
The Sprite Network
Operating System

John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N. Nelson, and

Brent B. Welch

University of California at Berkeley

prite is an experimental network
operating system under develop-
ment at the University of Califor-

nia at Berkeley. It is part of a larger
research project called SPUR, whose goal
is the design and construction of a high-
performance multiprocessor workstation
with special hardware support for Lisp
applications. I One of Sprite’s primary
goals is to support applications running on
SPUR workstations, but we hope that the
system will also work well for a variety of
high-performance engineering worksta-
tions. Currently, Sprite is being used on
Sun-2 and Sun-3 workstations.

Driving forces. The motivation for
building a new operating system came
from three general trends in computer
technology: networks, large memories,
and multiprocessors.

In an increasing number of research and
engineering organizations, computing
now occurs on personal workstations con-
nected by local-area networks. Larger,
time-shared machines are used only for
those applications that cannot achieve
acceptable performance on workstations.
Unfortunately, workstation environments

Sprite implements a
set of kernel calls that

provide sharing,
flexibility, and high

performance to
networked

workstations.

tend to suffer from poor performance and
difficulties of sharing and administration,
due to the distributed nature of the sys-
tems. In Sprite, we hope to hide the distri-
bution as much as possible, while
providing the sharing and communication
of time-shared machines.

The second technology trend driving the
Sprite design is the availability of ever-
larger physical memories. Today’s
engineering workstations typically contain
four to 32 megabytes of physical memory,

and we expect memories of 100 to 500
megabytes to be commonplace within a
few years. We believe that such large mem-
ories will change the traditional balance
between computation and input/output
by permitting all of a user’s commonly
accessed files to reside in main memory.
The “RAMdisks” available on many com-
mercial personal computers have already
shown this capability on a small scale. One
of our goals for Sprite is to manage phys-
ical memory in a way that maximizes the
potential for file caching.

The third driving force behind Sprite is
the imminent arrival of multiprocessor
workstations. Workstations with more
than one processor are currently under
development in several research organiza-
tions (UCB’s SPUR, Digital Equipment
Corporation’s Firefly, and Xerox’s
Dragon are a few prominent examples),
and we expect multiprocessor worksta-
tions to be available from several major
manufacturers within a few years. We
hope that Sprite will facilitate the develop-
ment of multiprocessor applications, and
that the operating system itself will be able
to take advantage of multiple processors
in providing system services.

February 1988 0018 9162/88/0200 0023$01 00 1988 IEEE 23

Design goals. Our overall goal for Sprite
is to provide simple, efficient mechanisms
that capitalize on the three technology
trends affecting the system’s design. In
areas where technology factors did not
suggest special techniques, we modeled the
system as closely as possible after Berkeley
Unix.

The technology trends had only a minor
impact on the facilities Sprite provides to
application programs. For the most part,
Sprite’s kernel calls are similar to those
provided by the 4.3 BSD version of the
Unix operating system. However, we
added three facilities t o encourage
resource sharing: a transparent network
file system, a simple mechanism for shar-
ing writable memory between processes on
a single workstation, and a mechanism for
migrating processes between workstations
to take advantage of idle machines.

Although the technology trends did not
have a large effect on Sprite’s kernel inter-
face, they did suggest dramatic changes in
the kernel implementation, relative to
Unix. This is not surprising, since net-
works, large memories, and multiproces-
sors were not important issues in the early
1970s when the Unix kernel was designed.
We developed the Sprite kernel from
scratch, rather than modifying an existing
Unix kernel. Some interesting features of
the kernel implementation are

The kernel contains a remote proce-
dure call (RPC) facility that allows each
workstation’s kernel to invoke operations
on other workstations. The RPC mecha-
nism is used extensively in Sprite to imple-
ment other features, such as the network
file system and process migration.

Although the Sprite file system is
implemented as a collection of domains on
different server machines, it appears to
users as a single hierarchy shared by all
workstations. Sprite uses a simple mech-
anism called prefix tables to manage the
name space; these dynamic structures
facilitate system administration and recon-
figuration.

To achieve high performance in the
file system, and also to capitalize on large
physical memories, Sprite caches file data
on both server and client machines. A sim-
ple cache consistency mechanism guaran-
tees that applications running on different
workstations always use the most up-to-
date versions of files, in exactly the same
fashion as if the applications were execut-
ing on a single machine.

The virtual memory system uses ordi-
nary files for backing storage; this simpli-
fies implementation, facilitates process

migration, and may even improve perfor-
mance relative to schemes based on a
special-purpose swap area. Sprite ret,ains
the code segments for programs in main
memory, even after the programs are com-
plete, to allow quick start-up when pro-
grams are reused. Finally, the virtual
memory system negotiates with the file sys-
tem over physical memory use, permitting
the file cache to be as large as possible
without degrading virtual memory per-
formance.

Sprite guarantees that processes
behave the same whether migrated or not.
This is achieved by designating a home
machine for each process and forwarding
location-dependent kernel calls to the
process’ home machine.

Application interface
Sprite’s application interface contains

little that is new. Kernel calls are very simi-
lar to those provided by the Berkeley ver-
sions of Unix. Indeed, we have ported
many traditional Unix applications to
Sprite with relatively little effort.

Three unusual aspects of the application
interface can be summed up in one word:
sharing. First, the Sprite file system allows
sharing of all disk storage and 1/0 devices
in the network by all processes, so they
need not worry about machine bound-
aries. Second, the virtual memory mech-
anism allows sharing of physical memory
between processes on the same worksta-
tion, so they can extract the highest possi-
ble performance from multiprocessors.
Third, Sprite implements process migra-
tion, which allows job offloading t o idle
workstations and, thereby, sharing of
processing power.

File system. Almost all modern network
file systems, including Sprite’s, have the
same ultimate goal: network transparency.
Network transparency means that users
should be able to manipulate files in the
same ways they did under time-sharing on
a single machine; the distributed nature of
the file system and the techniques used to
access remote files should be invisible to
users under normal conditions. MIT’s
Locus system was one of the first t o make
transparency an explicit goal’; other file
systems with varying degrees of trans-
parency are Carnegie Mellon’s Andrew3
and Sun’s N F S 4

Most network file systems fail to meet
the transparency goal in one or more ways.
The earliest systems (and even some later

systems, such as 4.2 BSD) allowed remote
file access only with a few special programs
(for example, rcp in 4.2 BSD); most appli-
cation programs could only access files
stored on local disks. Second-generation
systems, such as Apollo’s Aegis,’ allow
any application to access files on any
machine in the network, but special names
must be used for remote files (for example,
“file” for a local file, but “[ivylfile” for
a file stored on the Ivy server). Third-
generation network file systems, such as
LOCUS, Andrew, NFS, and Sprite, provide
name transparency-that is, file location
is not indicated directly by name, and
groups of files can be moved from one
machine to another without changing their
names.

Most third-generation systems still have
some nontransparent aspects. For exam-
ple, in Andrew and NFS only a portion of
the file system hierarchy is shared; each
machine must also have a private partition
that is accessible only to that machine. In
addition, Andrew and NFS do not permit
applications running on one machine to
access 1/0 devices on other machines.
Locus appears to be alone among current
systems in providing complete file trans-
parency.

