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Abstract
Cluster adaptive training (CAT) is a popular approach to train
multiple-cluster HMMs for fast speaker adaptation in speech
recognition. Traditionally, a cluster-independent decision tree
is shared among all clusters, which could limit the modelling
power of multiple-cluster HMMs. In this paper, each cluster is
allowed to have its own decision tree. The intersections between
the triphones subsets, corresponding to the leaf nodes of each
cluster-dependent trees, are used to define a finer state sharing
structure. The parameters of these intersections are constructed
from the parameters of the leaf nodes of each individual deci-
sion tree. This is referred to as CAT with factorized decision
trees (FD-CAT). FD-CAT significantly increases the modelling
power without introducing additional free parameters. A novel
iterative mean cluster update approach and a robust covariance
matrix update method with united statistics are proposed to effi-
ciently train FD-CAT. Experiments showed that using multiple
decision trees can yield better performance than single decision
tree. Furthermore, FD-CAT significantly outperformed tradi-
tional CAT system.
Index Terms Adaptation, factorized decision trees, cluster adap-
tive training, eigenvoices

1. Introduction
Cluster based adaptation has been widely used for fast speaker
adaptation in speech recognition. It performs adaptation on a
series of sets of HMMs. One traditional scheme is to build
speaker dependent models and choose an appropriate one for
a particular speaker. In this approach, the adaptation, or the
selection of the appropriate model for recognition is a “hard”
choice. Alternatively, linear combination can be used to con-
struct a new interpolated model from a set of speaker dependent
models [1], which is a “soft” choice. Cluster adaptive training
[2] and eigenvoices [3] are both based on the soft choice con-
cept. These approaches can be interpreted as adaptive training,
where the “transforms” to adapt the model are the interpolation
weights. Rather than using a single set of HMMs, cluster adap-
tation techniques require multiple sets of HMMs.

Cluster adaptive training (CAT) [2, 4] is a general frame-
work to train multiple-cluster HMMs and interpolation weights.
The basic idea is to build a target speaker specific model by us-
ing a weighted sum of multiple sets of HMMs. In order to sim-
plify training, it is often assumed that different clusters share
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the same covariance matrices, transition matrices and mixture
weights and that only the mean values differ between the clus-
ters. A similar method is eigenvoices [5], where multiple-cluster
HMMs are constructed by performing eigen-decomposition on
a set of speaker-dependent concatenated HMM parameters. Pre-
vious works on CAT always use a single decision tree for the
multiple-HMMs. In this case, eigenvoices is equivalent to CAT
with eigen-decomposition initialization. However, the differ-
ence between CAT and eigenvoices does not only lie in the ini-
tialization stage. With explicit association with different acous-
tic factors, it is possible to employ separate parameter tying
structure for each cluster within the CAT framework. This will
allow more powerful modelling without dramatically increasing
the number of free parameters. This is a distinct advantage of
the CAT framework compared to eigenvoices.

The use of multiple dependent decision trees in multi-cluster
HMMs has been explored in two different frameworks [6, 7].
In [6], acoustic scores given by different clusters are linearly
combined to give the final score. Another framework is to com-
bine the effect at parameter level. This framework has been
used within the adaptive training framework in HMM based
speech synthesis to model rich contexts [7]. Instead of combin-
ing acoustic scores as proposed in [6], the Gaussian parameters
of the atomic cluster are constructed among parameters associ-
ated with the leaf nodes of the multiple decision trees.

This paper investigates CAT with factorized decision trees
(FD-CAT) for speech recognition. Due to the combination ef-
fect from intersection, the update formula for multiple-cluster
HMMs in traditional CAT are no longer applicable. An ex-
tended formulae has been proposed in [8], where multiple clus-
ter means are updated simultaneously. To avoid computational
cost and numerical accuracy issue of simultaneous update, a
new iterative update of multiple-cluster mean vectors is pro-
posed as an alternative. An important issue of FD-CAT is how
to reliably update the covariance matrices associated with the
atomic state clusters. A united statistics approach is proposed
to effectively address the issue.

