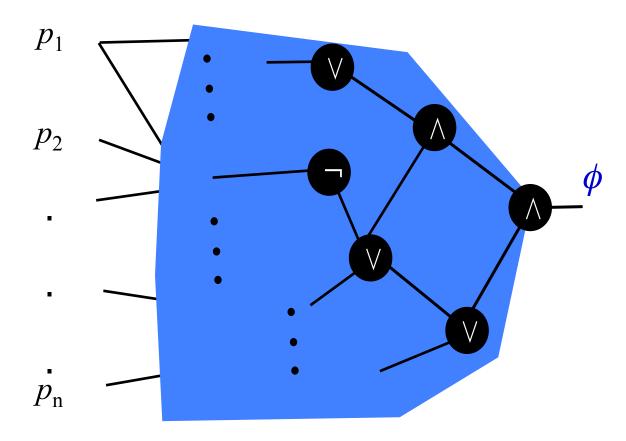
# SMT Solvers (an extension of SAT)

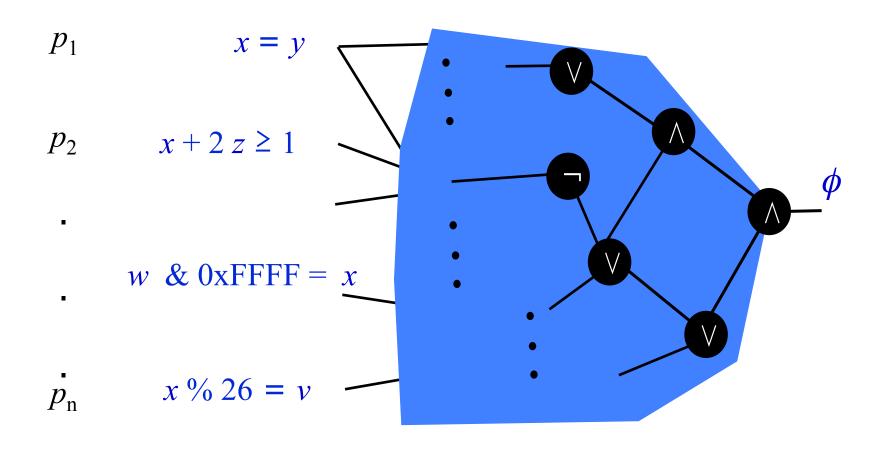
Kenneth Roe

## **Boolean Satisfiability (SAT)**



Is there an assignment to the  $p_1, p_2, ..., p_n$  variables such that  $\phi$  evaluates to 1?

## Satisfiability Modulo Theories



Is there an assignment to the x,y,z,w variables s.t.  $\phi$  evaluates to 1?

### Satisfiability Modulo Theories

- Given a formula in first-order logic, with associated background theories, is the formula satisfiable?
  - Yes: return a satisfying solution
  - No [generate a proof of unsatisfiability]

## **Applications of SMT**

- Hardware verification at higher levels of abstraction (RTL and above)
- Verification of analog/mixed-signal circuits
- Verification of hybrid systems
- Software model checking
- Software testing
- Security: Finding vulnerabilities, verifying electronic voting machines, ...
- Program synthesis
- Scheduling

#### References

#### **Satisfiability Modulo Theories**

Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.

Chapter 8 in the Handbook of Satisfiability, Armin Biere, Hans van Maaren, and Toby Walsh, editors, IOS Press, 2009.

(available from our webpages)

SMTLIB: A repository for SMT formulas (common format) and tools (www.smtlib.org)

SMTCOMP: An annual competition of SMT solvers

## Roadmap for this Tutorial

- Background and Notation
- Survey of Theories
  - Equality of uninterpreted function symbols
  - Bit vector arithmetic
  - Linear arithmetic
  - Difference logic
  - Array theory
- Combining theories
- Review DLL
- Extending DLL to DPLL(t)

### Roadmap for this Tutorial

- ➤ Background and Notation
- Survey of Theories
  - Equality of uninterpreted function symbols
  - Bit vector arithmetic
  - Linear arithmetic
  - Difference logic
  - Array theory
- Combining theories
- Review DLL
- Extending DLL to DPLL(t)

### First-Order Logic

- A formal notation for mathematics, with expressions involving
  - Propositional symbols
  - Predicates
  - Functions and constant symbols
  - Quantifiers
- In contrast, propositional (Boolean) logic only involves propositional symbols and operators

## First-Order Logic: Syntax

- As with propositional logic, expressions in first-order logic are made up of sequences of symbols.
- Symbols are divided into logical symbols and non-logical symbols or parameters.
- Example:

$$(x = y) \land (y = z) \land (f(z) \rightarrow f(x)+1)$$

## First-Order Logic: Syntax

- Logical Symbols
  - Propositional connectives:  $\land$ ,  $\lor$ ,  $\neg$ ,  $\rightarrow$ ,...
  - Variables: v1, v2, . . .
  - Quantifiers:  $\forall$ ,  $\exists$
- Non-logical symbols/Parameters
  - Equality: =
  - Functions: +, -, %, bit-wise &, f(), concat, ...
  - Predicates: <u>≻</u>, is\_substring, ...
  - Constant symbols: 0, 1.0, null, ...