Sprite, like Locus, provides complete
transparency, so applications running on
different workstations see the same
behavior they would see if all the applica-
tions were executing on a single time-
shared machine. A single file hierarchy is
uniformly accessible to all workstations.
Although it is possible to determine where
a file is stored, that information is not
needed in normal operation. There are no
special programs for operating on remote
files, as opposed to local ones, and no
operations that can be used only on local
files. Sprite also provides transparent
access to remote 1 / 0 devices. Like Unix,
Sprite represents devices as special files;
unlike most versions of Unix, Sprite allows
any process to access any device, regard-
less of device location.

Shared address spaces. The early ver-
sions of Unix did not permit memory shar-
ing between user processes, except for
read-only code. Each process had private
data and stack segments, as shown in Fig-
ure 1. Since then, extensions to allow read-
write memory sharing have been imple-
mented or proposed for several versions of
Unix, including System V , SunOS, Ber-
keley Unix, and Mach.

There are two reasons for providing
shared memory. First, using acollection of

24 COMPUTER

processes in a shared address space is the
most natural way to program many appli-
cations. It is particularly convenient when
an application consists of mostly indepen-
dent subactivities (for example, one proc-
ess to respond to keystrokes and another
to respond to packets arriving over a net-
work); the shared address space allows
them to cooperate to achieve a common
goal (for example, managing a collection
of windows on a screen). The second moti-
vation for shared memory is the advent of
multiprocessors. Decomposing an appli-
cation into pieces that can be executed con-
currently requires rapid communication
between pieces. The faster the communi-
cation, the greater the degree of concur-
rency that can be achieved. Shared
memory provides the fastest possible com-
munication, hence the greatest opportu-
nity for concurrent execution.

Sprite provides a particularly simple
form of memory sharing; when a process
invokes the Proc-Fork kernel call to cre-
ate a new process, it may request that the
new process share the parent’s data seg-
ment (see Figure 2). The stack segment is
still private to each process; it contains
procedure invocation records and private
process data. For simplicity, Sprite’s
mechanism provides all-or-nothing shar-
ing; a process cannot share part of its data
segment with one process and part of it
with another.

We expect multiprocess applications to

Stack (private) Stack (private)

Data (private) Data (sharable)

Code (sharable) Code (sharable)
UNIX Sprite

Figure 1. The organization of virtual memory as seen by user processes in tradi-
tional Unix (left) and Sprite (right). In both systems there are three distinct seg-
ments. The lower portion of the data segment contains static data known at
compile time, and the upper portion expands to accommodate dynamically allo-
cated data. In Unix, processes may share code, but not data or stack. In Sprite, the
data segment may be shared between processes, including both statically allocated
and dynamic data. Private static data may be stored at the top of the stack
segment.

synchronize using hardware mutual-
exclusion instructions (for example, test-
and-set) directly on shared memory. In
most cases it will not be necessary to
invoke the kernel, so synchronization can
be accomplished in just a few instructions.
The kernel participates only when it is
necessary to delay process execution (for
example, to wait for a lock to be released).
For these situations, Sprite provides ker-
nel calls that put a process to sleep and

wake it up later. This permits efficient
implementation of synchronization
primitives.

Process migration. In an environment
that has a workstation for each person,
many machines will be idle at any given
time. To allow users to harness this idle
computing power, Sprite provides a new
kernel call, Proc-Migrate, that will move
a process or group of processes to an idle

Parent

fork
d

Parent Child Parent

Code

Parent Child

shared fork -
(shared read-write)

(shared read-only)

Figure 2. The Unix fork operation (a) creates a new process that shares code with its parent while using private copies of the
data and stack segments. Sprite provides both the traditional fork and a shared fork (b) in which the child shares its parent’s
data as well as code.

February 1988 25

machine. Processes sharing a heap seg-
ment must migrate together. Sprite keeps
track of which machines are idle and
selects one as the target for the migration.
The fact that a process has migrated is
transparent both to the migrated process
and to the user, as described below. The
only noticeable difference after migration
will be a reduction in the home machine’s
load.

Initially, we expect migration to be used
in two ways. First, shell commands for
manual migration will allow users to
migrate processes in much the same way
the Unix shell allows users to place
processes in the background. Second, a
new version of the Unix Make utility,
called Pmake, recompiles programs when
their source files change. Make invokes
recompilations sequentially, but Pmake is
organized to invoke multiple recompila-
tions concurrently, using process migra-
tion to offload the compilations to idle
machines. We hope to see more and more
automatic uses of migration, like Pmake,
in the future.

The idea of moving work to idle
machines is not a new one. Unfortunately,
the most widely available facilities (for
example, the rsh command of 4.2 BSD
Unix and the rex facility of Sun’s Unix)
provide only remote invocation, which is
the ability to initiate new processes on
other machines, but not the ability to move
processes once they have started execu-
tion. Process migration, which allows
processes to be moved at any time, has
been implemented in several systems (for
example, Locus,’ V,6 and Accent’) but is
not widely available. For Sprite, we
decided to implement process migration.
We think the additional flexibility migra-
tion provides is particularly important in
a workstation environment. For example,
if remote invocation is used to offload
work onto an idle machine and then the
machine’s user returns, either the foreign
processes have to be killed or the
machine’s user receives a degraded
response until the foreign processes are
complete. In Sprite, the foreign processes
can be migrated away.

One of the most important attributes of
Sprite’s migration mechanism is its trans-
parency, both to the process and to the
user. When migrated, a process will pro-
duce exactly the same results as if it were
not migrated; Sprite preserves the environ-
ment of the process as it migrates, includ-
ing files, working directory, device access,
environment variables, and anything else
that could affect process execution. In

addition, a migrated process appears still
to be running on the user’s home machine;
it will appear in listings of processes on that
machine and can be stopped, killed, or
debugged just like the user’s other
processes. In contrast, rsh does not pre-
serve the working directory and other
aspects of the environment, and neither
rsh nor rex allows a remotely executing
process to be examined or manipulated in
the same fashion as local processes. Other
implementations of process migration
tend not to provide complete transparency
to users, although they d o provide com-
plete transparency t o the migrated
processes. (How Sprite achieves execution
transparency is described in a later
section.)

Basic kernel structure
Application programs invoke kernel

functions via a collection of kernel calls.
Sprite’s basic flow of control in a kernel
call is similar to that in Unix: user
processes execute “trap” instructions to
switch to the supervisor state, and the ker-
nel executes as a privileged extension of the
user process, using a small per-process ker-
nel stack for procedure invocation within
the kernel.

Two features of Sprite’s basic kernel
structure support multiprocessor and net-
work operation. First, a multithreaded
synchronization structure allows the Sprite
kernel to run efficiently on multiproces-
sors. Second, a remote procedure call
facility allows kernels to invoke operations
remotely over the network.

Multithreading. Many operating system
kernels, including Unix, are single-
threaded, which means that a single lock
is acquired when a process calls the kernel
and released when the process puts itself
to sleep or returns to user state. In these
systems, processes are never preempted
while executing kernel code, except by
interrupt routines. The single-threaded
approach simplifies kernel implementa-
tion by eliminating many potential syn-
chronization problems between processes.
Unfortunately, it does not adapt well to a
multiprocessor environment. With more
than a few processors, contention for the
single kernel lock will limit system per-
formance.