The rest of the paper is arranged as follows. Section 2 de-
scribes the framework of FD-CAT and the new parameters up-
date approaches. Experiments are presented in section 3, fol-
lowed by conclusions and relations to prior works.

2. CAT with factorized decision trees
In cluster adaptive training (CAT) [2], the canonical model is a
set of multiple-cluster HMMs. Here, multiple clusters are rep-
resented using a set of P mean vectors of each Gaussian com-
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ponent m, one for each of the P clusters. In traditional CAT, the
mixture weight, c(m) and the covariance matrix (usually diago-
nal). Σ(m) are shared among all clusters, as the multiple-cluster
HMMs are initialized from a set of standard cluster-independent
HMMs [9] (or a set of cluster-dependent HMMs in the case of
eigenvoices [3]). Therefore, it naturally inherits the state shar-
ing structure, i.e. all clusters sharing use the same decision tree
as the seed HMM model. The adapted mean of Gaussian com-
ponent m for a particular speaker s, μ̂(sm), can then be ex-
pressed as

μ̂(sm) =

P∑
i=1

λ
(sm)
i μ

(m)
i (1)

where μ
(m)
i is the mean of the ith cluster in Gaussian com-

ponent m, P is the total cluster number. Note that, since all
clusters use the same decision tree and Gaussian ordering struc-
ture, the superscript for the adapted mean, m, is the same for all

clusters. λ
(sm)
i is the corresponding weight for Gaussian com-

ponent m and speaker s. It is possible to construct a regression
tree [10] for interpolation weights to allow flexible adaptation,
so that a group of Gaussians may share the same interpolation
weight vector. The regression base-class notation will be omit-
ted in the derivation in this section for clarity.

2.1. CAT with factorized decision trees

Though CAT has achieved good performance in fast speaker
adaptation, the use of single decision tree is a limitation. In the
factorized decision tree approach, separate decision trees are
constructed individually for different context groups. The in-
tersections of leaf nodes of different trees are then used as the
atomic state sharing units. However, the actual Gaussian pa-
rameters associated with each atomic leaf node are not tied at
the intersection level, but calculated from leaf nodes of each
clusters. Adaptive training framework can then be employed to
interleavingly update the multiple sets of parameters [7]. CAT
has been used within this framework for a single Gaussian sys-
tem in HMM based speech synthesis [8]. It has been shown that
it can effectively improve the modelling of rich contexts [8, 7].

In this paper, the framework is extended to acoustic model
adaptation in speech recognition, referred to as CAT with Fac-
torized Decision trees (FD-CAT). Here, acoustic factors like
gender or environment noise type, are considered as effective
contexts during state clustering. Separate decision trees are
built for each acoustic factor. The intersections of these de-
cision trees are then calculated and defined as the atomic leaf
nodes. This operation is referred to as combination of multiple
decision trees. An example of combining two decision trees is
depicted in Fig 1.

Figure 1: Combination of two decision trees

Assuming the triphones clustered into leaf nodes rp and re
are

rp = {a-b+c, d-b+c, e-b+f, c-b+f}
re = {e-b+c, d-b+c, e-b+a, c-b+f}

Then the intersection of the two leaf nodes, rc, in the combined
decision tree is

rc = rp
⋂

re = {d-b+c, c-b+f}
Due to the combination effect, the number of the atomic

leaf nodes rc is normally significantly greater than the total
number of the leaf nodes in the two decision trees. In general,
the atomic leaf node rc of the combined decision tree is the
intersection of the leaf nodes corresponding to each individual
decision tree. The general case can be expressed as

rc =
⋂

i=1,··· ,P
rid (2)

where i is index of cluster (acoustic factor), rid denotes the leaf
node of the ith decision tree. With the factorized decision trees,
the mean of Gaussian component m in atomic state rc can be
expressed as1

μ̂(sθc) =
P∑

i=1

λ
(sθc)
i μθid (3)

where θc = {rc,m} is a brief notation for the mth Gaussian of
the atomic leaf node rc in equation (2), similarly, θid = {rid,m}
denotes the mth Gaussian of the leaf node of the clustered state
of the ith decision tree rid. Here, rc ⊆ rid. P is the total num-
ber of clusters (acoustic factors). For example, gender may be
used as the acoustic factor, so that there are 2 clusters corre-
sponding to female and male respectively. s denotes a distinct
acoustic condition such as a speaker. Each speaker is associated
with different weights for male and female clusters. μ̂(sθc) is
the adapted mean of the mth Gaussian component within the
atomic state rc. It is constructed from the means of the mth

Gaussian component within each individual decision tree, μ
θid
i .