#### Quantifier-free Subset

- We will largely restrict ourselves to formulas without quantifiers (∀, ∃)
- This is called the quantifier-free subset/ fragment of first-order logic with the relevant theory

## **Logical Theory**

- Defines a set of parameters (non-logical symbols) and their meanings
- This definition is called a signature.
- Example of a signature:

Theory of linear arithmetic over integers Signature is  $(0,1,+,-,\succeq)$  interpreted over  $\mathbb{Z}$ 

## Roadmap for this Tutorial

- Background and Notation
- Survey of Theories
  - Equality of uninterpreted function symbols
  - Bit vector arithmetic
  - Linear arithmetic
  - Difference logic
  - Array theory
- Review DLL
- Extending DLL to DPLL(t)
- Combining theories

#### Some Useful Theories

- Equality (with uninterpreted functions)
- Linear arithmetic (over  $\mathbb{Q}$  or  $\mathbb{Z}$ )
- Difference logic (over  $\mathbb{Q}$  or  $\mathbb{Z}$ )
- Finite-precision bit-vectors
  - integer or floating-point
- Arrays / memories
- Misc.: Non-linear arithmetic, strings, inductive datatypes (e.g. lists), sets, ...

#### Decision procedure

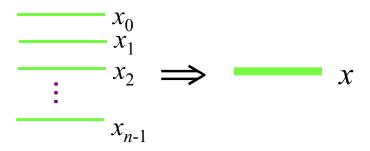
- For each theory there is a decision procedure
- Given a set of predicates in the theory, the procedure will always tell you whether or not they can be satisfied

## Theory of Equality and Uninterpreted Functions (EUF)

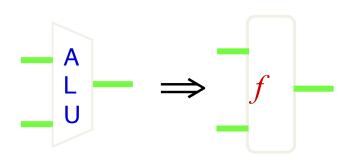
- Also called the "free theory"
  - Because function symbols can take any meaning
  - Only property required is *congruence*: that these symbols map identical arguments to identical values i.e.,  $x = y \Rightarrow f(x) = f(y)$
- SMTLIB name: QF\_UF

## Data and Function Abstraction EUF

#### with



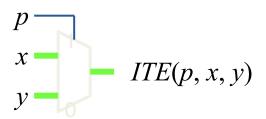
Bit-vectors to Abstract Domain (e.g.  $\mathbb{Z}$ )



Functional units to Uninterpreted Functions

$$a = x \land b = y \implies f(a,b) = f(x,y)$$

**Common Operations** 

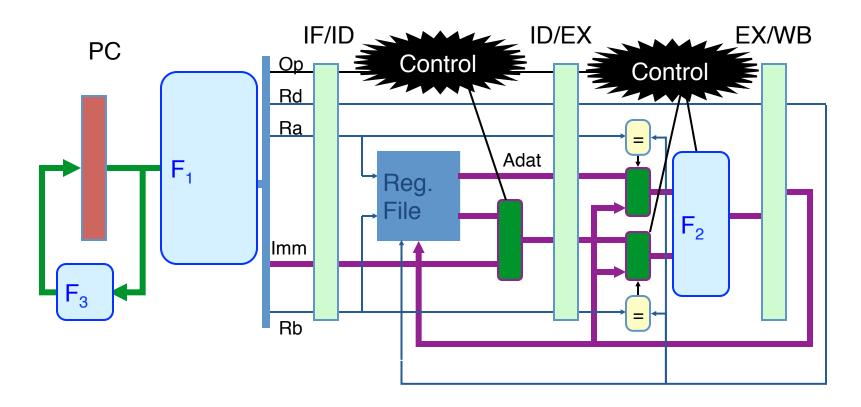


If-then-else

$$x = y$$

Test for equality

#### Hardware Abstraction with EUF



- For any Block that Transforms or Evaluates Data:
  - Replace with generic, unspecified function
  - Also view instruction memory as function

## Example QF\_UF (EUF) Formula

$$(x = y) \land (y = z) \land (f(x) \neq f(z))$$

#### Transitivity:

$$(x = y) \land (y = z) \longrightarrow (x = z)$$

#### Congruence:

$$(x = z) \rightarrow (f(x) = f(z))$$

## Equivalence Checking Fragments

#### of Program

```
int fun1(int y) {
                         SMT formula \phi
   int x, z;
                         Satisfiable iff programs non-equivalent
   z = y;
   y = x;
                         (z = y \land y1 = x \land x1 = z \land ret1 = x1*x1)
   X = Z;
                         (ret2 = y*y)
  return x*x;
                         (ret1 \neq ret2)
int fun2(int y) {
   return y*y;
                       What if we use SAT to check equivalence?
```

## Equivalence Checking

#### of Program

#### Fragments

```
SMT formula \phi
int fun1(int y) {
                       Satisfiable iff programs non-equivalent
   int x, z;
   z = y;
                       (z = y \pm y1 = x \pm x1 = z \pm ret1 = x1*x1)
  y = x;
  x = z;
                       (ret2 = y*y)
  return x*x;
                       (ret1 \neq ret2)
                   Using SAT to check equivalence (w/ Minisat)
int fun2(int y) {
                      32 bits for y: Did not finish in over 5 hours
   return y*y;
                      16 bits for y: 37 sec.
                       8 bits for y: 0.5 sec.
```

## Equivalence Checking Fragments

#### of Program

```
int fun1(int y) {
                          SMT formula \( \phi' \)
   int x, z;
   z = y;
                          (z = y \land y1 = x \land x1 = z \land ret1 = sq(x1))
   y = x;
   X = Z;
                          (ret2 = sq(y))
  return x*x;
                          (ret1 \neq ret2)
int fun2(int y) {
                                 Using EUF solver: 0.01 sec
    return y*y;
```