In contrast, the Sprite kernel is mul-
tithreaded, which means that several
processes may execute in the kernel at the
same time. The kernel is organized in a

monitor-like style with many small locks,
instead of a single overall lock, protecting
individual modules or data structures.
Many processes may execute in the kernel
simultaneously as long as they do not
attempt to access the same monitored code
or data. The multithreaded approach
allows Sprite to run more efficiently on
multiprocessors, but the multiplicity of
locks makes the kernel more complex and
slightly less efficient since many locks may
have to be acquired and released over the
lifetime of each kernel call.

Remote procedure calls. In designing
Sprite for a network of workstations, one
of our most important goals was to pro-
vide a simple, efficient way for the kernels
of different workstations to invoke each
others’ services. The mechanism we chose
is a kernel-to-kernel RPC facility similar
to the one described by Birrell and Nel-
son.’ We chose RPC rather than a mes-
sage style because RPC provides a simple
programming model (remote operations
appear just like local procedure calls) and
because the RPC approach is particularly
efficient for request-response transac-
tions, which we expected to be the most
common form of interaction between
kernels.

The RPC implementation consists of
stubsand RPCtransport, as shown in Fig-
ure 3. Together they hide the fact that the
calling procedure and the called procedure
are on different machines. Each remote
call has two stubs, one on the client work-
station and one on the server. The client
stub copies its arguments into a request
message and returns values from a result
message, so the calling procedure is not
aware of the underlying message commu-
nication. The server stub passes arguments
from the incoming message to the desired
procedure and packages results from the
procedure, so the called procedure is not
aware that its real caller is on a different
machine. Birrell and Nelson modified their
compiler to generate the stubs automati-
cally from a specification of procedure
interfaces. To avoid changing our C com-
piler, we hand-generated the stubs for the
40 or so remote operations used in the
Sprite kernel. Although this was workable,
it would have been more convenient if an
automated stub-generator had been
available.

The second part of the RPC implemen-
tation is RPC transport. It delivers mes-
sages across the network and assigns
incoming requests to kernel processes that
execute the server stubs and called proce-

26 COMPUTER

Calling

Procedure

results

Client

Stub

Server

Stub

Called

Procedure

msg msg

0)
Client Workstation Server Workstation

Figure 3. Sprite’s remote procedure call mechanism makes it appear as if a remote procedure can be invoked directly (a). The
actual situation (b) is that stub procedures copy procedure arguments and results into and out of messages, and a transport
mechanism delivers the messages reliably and assigns server processes to requests.

dures. The goal of RPC transport is to pro-
vide the most efficient possible
communication between the stubs while
ensuring that messages are delivered relia-
bly. Sprite’s RPC transport uses two tech-
niques t o gain efficiency: implicit
acknowledgments and fragmentation.

Since network transmission is not per-
fectly reliable, each request and response
message must be acknowledged; if no
acknowledgment is received within a
reasonable time, the sender retransmits.
To reduce the overhead associated with
processing acknowledgment packets,
Sprite uses the scheme described by Birrell
and Nelson, where each request or
response message serves as an implicit
acknowledgment for the previous response
or request message from that client,
respectively. In the common case of short,
closely spaced operations, only two
packets are transmitted for each remote
call: one for the request and one for the
response.

The simplest way to implement RPC is
to limit the total size of the arguments or
results for any given RPC so that each
request and response message can fit into
a single network packet. Unfortunately,
the maximum allowable size for a network

packet is relatively small (about 1500 bytes
for Ethernet), so this approach would
result in high overhead for bulk transfers.
The delays associated with sending a
request, dispatching to a server process,
and returning a response would be
incurred for each 1500 bytes. Since remote
file access is one of RPC’s most common
uses, we were unwilling to accept this per-
formance limitation.

Sprite’s RPC mechanism differs from
the Birrell-Nelson scheme in that it uses
fragmentation to ship large blocks of data
(up to 16 kilobytes) in a single remote oper-
ation. If a request or reply message is too
long to fit in a single packet, RPC trans-
port breaks the message into multiple
packets (fragments), which it transmits in
order without waiting for acknowledg-
ment. The receiving RPC transport reas-
sembles the fragments into a single large
message. A single acknowledgment for all
the f ragments uses the implicit
acknowledgment scheme described above.
When packets are lost in transmission, the
acknowledgment indicates which frag-
ments have been received so that only lost
fragments are retransmitted.

Sprite kernels trust each other, and we
assume that the network wire is physically

secure (all workstations on the network
must run the Sprite kernel or some other
trustworthy software). Thus, the RPC
mechanism does not use encryption, nor
do the kernels validate RPC operations
except to prevent user errors and detect
system bugs. The RPC mechanism is used
only by the kernels and is not directly visi-
ble to user applications.

Figure 4 shows the measured perfor-
mance of the Sprite RPC mechanism. Fig-
ure 4a shows that the minimum round-trip
time for the simplest possible RPC is about
2.8 milliseconds between Sun-3/75 work-
stations, with an additional 1.2 milli-
seconds for each kilobyte of data. Figure
4b shows that throughputs greater than
700 kilobytes per second (nearly 60 percent
of the total Ethernet bandwidth of 10
megabits per second) can be achieved
between two workstations if each RPC
transfers a large amount of data. Without
fragmentation (at most 1500 bytes trans-
mitted per RPC) the throughput is reduced
by more than a factor of two. The meas-
urements in Figure 4 are for operations
between kernels. User-visible performance
is slightly worse; for example, a user proc-
ess can achieve a throughput of only 475
kilobytes per second when it reads a file

February 1988 27

M
i
1
1
1
S

C
0

e

n
d
S

(a)

“0 2 4 6 8 10 12 14 16

Kbytes Per RPC

K
b
Y
t
e
S
I
S
e
C

U--- -
0 2 4 6 8 10 12 14 16

Kbytes Per RPC

Figure 4. Measured performance of Sprite’s remote procedure call mechanism between Sun-3/75 workstations. The test con-
sisted of one kernel invoking a remote procedure in another kernel, passing to it the contents of a variable-size array as an
argument. The called procedure returned immediately. Part (a) shows the round-trip time for an individual RPC as a function
of the amount of data passed to the remote procedure; (b) shows the throughput when repeated RPCs are made. Larger trans-
fers, which use fragments on 1500-byte boundaries, are most efficient. The jumps in the curves occur at the points where addi-
tional packets become necessary.

that is cached in the main memory of a
remote server and the kernel makes four-
kilobyte RPC requests.

Managing the file name
space-prefix tables

In designing the Sprite file system for a
network environment, we were particu-
larly concerned about two implementation
issues: how to manage the file name space
in a way that simplifies system administra-
tion, and how to manage the file data in a
way that provides high performance. Fur-
thermore, we felt that it was important to
provide easy administration and high per-
formance without compromising users’
ability to share files.

To users, the Sprite file system is a sin-
gle hierarchy, just as in time-shared Unix.
To system administrators, the file system
is a collection of domains, which are simi-
lar to file systems in Unix. Each domain
contains a tree-structured portion of the
overall hierarchy. The domains are joined
into a single hierarchy by overlaying the
leaves of some domains with the roots of
other domains as illustrated in Figure 5 .
(In Unix terms, the subdomains are

mounted on their parents; the leaves where
mounting occurs, such as “/a” in Figure
5, are called mountpoints.) As the oper-
ating system traverses the components of
a file name during name lookup, it must
move automatically from domain to
domain to keep the domain boundaries
from being visible to users.