The construction is done by linear interpolation using a set of

weights. λ
(sθc)
i is the weight for gender cluster i, which is as-

sociated with speaker s and Gaussian component θc, i.e., each
Gaussian component in the atomic leaf node may have a dif-
ferent set of weights. This allows more flexible and powerful
modelling. To avoid data sparsity issue, it is a common practice
to group the Gaussian components using a regression classes
tree [10] and associate the weights to each node of the regres-
sion tree according to the amount of available data.

Due to the combination effect, the number of parameters of
the adapted mean can be significantly larger than the summa-
tion of the free parameters on the right-hand-side of the equa-
tion. Hence, by employing factorized decision trees, finer state
modelling can be easily achieved. On the other hand, with the
structured parametric representation, robust parameter estima-
tion is also possible given appropriate decision tree clustering
thresholds.

An important difference of equation (3) from equation (1)
is that the mean vector of each decision tree can contribute to

1Note that, for state output distribution with Gaussian mixture mod-
els (GMM), not only the decision tree, but also the Gaussian ordering
can have overlapping structures. This means that the construction of
the parameters of the mth Gaussian component of rc can involve the
nth Gaussian component of rid. In this paper, only the state sharing
structures are considered and the Gaussian ordering is assumed to be
unchanged.
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several different atomic clusters. Due to this overlapping effect,
it is not possible to directly update the CAT model parameters
of a single atomic state as in [9]. Instead, all overlapped mean
vectors have to be updated dependently. Although there is a
closed form solution for the simultaneous update[8], it requires
inversion of very large matrices and may not be stable during
training. To efficiently apply FD-CAT to speech recognition, an
alternative approach will be discussed in the next section.

As for the interpolation weights update, there is no differ-
ence between FD-CAT and traditional CAT. The weights update
formula in [9] can be used without any change.

2.2. Iterative mean update of FD-CAT

To avoid computational cost and the numerical accuracy issue
of large matrix inversion, mean vectors of each cluster may be
updated sequentially rather than simultaneously. The auxiliary
function of FD-CAT for mean update can be written as

Q = −1

2

∑
s,t,θc

γθc(t)
(
ot − μ̂(sθc)

)T
Σ(θc)−1(ot − μ̂(sθc)

)
(4)

where θc and μ̂(sθc) are defined in equation (3), γθc(t) is the

posterior occupancy of θc at time t. Let μθid be the mean vector
of the mth component of the leaf node rd of the ith decision

tree, differentiating (4) w.r.t. μθid and equating it to zero leads
to the below mean update formula:

μθid = G−1

θi
d
kθi

d
(5)

where G−1

θi
d

and kθi
d

are sufficient statistics defined as

Gθi
d

=
∑

s,t,rc⊂rd

γθc(t)
(
λ
(sθc)
i

)2
Σ(θc)−1

kθi
d

=
∑

s,t,rc⊂rd

γθc(t)λ
(sθc)
i Σ(θc)−1

(
ot−

∑
j �=i

λ
(sθc)
j μ

θ
j
d

j

)

From equation (5), the mean vector associated with rid is depen-
dent on the parameters of the other clusters j = 1, · · · , P , j �=
i. By interleaving this update process across all clusters, the
mean clusters of FD-CAT can be effectively updated sequen-
tially.

