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prite is an experimental network 
operating system under develop- 
ment at the University of Califor- 

nia at Berkeley. It is part of a larger 
research project called SPUR, whose goal 
is the design and construction of a high- 
performance multiprocessor workstation 
with special hardware support for Lisp 
applications. I One of Sprite’s primary 
goals is to support applications running on 
SPUR workstations, but we hope that the 
system will also work well for a variety of 
high-performance engineering worksta- 
tions. Currently, Sprite is being used on 
Sun-2 and Sun-3 workstations. 

Driving forces. The motivation for 
building a new operating system came 
from three general trends in computer 
technology: networks, large memories, 
and multiprocessors. 

In an increasing number of research and 
engineering organizations, computing 
now occurs on personal workstations con- 
nected by local-area networks. Larger, 
time-shared machines are used only for 
those applications that cannot achieve 
acceptable performance on workstations. 
Unfortunately, workstation environments 

Sprite implements a 
set of kernel calls that 

provide sharing, 
flexibility, and high 

performance to 
networked 

workstations. 

tend to suffer from poor performance and 
difficulties of sharing and administration, 
due to the distributed nature of the sys- 
tems. In Sprite, we hope to hide the distri- 
bution as much as possible, while 
providing the sharing and communication 
of time-shared machines. 

The second technology trend driving the 
Sprite design is the availability of ever- 
larger physical memories. Today’s 
engineering workstations typically contain 
four to 32 megabytes of physical memory, 

and we expect memories of 100 to 500 
megabytes to be commonplace within a 
few years. We believe that such large mem- 
ories will change the traditional balance 
between computation and input/output 
by permitting all of a user’s commonly 
accessed files to reside in main memory. 
The “RAMdisks” available on many com- 
mercial personal computers have already 
shown this capability on a small scale. One 
of our goals for Sprite is to manage phys- 
ical memory in a way that maximizes the 
potential for file caching. 

The third driving force behind Sprite is 
the imminent arrival of multiprocessor 
workstations. Workstations with more 
than one processor are currently under 
development in several research organiza- 
tions (UCB’s SPUR, Digital Equipment 
Corporation’s Firefly, and Xerox’s 
Dragon are a few prominent examples), 
and we expect multiprocessor worksta- 
tions to be available from several major 
manufacturers within a few years. We 
hope that Sprite will facilitate the develop- 
ment of multiprocessor applications, and 
that the operating system itself will be able 
to take advantage of multiple processors 
in providing system services. 
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Design goals. Our overall goal for Sprite 
is to provide simple, efficient mechanisms 
that capitalize on the three technology 
trends affecting the system’s design. In 
areas where technology factors did not 
suggest special techniques, we modeled the 
system as closely as possible after Berkeley 
Unix. 

The technology trends had only a minor 
impact on the facilities Sprite provides to  
application programs. For the most part, 
Sprite’s kernel calls are similar to those 
provided by the 4.3 BSD version of the 
Unix operating system. However, we 
added three facilities t o  encourage 
resource sharing: a transparent network 
file system, a simple mechanism for shar- 
ing writable memory between processes on 
a single workstation, and a mechanism for 
migrating processes between workstations 
to  take advantage of idle machines. 

Although the technology trends did not 
have a large effect on Sprite’s kernel inter- 
face, they did suggest dramatic changes in 
the kernel implementation, relative to 
Unix. This is not surprising, since net- 
works, large memories, and multiproces- 
sors were not important issues in the early 
1970s when the Unix kernel was designed. 
We developed the Sprite kernel from 
scratch, rather than modifying an existing 
Unix kernel. Some interesting features of 
the kernel implementation are 

The kernel contains a remote proce- 
dure call (RPC) facility that allows each 
workstation’s kernel to  invoke operations 
on other workstations. The RPC mecha- 
nism is used extensively in Sprite to imple- 
ment other features, such as the network 
file system and process migration. 

Although the Sprite file system is 
implemented as a collection of domains on 
different server machines, it appears to 
users as a single hierarchy shared by all 
workstations. Sprite uses a simple mech- 
anism called prefix tables to  manage the 
name space; these dynamic structures 
facilitate system administration and recon- 
figuration. 

To  achieve high performance in the 
file system, and also to  capitalize on large 
physical memories, Sprite caches file data 
on both server and client machines. A sim- 
ple cache consistency mechanism guaran- 
tees that applications running on different 
workstations always use the most up-to- 
date versions of files, in exactly the same 
fashion as if the applications were execut- 
ing on a single machine. 

The virtual memory system uses ordi- 
nary files for backing storage; this simpli- 
fies implementation, facilitates process 

migration, and may even improve perfor- 
mance relative to schemes based on a 
special-purpose swap area. Sprite ret,ains 
the code segments for programs in main 
memory, even after the programs are com- 
plete, to allow quick start-up when pro- 
grams are reused. Finally, the virtual 
memory system negotiates with the file sys- 
tem over physical memory use, permitting 
the file cache to  be as large as possible 
without degrading virtual memory per- 
formance. 