The interesting naming issues are how to
keep track of the domain structure and
how to handle file names that cross
domain boundaries. These issues are par-
ticularly interesting in a network environ-
ment where the domains may be stored on
different servers and where the server con-
figuration may change frequently. Unix
and most of its derivatives (such as NFS)
use static mount tables to keep track of
domains; the mount tables are established
by reading a local configuration file at
boot-time. This makes it difficult for the
systems to respond to configuration
changes. In our NFS clusters, for example,
any change to the domain structure typi-
cally requires each user to modify the con-
figuration file on their workstation and
reboot. Even in small clusters we have
found that such changes occur distress-
ingly often.

In Sprite, we use a more dynamic
approach to managing the domain struc-
ture, which we callprefix tables. Each cli-
ent machine’s kernel maintains a private
prefix table. Each entry in a prefix table
corresponds to a domain; it gives the full
name of the top-level directory in the
domain (that is, the common prefix shared
by the names of all files in the domain), the
name of the server on which that domain
is stored, and an additional token to pass
to the server to identify the domain (see
Table 1). Prefix tables are not normally
visible to user processes.

Locating a file. In Sprite, as in Unix,
application programs refer to files by giv-
ing either an absolutepath name for the
file (one starting at the file system root,
such as “/d/k/p/r” in Figure 5) or a rela-
tive path name, which is interpreted as
starting at a previously specified working
directory (if the working directory is
“/d/k/p” in Figure 5 , then the relative
name “r” refers to the same file as
“/d/k/p/r”). To look up an absolute path
name, a client kernel matches the name
against all entries in its prefix table and
chooses the entry with the longest match-

28 COMPUTER

ing prefix. In the example of Figure 5 , the
file name “/d/k/p/r” will match three
entries in the table, of which the entry for
server Z has the longest prefix. The client
strips the prefix from the file name and
uses the RPC facility to send the remainder
of the name (“p/r“) to the server, along
with the token from the prefix table en-
try (5) . The server uses the token to locate
the root directory of the domain, looks up
the remainder of the file name, and replies
with a token identifying the file. The cli-
ent can then issue read, write, and close
requests by making RPCs to the server
with the file’s token.

Sprite handles working directories by
opening the working directory and storing
its token and server address as part of the
process’ state. When a file name is speci-
fied relative to the working directory, the
client kernel uses the token and server
address corresponding to the working
directory rather than those from a prefix
table entry. Thus, absolute and relative
path name lookups appear identical to the
server.

There are several cases where the initial
server that receives a file name cannot
completely process the name. These cor-
respond to situations where the file’s name
crosses a domain boundary. For example,
“..” components in a name (which refer
to the parent directory) could cause it to
ascend back up the hierarchy and out
the top of the domain; or the name could
refer to a symbolic link containing an
absolute file name for a different domain;
or a relative path name could start at the
current working directory and descend
into a new domain. In each of these cases,
the initial server processes as many com-
ponents of the file name as it can, then
returns a new name to the client instead of
a file token. The client takes the new name,
processes it with its prefix table, and sends
it to a new server. This process repeats
until the name is completely resolved (see
Welch and Ousterhout9 for details).

The prefix approach bypasses the root
domain (and its server) when looking up
absolute names of files in nonroot
domains. Since a large fraction of all name
lookups involves absolute path names, we
expect this approach to reduce the load on
the root server and increase the scalability
of the system relative to schemes that
require root server participation for every
absolute path name. It may also let the sys-
tem provide limited service even when the
root server is down.

Managing prefix tables. One of the

(a)
l r n n o A

Server Y, Domain 63

j Server Y, Domain 44

. .
: I 4’

r---+------i

L.-.-.-!L!_?J
Server Z, Domain 5

Figure 5. Although the Sprite file system behaves as if it were a single hierarchy (a),
it is actually divided up into domains (b). Each domain may be stored on a
different server.

greatest advantages of prefix tables is that
they are created dynamically and updated
automatically when the system configura-
tion changes. To add a new entry to its pre-
fix table, a client broadcasts a prefix name
to all servers. The server storing the
domain replies with its address and the
token corresponding to the domain. The
client uses this information to create a new
prefix table entry. Initially, each client
starts out with an empty prefix table and
broadcasts to find the entry for “/.” As
it uses more files, it gradually adds entries
to its prefix table.

How does a client know when to add a
new prefix to its table? The file at the
mount point for each domain is a special

Table 1. A prefix table corresponding
to the domain structure of Figure 5.*

I Prefix Server Token I
/ x 17
/a/ Y 63
/d/ Y 44
/d/k/ Z 5

*Prefix tables are loaded dynamically, so
they need not hold complete file information
at any given time.

link, called a remote link, which identifies
the file as the mount point for a new
domain. For example, in Figure 5 the file
“/d/k” in server Y’s domain is a remote

February 1988 29

Network
/I

Server Server

Traffic K
Local
Disk

Figure 6. Caches in the Sprite file system. When a process makes a file access, it is
presented first to the cache of the process’ workstation (file traffic). If not satisfied
there, the request is passed either to a local disk, if the file is stored locally (disk
traffic), or to the server where the file is stored (server traffic). Servers also main-
tain caches to reduce their disk traffic.

link. A remote link is similar to a symbolic
link in that it stores a file name; for remote
links, this is the prefix name (that is, the
file’s absolute name). Whenever a remote
link is encountered in file name lookup,
the server returns to the client the prefix
name and the remainder of the name being
looked up. The client uses the broadcast
protocol to make a new prefix table entry
and then reprocesses the remainder of the
name. Remote links do not store any net-
work address information; they simply
indicate the presence of a domain. This
feature permits the system to adapt quickly
to changes in configuration.

Prefix table entries are treated as hints
and are adjusted automatically as the sys-
tem configuration changes. When a client
sends an open request to a server, it is pos-
sible for the request to fail with a timeout
(if the server has crashed) or a rejection (if
the server no longer stores the domain). In
either case, the client invalidates the pre-
fix table entry for the domain and rebroad-
casts. If the domain has moved, the new
server will respond to the rebroadcast, and
the client will establish a new prefix table
entry and retry the open. In this case, the
configuration change will be invisible to
user processes. If the server has crashed,
then the broadcast will timeout; each addi-
tional open will also broadcast and
timeout. During the time the server is
down, user processes will receive errors
analogous to disk-off-line errors in time-
shared Unix. Eventually, the domain will
become available again, and the next open
will reestablish the prefix table entry.

Adding a new domain to the file system
requires only adding a remote link at the
mount point for the domain and arrang-
ing for the server to respond to requests.

Managing file data-
client and server caches

The Sprite file system is implemented
using large caches of recently used file
blocks stored in the main memories of
both clients and servers. The caches pro-
vide two benefits that are especially impor-
tant when most of the workstations are
diskless. First, the caches improve file sys-
tem performance by eliminating disk
accesses and network transactions. Sec-
ond, they reduce the loading on the net-
work and the servers, which increases the
scalability of the system. Sprite’s caches
use a consistency protocol that allows
applications on different workstations to
share files just as if they were running on
a single time-sharing system.