2.3. Covariance matrix update of FD-CAT

By taking intersections between different decision trees, FD-
CAT can significantly increase the number of atomic clustered
states and consequently, Gaussian components. This will not af-
fect the robustness for mean vectors update because mean vec-
tors are associated with the original decision trees where suffi-
cient data is guaranteed during state clustering. However, co-
variance matrices in FD-CAT are associated with atomic Gaus-
sian components. The re-estimation only relies on the data
aligned to the atomic states during expectation maximization
(EM) training. This is referred to as intersected statistics. The
large number of atomic Gaussian components may lead to sparse
data and unreliable covariance estimation.

One way to address this issue is to build a new regression
tree for covariance matrices, which is mentioned in [8]. By shar-
ing covariance matrix parameters of each node, robust estima-
tion can be obtained. However, it is not easy to find an ideal
regression tree as the build of regression tree requires a well
trained seed model. In this paper, an alternative approximation
approach, united statistics for covariance update, is used. The
basic idea is to use the statistics of all clusters which overlap

with the atomic intersection leaf node, to update covariance ma-
trix. With the notation in (2), the covariance update with united
statistics can be written as

Σ(θc) = diag

(∑P
i=1

∑
rc⊂ri

d

∑
s,t γθc(t)õ

T
t õt∑P

i=1

∑
rc⊂ri

d

∑
s,t γθc(t)

)
(6)

where diag(·) takes diagonal elements, θc = rc(m) is brief
notation Gaussian component m of atomic state rc, and

õt = ot − μ̂(sθc) = ot −
P∑

i=1

λ
(sθc)
i μ

θid
i (7)

From equation (6), the statistics of each individual cluster are
repeatedly used, which will effectively address the data sparsity
issue. Note that, this update is only an approximation rather
than an exact solution derived using the EM algorithm.

3. Experimental results
The performance of FD-CAT was evaluated on a Wall Street
Journal (WSJ0) large vocabulary speech recognition task [11].
The SI-84 training set was used as the training corpus. It con-
sists of 83 speakers (41 male and 42 female) and 7138 utter-
ances, giving a total of about 14 hours speech. The standard
nov92 5K vocabulary non-verbalized test set was used for eval-
uation. It consists of 8 speakers (5 male and 3 female), each
with about 40 utterances. All systems had 16 Gaussian com-
ponents per state on average, and used MFCC front-end with
energy and their first, second derivatives, resulting in 39 dimen-
sional feature vector. All systems were cross-word triphone sys-
tems. A bi-gram language model was used in decoding.

The baseline systems were built using a single decision tree
with 3118 clustered states, constructed on all training data, re-
ferred to as a GI decision tree. A gender-independent (GI) and
a gender-dependent (GD) system were built with the maximum
likelihood (ML) criterion. During testing, gender information
was assumed to be known for the GD system. Hence, the GD
performance shown in this section is slightly optimistic. With
optimistic estimation of the GD performance, the conclusion of
this paper is even sounder since in CAT the gender labels of test
data are always assumed to be unknown. To achieve more ro-
bust estimate, maximum a posteriori (MAP) criterion was also
used to build a MAP-GD system for comparison.

The above baseline systems all used the GI decision tree. It
is also interesting to investigate the effect of using multiple deci-
sion trees. Two new decision trees were then constructed using
the female and male training data respectively. As the amount
of data was reduced compared to the GI decision tree, the stop-
ping thresholds were tuned so that the resultant numbers of the
clustered states are similar to the GI decision tree. In total, there
are 3122 clustered states resulting from the female decision tree,
and 3111 from the male one. Some initial experiments showed
that using the male or female decision tree to replace the GI
decision tree can not yield consistent performance gain due to
the biased state clustering structure. To get an estimate of the
effect of combining the two gender-dependent decision trees,
a cheating experiment was performed. The GI/ML-GD/MAP-
GD systems were re-trained using the female and the male de-
cision tree respectively, yielding two sets of GI/ML-GD/MAP-
GD systems. During the re-training, all procedures were ex-
actly the same as before except for using different state tying
structures. Then, the systems trained on the female decision
tree were used to decode the female test data, and similarly to

1245



the male counterpart. The hope is that the biased decision tree
structure will benefit the decoding on the corresponding type of
test data.