#### **Equivalence Checking**

#### of Program

#### Fragments

```
int fun1(int y) {
  int x;
                                     Does EUF still work?
  x = x \wedge y;
  y = x \wedge y;
  x = x \wedge y;
                           No!
                           Must reason about bit-wise XOR.
 return x*x;
                           Need a solver for bit-vector arithmetic.
int fun2(int y) {
                           Solvable in less than a sec. with a current
   return y*y;
                           bit-vector solver.
```

#### Finite-Precision Bit-Vector Arithmetic (QF\_BV)

- Fixed width data words
  - Can model int, short, long, etc.
- Arithmetic operations
  - E.g., add/subtract/multiply/divide & comparisons
  - Two's complement and unsigned operations
- Bit-wise logical operations
  - E.g., and/or/xor, shift/extract and equality
- Boolean connectives

#### Linear Arithmetic

 Boolean combination of linear constraints of the form

$$(a_1 x_1 + a_2 x_2 + ... + a_n x_n \gg b)$$

•  $x_i$ 's could be in  $\mathbb{Q}$  or  $\mathbb{Z}$ ,  $\gg \in \{,>,\succeq,<,=\}$ 

- Many applications, including:
  - Verification of analog circuits
  - Software verification, e.g., of array bounds

#### Difference Logic

 Boolean combination of linear constraints of the form

$$x_i - x_j \gg c_{ij}$$
 or  $x_i \gg c_i$   
 $\gg \in \{,>,\succeq,<,=\}, x_i$  s in  $\mathbb{Q}$  or  $\mathbb{Z}$ 

- Applications:
  - Software verification (most linear constraints are of this form)
  - Processor datapath verification
  - Job shop scheduling / real-time systems
  - Timing verification for circuits

## Arrays/Memories

- SMT solvers can also be very effective in modeling data structures in software and hardware
  - Arrays in programs
  - Memories in hardware designs: e.g. instruction and data memories, CAMs, etc.

## Theory of Arrays (QF\_AX) Select and Store

- Two interpreted functions: select and store
  - select(A,i)Read from A at index i
  - store(A,i,d)Write d to A at index i
- Two main axioms:
  - select(store(A,i,d), i) = d
  - select(store(A,i,d), j) = select(A,j) for  $i \neq j$
- One other axiom:
  - $-(\forall i. select(A,i) = select(B,i)) \Rightarrow A = B$

#### **Equivalence Checking**

#### of Program

#### Fragments

```
int fun1(int y) {
  int x[2];
  x[0] = y;
  y = x[1];
  x[1] = x[0];
  return x[1]*x[1];
int fun2(int y) {
    return y*y;
```

```
SMT formula \phi'

[ x1 = store(x,0,y) \pm y1 = select(x1,1)
\pm x2 = store(x1,1,select(x1,0))
\pm ret1 = sq(select(x2,1))
]
\pm
(ret2 = sq(y))
\pm
(ret1 \neq ret2)
```

## Roadmap for this Tutorial

- Background and Notation
- Survey of Theories
  - Equality of uninterpreted function symbols
  - Bit vector arithmetic
  - Linear arithmetic
  - Difference logic
  - Array theory
- Combining theories
- Review DLL
- Extending DLL to DPLL(t)

## **Combining Theory Solvers**

 Theory solvers become much more useful if they can be used together.

```
mux\_sel = 0 \rightarrow mux\_out = select(regfile, addr)

mux\_sel = 1 \rightarrow mux\_out = ALU(alu0, alu1)
```

- For such formulas, we are interested in satisfiability with respect to a *combination* of theories.
- Fortunately, there exist methods for combining theory solvers.
- The standard technique for this is the Nelson-Oppen method [NO79, TH96].

### The Nelson-Oppen Method

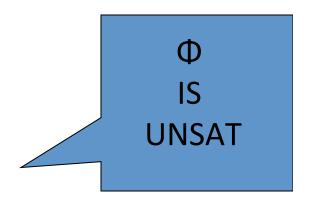
- Suppose that T1 and T2 are theories and that Sat 1 is a theory solver for T1-satisfiability and Sat 2 for T2satisfiability.
- We wish to determine if  $\phi$  is T1 UT2-satisfiable.
- 1. Convert  $\phi$  to its separate form  $\phi$ 1  $\wedge$   $\phi$ 2.
- 2. Let S be the set of variables shared between  $\phi$ 1 and  $\phi$ 2.
- 3. For each *arrangement* D of S:
  - 1. Run Sat 1 on  $\phi$ 1 U D.
  - 2. Run *Sat* 2 on φ2 U D.

## **Combining Theories**

- QF UFLIA
- $\phi = 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$
- We first convert  $\phi$  to a separate form:
- $\phi_{UF} = f(x) \neq f(y) \wedge f(x) \neq f(z)$
- $\phi_{LIA} = 1 \le x \land x \le 2 \land y = 1 \land z = 2$

## **Combining Theories**

- $\phi_{UF} = f(x) \neq f(y) \wedge f(x) \neq f(z)$
- $\phi_{IIA} = 1 \le x \land x \le 2 \land y = 1 \land z = 2$
- {x, y, z} can have 5 possible arrangements based on equivalence classes of x, y, and z
  - 1. Assume All Variables Equal:
    - 1.  $\{x = y, x = z, y = z\}$  inconsistent with  $\phi_{UF}$
  - 2. Assume Two Variables Equal, One Different
    - 1.  $\{x = y, x \neq z, y \neq z\}$  inconsistent with  $\phi_{UF}$
    - 2.  $\{x \neq y, x = z, y \neq z\}$  inconsistent with  $\phi_{UF}$
    - 3.  $\{x \neq y, x \neq z, y = z\}$  inconsistent with  $\phi_{LIA}$
  - 3. Assume All Variables Different:
    - 1.  $\{x \neq y, x \neq z, y \neq z\}$  inconsistent with  $\phi_{LIA}$