Basic cache design. Each client and
server workstation maintains a large cache
of recently accessed file blocks, as shown
in Figure 6 . The caches are organized on
a block basis, rather than a whole-file basis
as in the Andrew file ~ y s t e m , ~ and are
stored in main memory rather than on a
local disk. Blocks are currently four kilo-
bytes. Each block in the cache is identified
by a token for a file and a block location
within the file. When the Fs-Read kernel
call is invoked to read a block of a file, the

kernel first checks its cache and returns the
information from the cache if it is present.
If the block is not in the cache, the kernel
reads it from disk (if the file is on a local
disk) or requests it from a server; in either
case, the block is added to the cache,
replacing the least-recently used block. If
the block is requested from a server, the
server checks its own cache before issuing
a disk 1/0 and adds the block to its cache
if the block was not already there.

Sprite uses a delayed-write approach to
handle file writes. When an application
issues an Fs-Write kernel call, the kernel
simply writes the block into its cache and
returns to the application. The block is not
written through to the disk or server until
it is ejected from the cache or 30 seconds
have elapsed since the block was last modi-
fied. This policy is similar to the one used
in time-shared Unix. It means some recent
work may be lost in a system crash, but it
provides much higher performance to
applications than a policy based on write-
through, since the application can con-
tinue without waiting for information to
be flushed to disk. For applications with
special reliability requirements, Sprite pro-
vides a kernel call to flush one or more
blocks of a file to disk.

Cache consistency. When clients cache
files, a consistency problem arises: What
happens if one client modifies a file that is
cached by other clients? Can subsequent
references to the file by the other clients
return “stale” data? Most network file
systems, such as Sun’s NFS, provide only
limited guarantees about consistency. In
NFS, for example, other clients with the
file open may see stale data until they close
the file and reopen it. Sprite guarantees
consistency; each Fs-Read kernel call
always returns the most up-to-date data
for a file, regardless of how the file is being
used around the network. This means that
application programs running on different
workstations under Sprite behave as if they
were all running on a single, time-shared
Unix system.

To simplify the implementation of
cache consistency, we considered two sep-
arate cases. The first case is sequential
write-sharing, where a file is modified by
one workstation, read later by another
workstation, but never open on both
workstations at the same time. We expect
this to be the most common form of write-
sharing. The second case is concurrent
write-sharing, where one workstation
modifies a file while it is open on another
workstation. Our solution to this situation

30 COMPUTER

50%]
P

e

40%-\[

30%-:

C

S
20%-\

W d
0 IO%;,

-+ Andrew

--+ Fs-make -- Nroff

sort - +.

l Simulator+.
1

"i k:. - . +
k..., '. w-.-.-.-L.*,-.-

Megabytes of Cache

(4

K
b
Y
t
e

7

d"

S

C
0

e

1051

-+ Andrew
Sort

Simulator

- -+.
-.+.
....+.

, Fs-make
\ 75

\, -+ Nroff

'\

\

451
\
\
\
\
\
\ + *
T - - - - +

K

0 1 2 3 4
Megabytes of Cache

(b)

Figure 7. Client degradation and network traffic as a function of maximum client cache size for diskless Sun-3/75s with client
caches using an unloaded Sun-3/180 file server. For each point the cache size was allowed to vary up to the given maximum.
Part (a) plots degradation, which is the additional time required by a diskless workstation to complete the benchmark, relative
to the time to complete the benchmark with a local disk and four-megabyte cache; (b) plots network traffic, including bytes
transmitted in packet headers and control packets as well as file data.

is more expensive, but we d o not expect it
to occur very often.

Sprite uses version numbers to handle
sequential write-sharing. When a client
opens a file, the server returns the file's
current version number, which the client
compares to the version number associated
with its cached blocks for the file. If they
are different, the file must have been modi-
fied recently on some other workstation.
In this case, the client discards all cached
blocks for the file and reloads its cache
from the server when the blocks are
needed. Because of Sprite's delayed-write
policy, the server does not always have cur-
rent file data (the last writer need not have
flushed dirty blocks back to the server
when it closed the file). Servers handle this
situation by keeping track of the last writer
for each file; when a client other than the
last writer opens the file, the server forces
the last writer to write all its dirty blocks
back to the server's cache. This guarantees
that the server has up-to-date file informa-
tion whenever a client needs it.

For concurrent write-sharing, where the
file is open on two or more workstations
and at least one of them is writing the file,
Sprite disables client caching for that file.

When the server receives an open request
that will cause concurrent write-sharing, it
flushes dirty blocks back from the current
writer (if any) and notifies all clients hav-
ing the file open that they should not cache
the file anymore. Cache disabling is done
on a file-by-file basis, and only when con-
current write-sharing occurs. A file may be
cached simultaneously by several active
readers.

There are two potential disadvantages
to Sprite's cache consistency mechanism.
First, it results in substantially dower file
access when caching has been disabled.
Fortunately, measurements and simula-
tions in Nelson et al." and Ousterhout et
al." show that files tend to be open for
only short periods and are rarely write-
shared, so cache disabling seldom occurs.
Second, the Sprite approach depends on
the fact that the server is notified whenever
a file is opened or closed. This prohibits
performance optimizations (such as name
caching) in which clients open files with-
out contacting the files' servers. Our
benchmark results in Nelson et al." sug-
gest that such optimizations would provide
little performance improvement.

It is important to distinguish between

consistency and correct synchronization.
Sprite's mechanism provides consistency;
each read will return the most up-to-date
data. However, the cache consistency
mechanism will not guarantee that appli-
cations perform their reads and writes in
a sensible order. For this to occur, appli-
cations must synchronize their actions on
the file using the Fs-Lock system call or
other available communication mechan-
isms. The cache consistency provided by
Sprite simply eliminates the network issues
and reduces the problem to that of time-
sharing systems.

File system performance. To measure
the benefits of caching, we ran a series of
file-intensive benchmark programs on
Sun-3/75 workstat ions. A single
Sun-3/180 file server was used for all cli-
ent 1 /0 and paging traffic. Because the
benchmarks d o not involve file sharing,
they d o not measure the overhead
associated with cache consistency. (For
descriptions of the benchmarks and addi-
tional performance measurements, see
Nelson et al. '4

Figure 7 shows that diskless worksta-
tions with caches of a few megabytes can

February 1988 31

1604 _
C O

1 0
e

1204
t

lo(-jyo. D

! 1404

............................. ,F

..................

..
No Client Caches

I

.. + I--..-..

... L
I

I
I

....................................... 4
I

a 40% w'"
ith Client Caches

0%-
0 1 2 3 4 5 6 7 8

Number of Clients

(a)

S
e
r

e
r
U
t

i

a
t
,i
0
n

V

f
z

804 ..
No Client Caches,, '*

704 .. < 1 ,*
....................................

104 #/ ..
O t

0%'
0 1 2 3 4 5 6 7 8

Number of Clients

(b)

Figure 8. Effects of server contention when multiple diskless clients ran the most intensive benchmark (Andrew) simultane-
ously on different files using Sun-3/75 workstations. Andrew, written by M. Sa t~anarayanan ,~ is a composite benchmark that
includes directory searches, file copying, version checking, and compilation. Part (a) shows the additional time required by
each diskless client to complete the benchmark, relative to a single client running with local disk and cache; (b) shows server
CPU use. When client caches were enabled, they were allowed to grow to four megabytes.