Decision Trees
Systems

GI ML-GD MAP-GD

Single GI 7.10 7.15 6.95
Multiple Male + Female 6.93 6.63 6.61

Table 1: WER (%) of baseline GI/GD systems with single or
multiple decision trees

Table 1 shows the performance of all baseline systems. It
can be observed that, with the single GI decision tree, the ML-
GD system got slight degradation due to the reduced amount of
training data after gender splitting. Employing the MAP crite-
rion can achieve more robust estimate, and consequently better
result than the ML-GI system2. When the gender-dependent
decision trees were combined and used, the performance of all
systems were improved. Although the performance was slightly
optimistic due to the assumption of known gender during test-
ing, it still demonstrates that appropriate combination of multi-
ple decision trees can be beneficial. Since the MAP-GD systems
yield the best results, they are used as the baseline system to be
compared to cluster adaptive training (CAT) systems.

A traditional CAT system was built using the GI decision
tree. It was initialized from the GI system using gender infor-
mation from training data [9]. When multiple decision trees (fe-
male and male) were used, a FD-CAT system was constructed.
As indicated in section 2.1, FD-CAT can yield significantly in-
creased model complexity without increasing the number of
free parameters. This can be demonstrated using the number
of atomic states and the number of free states. As shown in
table 2, compared to the original decision trees, the number
of atomic states of factorized decision trees (Male ∩ Female)
has been significantly increased while the number of free states
keeps unchanged.

Decision Trees
#States

Atomic Free

Single GI 3118 3118

Multiple
Male + Female 6233 6233
Male ∩ Female 8275 6233

Table 2: Comparison of model complexity and free parameters

As indicated in section 2.3, covariance update can be un-
reliable3 in FD-CAT. To investigate this issue, normal update
of covariance matrix and the union update approach were com-
pared.

In the normal covariance update approach, only the statis-
tics corresponding to the atomic state (intersection of leaf nodes)
were used for update. union denotes the proposed united statis-
tics approach. It can be observed from table 3 that the normal

2It is worth noting that the improvement did not come from the in-
creased number of parameters in GD training. A GI system with 32
Gaussian components was also built and the WER was 7.42, showing
that the original 16 component system has got converged result.

3As component priors are also dependent on the intersected states,
their update may also be unreliable. Similar united statistics approach
was also used in this paper.

Variance Stat. WER (%)

normal 8.22
union 6.74

Table 3: Different variance update approach for FD-CAT

covariance update got significant degradation due to data spar-
sity. On the other hand, the union covariance update approach
achieved more robust estimate, and consequently led to much
better performance. Therefore, in the following FD-CAT exper-
iments, the united statistics approach was always used.

As mentioned in section 2, regression tree can be used for
interpolation weights in CAT system. A set of traditional CAT
and FD-CAT systems with different number of regression base
classes for weight vectors were built for comparison.

Figure 2: WER (%) comparison of MAP-GD and CAT systems
with single and multiple decision trees

Fig 2 shows the comparison between FD-CAT, traditional
CAT and the MAP-GD systems. Note that single and multiple
decision trees details are shown in table 2. It can be observed
that, with either single or multiple decision trees, CAT systems
can outperform MAP-GD systems. Systems with multiple deci-
sion trees outperformed systems with single decision tree. With
more regression base classes, performance of all CAT systems
improved. The most important observation is that FD-CAT with
more than 100 regression base classes can outperform all tradi-
tional CAT systems and MAP-GD systems. Statistical signif-
icance test showed that all gains were significant. This effec-
tively demonstrates that FD-CAT is more powerful than tradi-
tional CAT as well as MAP-GD.

4. Conclusion
This paper applies the factorized decision trees approach to clus-
ter adaptive training (FD-CAT) for speech recognition. By find-
ing intersections of multiple decision trees, FD-CAT signifi-
cantly increases the number of atomic states without affecting
the number of free states from the original decision trees. This
leads to more powerful modelling ability. With an appropriate
choice of regression tree, FD-CAT can significantly outperform
the traditional CAT as well as the MAP-GD systems.
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