#### Convex theories

• Definition:

$$\Gamma \vdash_{\tau} \bigvee_{i \in I} x_i = y_i \text{ iff } \Gamma \vdash_{\tau} x_i = y_i \text{ for some } i \in I$$

- Gives much faster combination
  - $O(2^{n*n} \times (T1(n)+T2(n)))$  if one or both theories not convex
  - $O(n^3 \times (T1(n) + T2(n)))$  if both are convex
- Non-convex theories:
  - bit vector theories
  - linear integer arithmetic
  - theory of arrays

# Stably infinite theories

- A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model (Leonardo de Moura)
- T2 =DC( $\forall x,y,z.(x=y) \lor (x=z) \lor (y=z)$ )

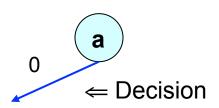
# Roadmap for this Tutorial

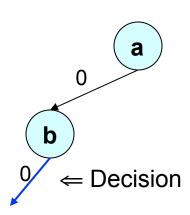
- Background and Notation
- Survey of Theories
  - Equality of uninterpreted function symbols
  - Bit vector arithmetic
  - Linear arithmetic
  - Difference logic
  - Array theory
- Combining theories
- Review DLL
- Extending DLL to DPLL(t)

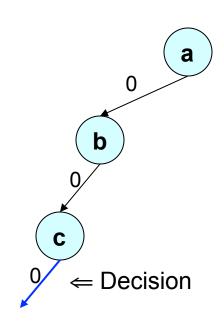


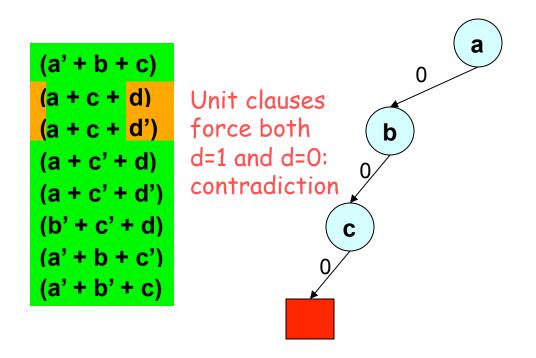
| (a'+b+c)      |
|---------------|
| (a + c + d)   |
| (a + c + d')  |
| (a + c' + d)  |
| (a + c' + d') |
| (b' + c' + d) |
| (a' + b + c') |
| (a' + b' + c) |

#### Green means "crossed out"

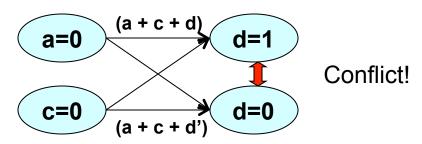


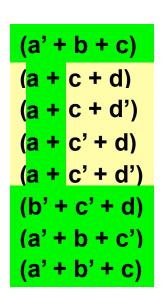


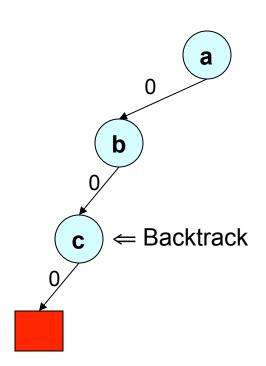


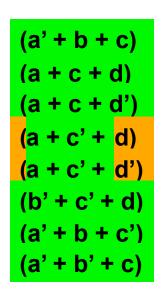


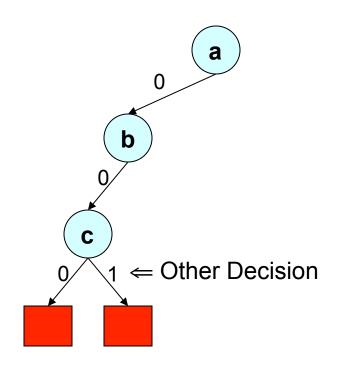
Implication Graph (shows that the problem was caused by a=0 ^ c=0; nothing to do with b)