- [=File/
.. ̂

- [=File/
.. ̂

Figure 9. Sprite's paging structure. The code is paged in on-demand from the proc-
ess' object file; since the code is read-only, it need not be written to backing storage
and can be reloaded from the object file when needed. An ordinary file is used to
back each data and stack segment. Initialized portions of the data segment are read
in from the object file on first reference, then written to the backing file during
page replacement and reused from there. For the stack segment and the uninitial-
ized portions of the data segment, pages are filled with zeros on first reference,
then paged to and from the backing files.

achieve performance within one to 12 per-
cent of workstations with local disks,
whereas diskless workstations without
caches typically run 10 to 40 percent slower

than workstations with disks. It also shows
that client caching reduces network traf-
fic by a factor of four or more. Without
client caching, we believe that Ethernet's

10-megabit-per-second bandwidth will be
a major bottleneck for next-generation
workstations with five to 10 million
instructions per second of processing
power (for example, SPUR or the Sun-4
family). Even with client caching, faster
networks will be needed to support the
next generation of workstations after that.

Figure 8 shows that client caching
reduces the server load by about a factor
of two and suggests that a single server
could support 10 or more active clients
without excessive performance degrada-
tion. Normal users are rarely as active as
the benchmark in Figure 8; Howard et
al.3 and Nelson et al." estimate that one
instance of the benchmark presents a load
equivalent to at least five average users.
This suggests that a Sun-3/180 Sprite file
server can support at least 50 user work-
stations.

In comparisons with Sun's NFS, Sprite
completed the Andrew benchmark 30 per-
cent faster and generated only about one-
fourth the server load. Since our NFS
servers can support 10 to 20 clients, the
NFS comparison supports our estimate of
at least 50 clients per Sprite file server. (See
Nelson et al." for more information on
the NFS comparison.)

32 COMPUTER

Virtual memory
Sprite’s virtual memory implementation

is traditional in many respects. For exam-
ple, it uses a “clock” algorithm variation
for its page replacement mechanism and
uses a straightforward extension of the
time-shared Unix mechanism to provide
shared read-write data segments. These
and other aspects of the virtual memory
system are described in detail by Nelson.”

This section focuses on three aspects of
the virtual memory implementation where
we intentionally deviated from Unix to
better use networks and large physical
memories. First, Sprite uses ordinary files
for backing storage to simplify process
migration, to share backing storage
between workstations, and to capitalize on
server caches. In addition, Sprite provides
“sticky segments” and a dynamic trade-
off of physical memory between the virtual
memory system and the file cache; these
mechanisms were implemented to make
the best possible use of physical memory
as a cache for programs and files.

Backing storage. Backing storage is the
portion of disk used to hold pages that
have been swapped out of physical mem-
ory. Most versions of Unix use a special
disk partition for backing storage and
manage that partition with special
algorithms. In networked Unix systems,
each machine has its own private disk par-
tition for backing storage. In contrast,
Sprite uses ordinary files, stored in the
network file system, for backing storage.
A separate backing file is used for each
data and stack segment, as illustrated in
Figure 9. Each workstation is assigned a
separate directory in which to create back-
ing files for its processes.

There are several advantages to paging
from files. First, it simplifies the imple-
mentation of virtual memory by reusing
the existing file mechanisms. Second, it
provides flexibility not present when each
machine uses a private partition for back-
ing storage. Many workstations may store
their backing files in the same file system
domain; this uses disk space more effi-
ciently than schemes based on statically
allocated private partitions. The network
file system also simplifies backing file allo-
cation on local disks or remote servers and
simplifies process migration by making all
backing files accessible to all workstations.

Backing files also have interesting per-
formance consequences. In Sprite, remote
backing files are cached in the main mem-

ories of servers, just like all other files. Our
initial measurements show that a client can
read random pages from a file in the
server’s cache faster than from a local
disk, which means that a server with a large
cache may provide better paging perfor-
mance than a local disk. We think that
CPU and network speeds are likely to
increase at a much faster rate than disk
speeds over the next few years, which will
make remote paging to and from a server’s
cache even more attractive in the future.

Sticky segments. When a program starts
execution, the pages in its code and data
segments are loaded on-demand from the
program’s object file when page faults
occur. To reduce this cost for frequently
invoked programs, Sprite keeps a pro-
gram’s code pages in memory even after
the program exits. The pages remain in
memory until they are replaced using the
normal clock mechanism. We call this
mechanism sticky segments. If the same
object fileis reinvoked, then the new pro-
cess can be started more quickly by reus-
ing the sticky segment. If the object file is
modified between executions, then the
sticky segment will be discarded on the
next execution. Data and stack segments
are modified during execution, so they
cannot be retained after the process com-
pletes.

Double caching. Double caching (cach-
ing the same file block in two different
memory locations) is a potential issue
because the virtual memory system is a
user of the file system. A naive implemen-
tation might cause pages being read from
backing files to end up in both the file
cache and the virtual memory page pool;
pages being eliminated from the virtual
memory page pool might simply get
moved to the file cache, where they would
have to age again before being sent to the
server. To avoid these inefficiencies, the
virtual memory system bypasses the local
file cache when reading and writing back-
ing files. A similar problem occurs when
demand-loading code from its executable
file. In this case, the pages may already be
in the file cache (for example, because the
program was just-recompiled). If so, the
page is copied to the virtual memory page
pool and the block in the file cache is given
an infinite age so that it will be replaced
before anything else in memory. The sticky
segment mechanism will cache the page in
the virtual memory system, so it is not
necessary to keep it in the file cache as well.
For the portions of object files cor-

responding to data pages, Sprite permits
double caching to provide faster program
start-up (the dirty data pages are discarded
on program exit, but clean ones can be
quickly reloaded from the file cache).

Although the virtual memory system
bypasses its local file cache when reading
and writing backing files, the backing files
will be cached on servers. This makes
servers’ memories into an extended main
memory for their clients. Servers do not
cache backing files for their own
processes, since this would constitute dou-
ble caching; they only cache backing files
for their clients.

Virtual memory-file system negotiation.
The virtual memory system and file system
have conflicting needs for physical mem-
ory. File system performance is best when
the file cache is as large as possible, while
virtual memory performance will be best
when the file cache is as small as possible
so that most of the physical memory may
be used for virtual memory. To get the best
overall performance, Sprite allows the file
cache on cach workstation to grow and
shrink in response to changing demands
on the machine’s virtual memory and file
system. This is accomplished by having the
two modules negotiate over physical mem-
ory usage. The result is that small I/O-
intensive programs, like compilers, may
use almost all of the memory for a file
cache, while large CPU-bound programs
may use almost all of the memory for their
virtual address spaces.

The file system and the virtual memory
system manage separate pools of physical
memory pages. Each module keeps an
approximate time-of-last-access for each
page (using different techniques in each
module). Whenever either module needs
additional memory (because of a page
fault or a miss in the file cache), it com-
pares the age of its oldest page with the age
of the oldest page from the other module,
replacing whichever is older. This allows
memory to flow back and forth between
the virtual memory page pool and the file
cache, depending on the needs of the cur-
rent applications.

We also considered more centralized
approaches to trading off physical mem-
ory between the virtual memory page pool
and the file cache. One possibility would
be to access all information through the
virtual memory system. To access a file, it
would first be mapped into a process’ vir-
tual address space and then read or writ-
ten just like virtual memory, as in Apollo’s
Aegis system’ or Mach.13 This approach

33 February 1988

Table 2. The time required to migrate a process on Sun-3/75 workstations.*

Action Cost or speed

Migrate smallest possible process
Flush dirty pages 585 Kbytedsec
Demand-load pages 545 Kbytedsec
Transfer info for open files ! *The total time Flush depends file cache on how many dirty pages the process has 585 (these Kbytedsec must be flushed to

the server during migration), how large its address space is (pages must be loaded on-demand
on the process’ new host), how many open files it has, and how many dirty blocks for those
files are cached locally (they must be flushed). “Smallest possible process” refers to a process
with no open files and one page each of code, data, and stack.

