At each decision step of backtracking search, the
function search/6 will call largest/2 for every variable that it hasn’t yet assigned a value
to. It will then look at the value of Crit returned by largest/2, and select the variable for
which the returned Crit is smallest.

Let’s take a look at the actual code for largest/2:

largest(X, Crit) :-
get_bounds (X, Lo, Hi),
Crit is (-1 * Hi).

Note that the function declaration has both the input X and output Crit listed as arguments
of the function name. You can think of this as being similar to pass-by-reference in C++,
although that’s not exactly what’s going on, and you’ll learn more later on in the course when
you study logic programming.

What does the body of the function do? First it calls get_bounds/3, which has one input
argument and two output arguments, and which simply returns the current range Lo..Hi
that ECLiPSe considers plausible for values of variable X (i.e., the min and max of X’s current
domain).

Since the function is designed to select the variable with the largest possible value, it is only
concerned with the domain’s upper bound Hi. Remember that search/6 will choose the
variable for which Crit is smallest; as we want it to pick the variable with the largest possible
value in its domain, our criterion for a variable X is the negation of the largest possible value
for X. For this, we use the syntax Crit is Expr, which simply tells the computer to evaluate
the arithmetic expression Expr, and assign the resulting value to Crit.

Good luck!

10