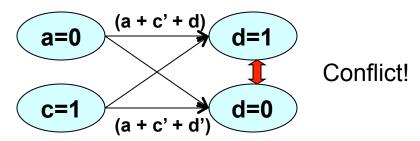


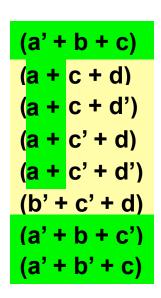


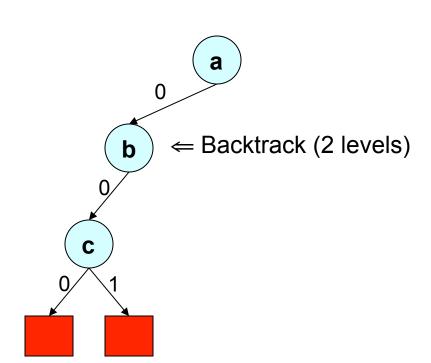


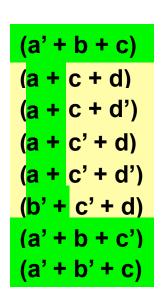


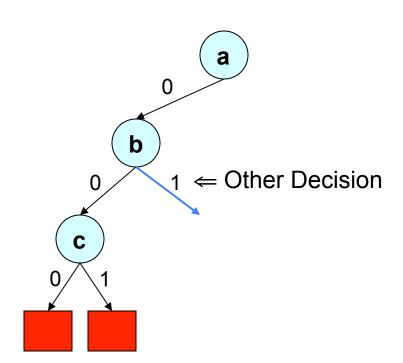


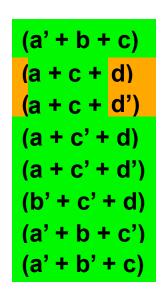


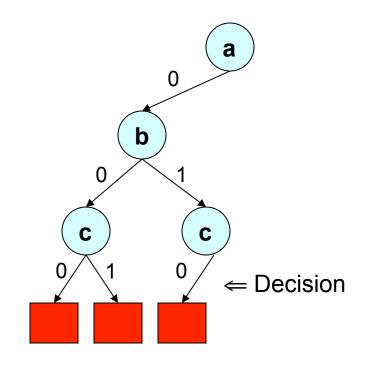


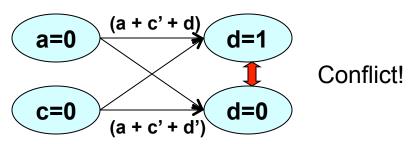


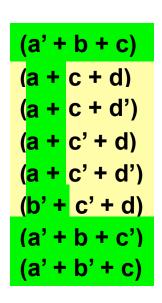


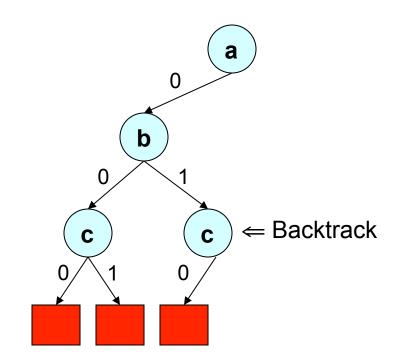


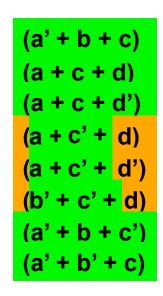


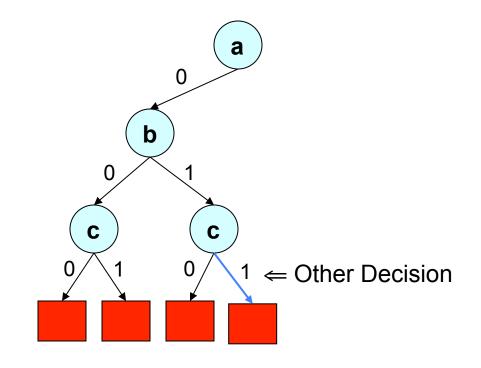


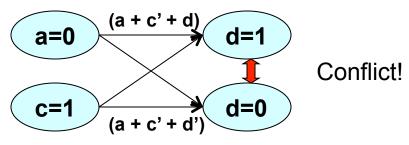


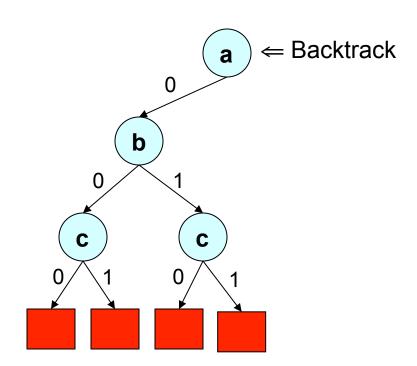