190 msec

14 msec/file

Table 3. Costs and benefits of process migration, measured by running several
compilations concurrently.*

Program Execution time Improvement
Local Migrated

One compilation 15.5 sec 15.9 sec - 3%
Two compilations 30 sec 17 sec 43 qo
Three compilations 45 sec 18 sec 60% r Four comDilations 60 sec 20 sec 67 Yo

*In the “local” column, all the compilations were run concurrently on a single machine. In
the “migrated” column, one compilation was run locally and each of the others was migrated
to a different workstation (except for the “one compilation” row, where the single compila-
tion was migrated).

would eliminate the file cache entirely; the
standard page replacement mechanisms
would automatically balance physical
memory use between file and program
information.

We rejected the mapped-file approach
for several reasons, the most important
one being that it would have forced us to
use a more complicated cache consistency
scheme. Since a mapped-file approach
requires a file’s pages to be cached in a
workstation’s memory before they can be
accessed, we would not have been able to
implement cache consistency by refusing
to cache shared files. A second reason for
rejecting the mapped-file approach is that
we wished to retain the Unix notion that
1/0 devices and files are accessed in
exactly the same fashion; a mapped-file
framework, with the assumed ability to
access bytes in random order, does not
seem natural for device I/O, which is most
often sequential.

Process migration
Sprite’s implementation of process

migration differs from other implementa-
tions, such as those in the V System,6
Accent,’ or Locus: in two major ways.
The first difference is the way in which a
process’ virtual memory is transferred
between machines, and the second differ-
ence is the way migration is made transpar-
ent to the migrated process.

The simplest approach to process migra-
tion is

“freeze” the process (prevent it from
executing any more);

transfer its state to the new machine,
including registers and execution
state, virtual memory, and file access;

“unfreeze” the process on its new
machine so that it can continue
executing.

The virtual memory transfer is the dom-
inant cost in migration, so various tech-
niques have been applied to reduce it. For
example, V uses precopying, where the
process continues executing while its mem-
ory is transferred. The process is then fro-
zen, and any pages that have been
modified are recopied. Accent uses a
“lazy” approach in which the virtual
memory image is left on the old machine
and transferred to the new machine one
page at a time when page faults occur.
Locus checks for a read-only code segment
and reopefils it on the new machine, rather
than copying it from the old machine; this
allows the process to share a preexisting
copy of the code on the new machine, if
there is one.

In Sprite, backing files simplify the
transfer of the virtual memory image. The
old machine simply pages out the process’
dirty pages and transfers information
about the backing files to the target
machine. If the code segment already
exists on the new machine, the migrating
process shares it, as in Locus. Pages get
reloaded in the process’ new machine on
demand, using the standard virtual mem-
ory mechanisms. Thus, the process need
only be frozen long enough to write out its
dirty pages. The Sprite approach requires
processes to be frozen longer than with
either V or Accent, but it requires less data
copying than V and does not require page
fault servicing by the old machine after
unfreezing on the new machine.

The second, and more important, issue
in process migration is achieving transpar-
ent remote execution. A migrated process
must produce the same results it would
produce if it were not migrated, and spe-
cial coding must not be required for a
process to be migratable. For message-
based systems like V and Accent, trans-
parency is achieved by redirecting the
process’ message traffic to its new home.
Since processes communicate with the rest
of the world only by sending and receiving
messages, this is sufficient to guarantee
transparency. In contrast, Sprite processes
communicate with the rest of the world by
invoking kernel calls. Kernel calls are nor-
mally executed on the invoking machine
(unless they make RPCs to other kernels),
and some kernel calls will produce differ-
ent results on different machines. For
example, Sprite kernels maintain shared
environment variables; Proc-GetEnviron
may return different results on different
machines.

Sprite achieves transparency in a fash-
ion similar to Locus by assigning each

34 COMPUTER

process a home node. A process‘ home
node is the machine on which the process
wascreated,unless theprocesswascreated
by a migrated process; in this case, the
process’ home node is the same as the
home node of its parent. Whenever a pro-
cess invokes a kernel call whose results are
machine-dependent, the kernel call is for-
warded to the process’ home node (using
the RPC mechanism) and executed there.
This guarantees that the process produces
the same results as if it were executing at
home, To the outside world, the process
still appears to be executing at home. Its
process identifier does not change; it will
appear in a process listing on the home
node; and it can be debugged and termi-
nated in the same way as other processes
on the home node.

For each kernel call, we thus had two
choices: either transfer all the state
associated with the call at migration time
so that the call can be executed remotely,
or forward home all invocations of the call
made by migrated processes. For calls that
are invoked frequently, such as all the file
system calls, wechosethe first course(this
was particularly simple for files, since the
cache consistency mechanism already
takes care of moving the file’s data
between caches). For infrequently invoked
calls, or those whose state is difficult or
impossible to transfer (for example, calls
that deal with the home node’s process
table), we chose the forwarding approach.

Table 2 gives some preliminary meas-
urements of process migration costs. If a
processismigrated whenit startsexecution
(before it has generated many dirty pages),
the migration requires only a few hundred
milliseconds on Sun-3/15 workstations.
We expect this to be the most common sce-
nario, The other major use of migration
will beto evict migrated processes from a
workstation whose user has just returned.
In this case, the major factor will be the
number of dirty pages. Even in the worst
case (all memory dirty), all processes can
be evicted from an eight-megabyte work-
station in about 15 to 20 seconds. Table 3
shows that remote execution costs are
acceptable (less than five percent penalty
over executing at home for a compilation
benchmark) and that migration may allow
much more rapid completion of a collec-
tion of jobs. (See Douglis and
Ousterhout14 for more information on
process migration in Sprite.)

s of this writing, all features dis-
cussed are operational-except A for the code to choose a target

February 1988

for process migration and to evict
migrated processes when a workstation’s
user returns, which is currently under
development. In addition, Sprite supports
the Internet protocol family (IP/TCP) for
communication with other systems, and
Sun NFS protocol support is planned. The
Sprite kernel contains approximately
100,ooO lines of code, about half of which
arecomments. All but a few hundred lines
of code are in C; the remainder are writ-
ten in assembler. Sprite currently runs on
Sun-2 and Sun-3 workstations. Recently,
we began using it for all of our everyday
computing, including maintaining Sprite.
Weplanto port SpritetotheSPURmulti-
processor as prototypes become available
later in 1988. We hope that Sprite will be
portable enough to run on a variety of
workstation platforms, and that it will be
attractive enough for people outside the
Sprite group to want to use it for their
everyday computing.