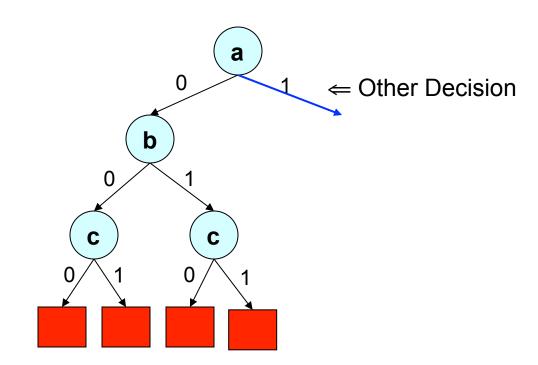


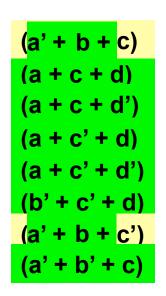


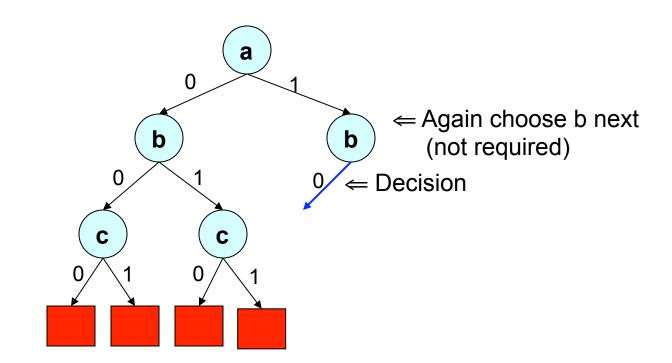




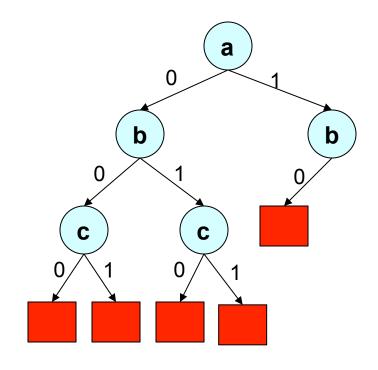


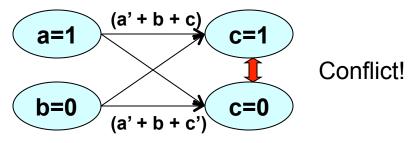


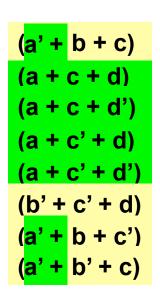


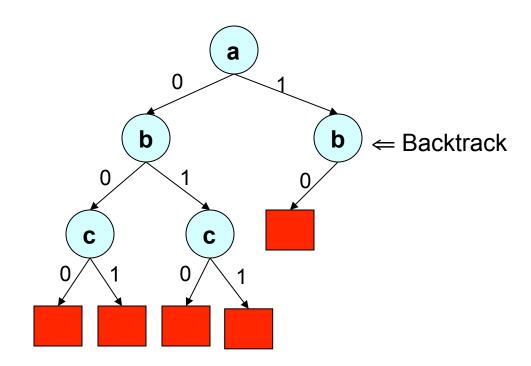


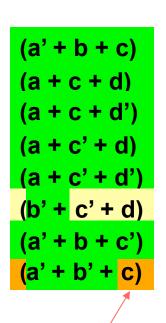


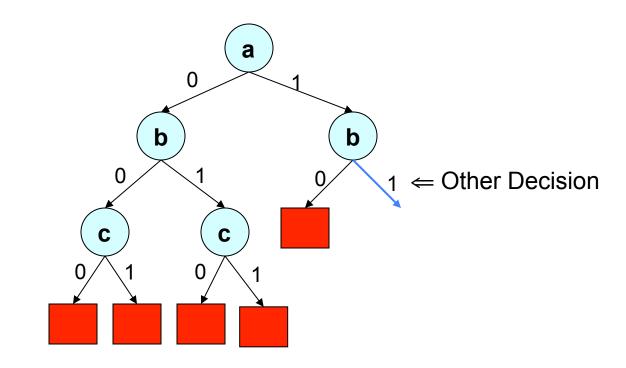




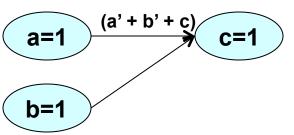


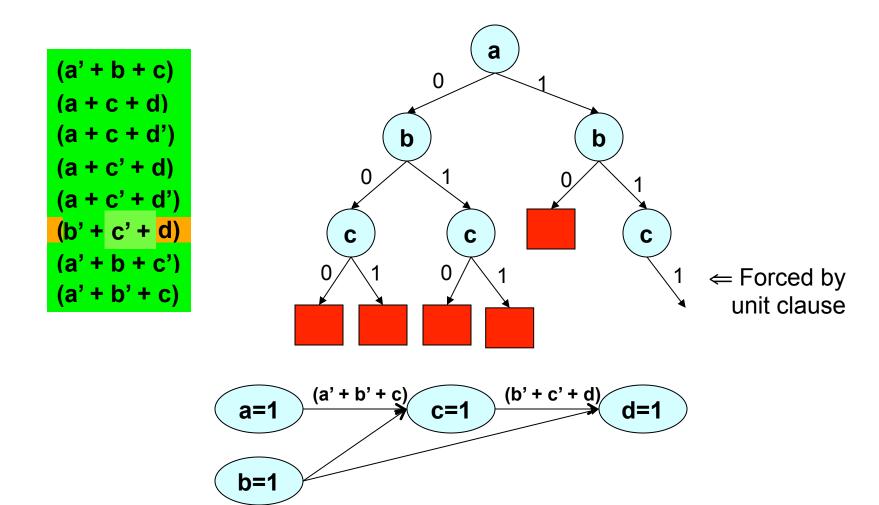


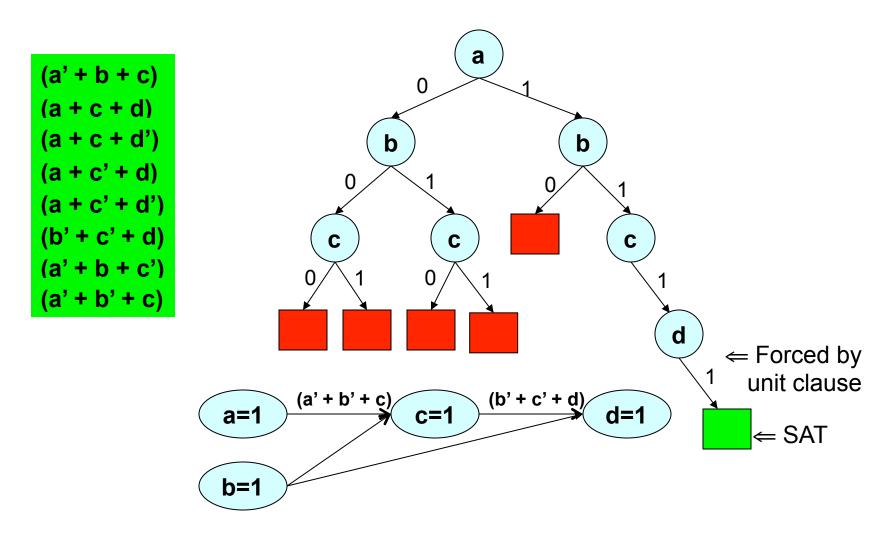




unit clause that
propagates without
contradiction (finally!)
Often you get these much
sooner







## Tricks used by zChaff and similar DLL solvers

(Overview only; details on later slides)

- Make unit propagation / backtracking speedy (80% of the cycles!)
- Variable ordering heuristics: Which variable/value to assign next?
- Conflict analysis: When a contradiction is found, analyze what subset of the assigned variables was responsible. Why?
  - Better heuristics: Like to branch on vars that caused recent conflicts
  - Backjumping: When backtracking, avoid trying options that would just lead to the same contradictions again.
  - Clause learning: Add new clauses to block bad sub-assignments.
  - Random restarts (maybe): Occasionally restart from scratch, but keep using the learned clauses. (Example: crosswords ...)
    - Even without clause learning, random restarts can help by abandoning an unlucky, slow variable ordering. Just break ties differently next time.
- Preprocess the input formula (maybe)
- Tuned implementation: Carefully tune data structures
  - improve memory locality and avoid cache misses

# Motivating Metrics: Decisions, Instructions, Cache Performance and Run Time

|               | 1dlx_c_mc_ex_bp_f |
|---------------|-------------------|
| Num Variables | 776               |
| Num Clauses   | 3725              |
| Num Literals  | 10045             |

|                  | Z-Chaff     | SATO         | GRASP         |
|------------------|-------------|--------------|---------------|
| # Decisions      | 3166        | 3771         | 1795          |
| # Instructions   | 86.6M       | 630.4M       | 1415.9M       |
| # L1/L2 accesses | 24M / 1.7M  | 188M / 79M   | 416M / 153M   |
| % L1/L2 misses   | 4.8% / 4.6% | 36.8% / 9.7% | 32.9% / 50.3% |
| # Seconds        | 0.22        | 4.41         | 11.78         |

#### Current variable assignments

| Α | В | С | D | Ш | F | G | Ι | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   |   |   |   |   |   |

Stack of assignments used for backtracking



= forced by propagation

= first guess

= second guess

#### Current variable assignments

| Α | В | С | D | Ш | H | G | Ι | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   |   | 0 |   |   |   |

Stack of assignments used for backtracking

| C=1 F=0 A=1 G=0 J=0 |
|---------------------|
|---------------------|

Guess a new assignment J=0

= forced by propagation

= first guess

= second guess

#### Current variable assignments

| Α | В | С | D | Ш | F | G | Ι | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   | 0 |   |   |   |

Stack of assignments used for backtracking

Unit propagation implies assignments K=1, L=1

| = forced by propagation |  |                              |  |  |  |  |  |  |
|-------------------------|--|------------------------------|--|--|--|--|--|--|
| = first guess           |  | = currently being propagated |  |  |  |  |  |  |
| = second guess          |  | = assignment still pending   |  |  |  |  |  |  |

#### Current variable assignments

| Α | В | С | D | Ш | F | G | I | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   |   | 0 | 1 |   |   |

#### Stack of assignments used for backtracking



#### Now make those assignments, one at a time

| = forced by propagation |  |                              |  |  |  |  |  |  |
|-------------------------|--|------------------------------|--|--|--|--|--|--|
| = first guess           |  | = currently being propagated |  |  |  |  |  |  |
| = second guess          |  | = assignment still pending   |  |  |  |  |  |  |

#### Current variable assignments

| Α | В | С | D | Ш | F | G | Ι | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   | 0 | 1 |   |   |

Stack of assignments used for backtracking

Chain reaction: K=1 propagates to imply B=0

| = forced by propagation |  |                              |  |  |  |  |  |
|-------------------------|--|------------------------------|--|--|--|--|--|
| = first guess           |  | = currently being propagated |  |  |  |  |  |
| = second guess          |  | = assignment still pending   |  |  |  |  |  |

#### Current variable assignments

| Α | В | С | D | Ш | F | G | I | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   |   | 0 | 1 |   |   |

Stack of assignments used for backtracking

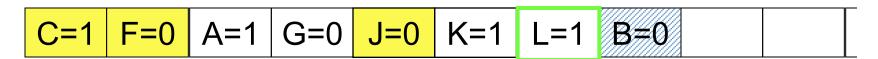
Also implies A=1, but we already knew that

| = forced by propagat | tion |                              |
|----------------------|------|------------------------------|
| = first guess        |      | = currently being propagated |
| = second guess       |      | = assignment still pending   |

#### Current variable assignments

| Α | В | С | D | Е | F | G | I | ٦ | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   | 0 | 1 | 1 |   |

Stack of assignments used for backtracking



= forced by propagation

= first guess

= currently being propagated

= second guess

= assignment still pending

#### Current variable assignments

| Α | В | С | D | Е | F | G | Н | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   |   | 0 | 1 | 1 |   |

Stack of assignments used for backtracking

L=1 propagates to imply F=1, but we already had F=0

#### Current variable assignments

| Α | В | С | D | Е | F | G | Н | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   |   | 0 | 1 | 1 |   |

Stack of assignments used for backtracking

Backtrack to last yellow, undoing all assignments

#### Current variable assignments

| Α | В | С | D | Ш | F | G | I | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   |   | 0 |   |   |   |