In conclusion, we hope that Sprite will
provide three overall features: sharing,
flexibility, and performance. Users want
sharing so that they can work coopera-
tively and use hardware resources fully.
Sprite provides sharing at several levels:
tightly coupled processes on the same
workstation may share memory; processes
everywhere may share files; and users may
share processing power using the process
migration mechanism. System administra-
tors want flexibility so that the system can
evolve gracefully. Sprite provides flexibil-
ity in the form of prefix tables, which allow
user-transparent reconfiguration of the
file system, and in the form of backing
files, which allow workstations to share
backing storage. Finally, everyone wants
performance. Sprite provides high perfor-
mance by using a special-purpose RPC
protocol for communication between ker-
nels and by using physical memory as a
flexible cache for both Dronrams and . -
files.0

Acknowledgments
Adam de Boor implemented the Pmake pro-

gram and has assisted in many other areas of
Spritedevelopment, includingporting theX11
window system. David Anderson, Jim Larus.
RitaOnsterhout, Gerald Popek, CarloSkquin,
and the Compuler referees provided helpful
comments on early drafts of this article.

The work described here was supported, in
part, under Defense Advanced Research
Projects Agency Contract NW039-85-R-0269
and, in part. under National Science Founda-
tion Grant ECS-8351961.

1. M. Hill et al., “Design Decisions in
SPUR,“ Computer, Nov. 1986, PP. 8-22.

2. 0. Popek and E. Walker, eds., TheLocus
Distributed System Archilecture, MIT
Press, Cambridge, Mass., 1985.

3. J . Howard et al.. “Scale and Performance ~~~ . . ~ . ~ ~
ina Distributed File Sptcm,” ACM Trans.
Computer Sysl., Feb. 1988.

4. R. Sandberg et al., “Designand Implemen-
tation of the Sun Network Filesystem,”
PrOc. Usenix 1985 Summer Cov, . . June
1985, pp. 119-130.

5. P. Leach et al., “The Architecture of an
integrated Local Network,’‘ IEEE Trans.
SeiectedAreasin Comm., NOV. 1983, pp.
842-857.

6. M. Theimer. K. Lantz, and D. Cheriton.
“Preemptable Remote Execution Facilities
for the !‘-System,“ Proc. 10th Symp. Oper.
atingSysl. Principles, Dec. 1985, pp. 2-12.

7. E. Zayas, “Attacking the ProcessMigration
Bottleneck.” Proc. 11th Symp. Operaling
Syst. Principles, Nov. 1987, pp. 13-24.

8. A. Birrell and B. Nelson, “Implementing
Remote Procedure Calls,” ACM Trans.
Compuler Syst., Feb. 1986. pp. 39-59.

FACULTY
POSITIONS

COMPUTER SCICNCC: Tenuretrack posl.
lion available, rank open. For aenior level
po8111ons. a dootorate in Computer Llence
or a Doolorate In a related area with
graduate level work at le881 equivalent to a
Master’s degree in Computer Science is re
quired; lor junior level posltlons. a Master’s
dqrea in Computer Science is required. All
Candldales should have academlo and/or
work experience in advanced Bapecls of
sohware engineering (Including structured
pmgramming methcdokgy). demonstrated
sklllln PASCALandeIlherFORTRANTIor
COBOL, and the ability to teach courses
and direct student proJeas In at least two
of the lollowlng areas: mlcroprocesslng
systems. compiler wnstruulon, amputer
architecture and organizatlon, advanced
computer graphlcs. analysis of algorithms.
Position is ninemonth. Subw to availabllily
of lundlng. Salary is open, highly com-
p~tltive, and Oommensurale with quallllca-
llons and experience. Send resume and let-
ter of appllcetlon Indimling posltion desired
to: Afllrmaliw Acllon Woe, Salem 8hIe
College, Salem, MA M070 by March 1,
1988.

SSC la an Equal Opportunlly/Afllrmallw
Acllon Employer aMI aMiwly WnIU Ihe
candidacy 01 mlnorler and women.

Salem State College

35

9 .

IO.

I I .

12.

I?.

13.

H . \\‘elcti ‘ind I . C)u,tcrhout, “Prefix
Table\: A Simple Rlrchanitni t o r Locating
Filer in a I)i\tributed System,” Proc. Si.~/h
ConJ. Dirtrrhirird Cornpirting S.vs/. , May

k l , N e l w n , B. Welch, and J . Ousterhout,
“Caching i n the Sprite Network File Sys-
tem,” AC.M Truns. Cottipurer Sysi . , Feb.
1988.

J . Ousterhotit et al., “ATrace-Dri\en Anal-
ysis of the Unix 4.2 BSI) File Sptem.”
Proc. lOih .Y>>tnp. O/~ercri i t ig S u t . frrt7c.r-
ples, Dec. 1985, pp. 15-24.
$1. Nclsoii. “Virtual \lemory for the Sprite
Opera t ing Sbstern,” Tech . Kcport
UCB/CSD 86/301, June 1986.
M. Accetta et al., “Mach: A New Kernel
t-oundation t o r Uni.i Detelopment,” f ro [, .
.Sritnttirr L’wnix, July 1986, pp. 93-1 12.

F . Douplis and J . Ou,terhout, “Process
Xligration in theSpriteOperating System,”
Srvrtiih In1 ‘ I ConJ Drstrihured Cot?iprrting
S w . , Sept. 1987, pp. 18-25.

1986, PI’. 18.1-189.

John K. Ousterhout is an associate professor in
the Department of Electrical Ensineering and
Computer Sciences at the University of Califor-
nia at Berkeley. His interests include operating
systems, distributed systemz, user interfaces,
and computer-aided design. He and his students
have developed several widely used programs
for computer-aided design, including ,Magic,
Caesar, and Crystal. Ousterhout’is now leading
the development of Sprite, a network operating
system for high-performance workstations.

Ousterhout is a recipient o f t h e ACM Grace
Murray Hopper Award, the National Science
Foundation Presidential Young Investigator
Award, the IEEE Browder J . Thompson
Award, and the UCB Distinguished Teaching
Award.

He recei\ed a BS degree in physics from Yale
UniLersity in 1975 and a PhD degree i n com-
puter science from Carnegie Xlellon University
in 1980.

Andrew K. Cherenson it currently employed at
Silicon Graphics, Mountain Vie\%, California.
His research interests include operating slttenir
and distributed systems. He was a systems pro-
grammer at the Department of Chemistry, Har-
vard College, and at the Research Institute of
Scripp, Clinic, La Jolla, Calif.

He recently received an MS degree from the
University o f California at Berkeley and
recei\ed an AB degree in biochemical sciences
from Harvard College in I98 I . He is a inember
of IEEE and ACM.

Frederick Douglis is currently a PhD candidate
in the Department of Electrical Engineering and
Computer Science, Universit) of California at
Berkeley. His research interests include process
migration and archival storage.

He received an MS degree in computer science
from the University of California in 1987 and
a BS degree in computer science from Yale Uni-
versity in 1984. Douglis is a member of IEEE
and ACM.

Michael N . Nelson is a PhD candidate at the
University of California at Berkeley. His
research interests include operating systems and
distributed systems.

He received the MS and BA degrees in com-
puter science from the University of California
in 1986 and 1983, respectively.

Brent B. Welch is a PhD candidate at the Uni-
versity of California at Berkeley. His research
interests include network operating syrtems and
distributed systems in general.

He received an MS degree in computer science
from the University of California in 1986 and
a BS degree in aerospace engineering from the
University of Colorado, Boulder, in 1983.

Questions regarding this article may be addressed to Ousterhout at the Computer Science Division, Dept. of Electrical Engineering and
Computer Science\, University of California, Berkeley, CA 94720.

36 COMPUTER