Stack of assignments used for backtracking



= forced by propagation

= first guess

= currently being propagated

= second guess

= assignment still pending

#### Current variable assignments

| Α | В | С | D | Ш | H | G | Ι | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   |   | 1 |   |   |   |

Stack of assignments used for backtracking

#### Current variable assignments

| Α | В | С | D | Ш | F | G | I | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   | 1 |   |   | 0 | 0 |   |   | 1 |   |   |   |

Stack of assignments used for backtracking



= forced by propagation

= first guess

= currently being propagated

= second guess

= assignment still pending

#### Current variable assignments

| Α | В | С | D | Ш | F | G | Ι | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 |   |   | 0 | 0 |   | 1 |   |   |   |

Stack of assignments used for backtracking

Nothing left to propagate. Now what?

| = forced by propagat | tion |                              |
|----------------------|------|------------------------------|
| = first guess        |      | = currently being propagated |
| = second guess       |      | = assignment still pending   |

### Current variable assignments

| Α | В | С | D | Е | F | G | Ι | J | K | L | M |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 |   |   | 0 | 0 |   | 1 |   | 1 |   |

### Stack of assignments used for backtracking

## Again, guess an unassigned variable and proceed ...

= forced by propagation
= first guess = currently being propagated
= second guess = assignment still pending

#### Current variable assignments

| Α | В | С | D | Ш | F | G | Ι | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 |   |   | 0 | 0 |   |   | 1 |   | 0 |   |

#### Stack of assignments used for backtracking

#### Current variable assignments

| Α | В | С | D | Ш | F | G | Ι | I | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 |   |   | 0 | 0 |   |   | 1 |   | 0 |   |

#### Stack of assignments used for backtracking

## Current variable assignments

| Α | В | С | D | Ш | F | G | Ι | J | K | L | М |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   |   |   |   | 1 |   |   |   |   |   |   |

## Stack of assignments used for backtracking

| C=1                                           | F=1                     |               |      |     |           |           |         |     |  |  |  |  |  |  |
|-----------------------------------------------|-------------------------|---------------|------|-----|-----------|-----------|---------|-----|--|--|--|--|--|--|
| Question: When should we return SAT or UNSAT? |                         |               |      |     |           |           |         |     |  |  |  |  |  |  |
|                                               | = forced by propagation |               |      |     |           |           |         |     |  |  |  |  |  |  |
|                                               |                         | = first guess |      | = 0 | currently | being p   | oropaga | ted |  |  |  |  |  |  |
|                                               |                         | = second aues | is 🛚 | = a | assianm   | ent still | pending | 1   |  |  |  |  |  |  |

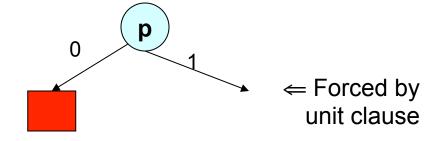
## Roadmap for this Tutorial

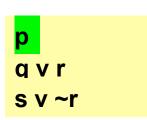
- Background and Notation
- Survey of Theories
  - Equality of uninterpreted function symbols
  - Bit vector arithmetic
  - Linear arithmetic
  - Difference logic
  - Array theory
- Combining theories
- Review DLL
- Extending DLL to DPLL(t)

```
p = 3 < x
q = x < 0
r = x < y
s = y < 0
```

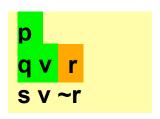
p qvr sv~r

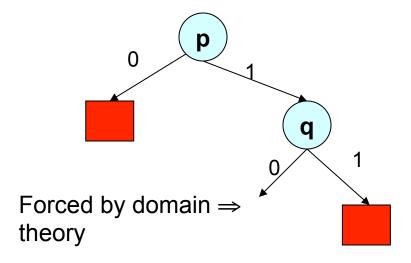
### Green means "crossed out"



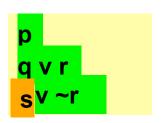


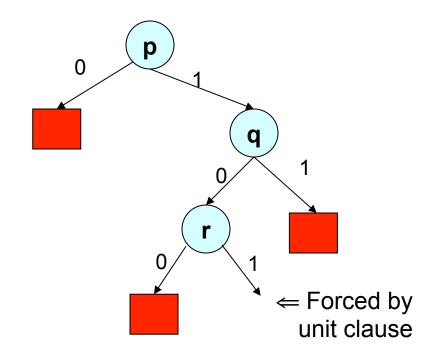
### Green means "crossed out"



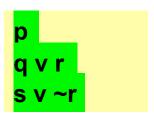


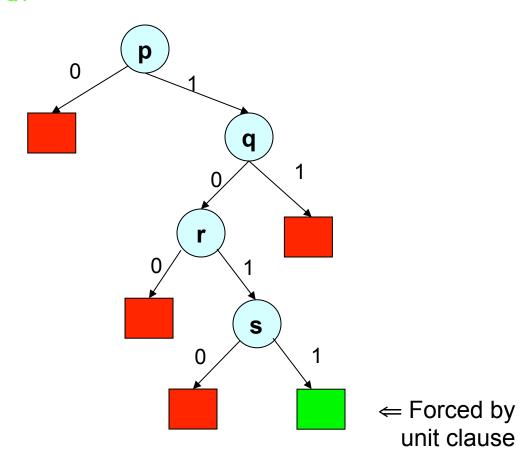
### Green means "crossed out"





### Green means "crossed out"





Example, courtesy Leonardo de Moura