Sprite guarantees that processes 
behave the same whether migrated or not. 
This is achieved by designating a home 
machine for each process and forwarding 
location-dependent kernel calls to  the 
process’ home machine. 

Application interface 
Sprite’s application interface contains 

little that is new. Kernel calls are very simi- 
lar to  those provided by the Berkeley ver- 
sions of Unix. Indeed, we have ported 
many traditional Unix applications to  
Sprite with relatively little effort. 

Three unusual aspects of the application 
interface can be summed up in one word: 
sharing. First, the Sprite file system allows 
sharing of all disk storage and 1/0 devices 
in the network by all processes, so they 
need not worry about machine bound- 
aries. Second, the virtual memory mech- 
anism allows sharing of physical memory 
between processes on the same worksta- 
tion, so they can extract the highest possi- 
ble performance from multiprocessors. 
Third, Sprite implements process migra- 
tion, which allows job offloading t o  idle 
workstations and, thereby, sharing of 
processing power. 

File system. Almost all modern network 
file systems, including Sprite’s, have the 
same ultimate goal: network transparency. 
Network transparency means that users 
should be able to manipulate files in the 
same ways they did under time-sharing on 
a single machine; the distributed nature of 
the file system and the techniques used to 
access remote files should be invisible to 
users under normal conditions. MIT’s 
Locus system was one of the first t o  make 
transparency an explicit goal’; other file 
systems with varying degrees of trans- 
parency are Carnegie Mellon’s Andrew3 
and Sun’s N F S 4  

Most network file systems fail to meet 
the transparency goal in one or more ways. 
The earliest systems (and even some later 

systems, such as 4.2 BSD) allowed remote 
file access only with a few special programs 
(for example, rcp in 4.2 BSD); most appli- 
cation programs could only access files 
stored on local disks. Second-generation 
systems, such as Apollo’s Aegis,’ allow 
any application to access files on any 
machine in the network, but special names 
must be used for remote files (for example, 
“file” for a local file, but “[ivylfile” for 
a file stored on the Ivy server). Third- 
generation network file systems, such as 
LOCUS, Andrew, NFS, and Sprite, provide 
name transparency-that is, file location 
is not indicated directly by name, and 
groups of files can be moved from one 
machine to another without changing their 
names. 

Most third-generation systems still have 
some nontransparent aspects. For exam- 
ple, in Andrew and NFS only a portion of 
the file system hierarchy is shared; each 
machine must also have a private partition 
that is accessible only to  that machine. In 
addition, Andrew and NFS do not permit 
applications running on one machine to 
access 1/0 devices on other machines. 
Locus appears to  be alone among current 
systems in providing complete file trans- 
parency. 

Sprite, like Locus, provides complete 
transparency, so applications running on 
different workstations see the same 
behavior they would see if all the applica- 
tions were executing on a single time- 
shared machine. A single file hierarchy is 
uniformly accessible to  all workstations. 
Although it is possible to determine where 
a file is stored, that information is not 
needed in normal operation. There are no 
special programs for operating on remote 
files, as opposed to local ones, and no 
operations that can be used only on local 
files. Sprite also provides transparent 
access to remote 1 / 0  devices. Like Unix, 
Sprite represents devices as special files; 
unlike most versions of Unix, Sprite allows 
any process to  access any device, regard- 
less of device location. 

Shared address spaces. The early ver- 
sions of Unix did not permit memory shar- 
ing between user processes, except for 
read-only code. Each process had private 
data and stack segments, as shown in Fig- 
ure 1. Since then, extensions to  allow read- 
write memory sharing have been imple- 
mented or proposed for several versions of 
Unix, including System V ,  SunOS, Ber- 
keley Unix, and Mach. 

There are two reasons for providing 
shared memory. First, using acollection of 
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processes in a shared address space is the 
most natural way to program many appli- 
cations. It is particularly convenient when 
an application consists of mostly indepen- 
dent subactivities (for example, one proc- 
ess to  respond to keystrokes and another 
to respond to packets arriving over a net- 
work); the shared address space allows 
them to cooperate to achieve a common 
goal (for example, managing a collection 
of windows on a screen). The second moti- 
vation for shared memory is the advent of 
multiprocessors. Decomposing an appli- 
cation into pieces that can be executed con- 
currently requires rapid communication 
between pieces. The faster the communi- 
cation, the greater the degree of concur- 
rency that can be achieved. Shared 
memory provides the fastest possible com- 
munication, hence the greatest opportu- 
nity for concurrent execution. 

Sprite provides a particularly simple 
form of memory sharing; when a process 
invokes the Proc-Fork kernel call to cre- 
ate a new process, it may request that the 
new process share the parent’s data seg- 
ment (see Figure 2). The stack segment is 
still private to each process; it contains 
procedure invocation records and private 
process data. For simplicity, Sprite’s 
mechanism provides all-or-nothing shar- 
ing; a process cannot share part of its data 
segment with one process and part of it 
with another. 

We expect multiprocess applications to 

Stack (private) Stack (private) 

Data (private) Data (sharable) 

Code (sharable) Code (sharable) 
UNIX Sprite 

Figure 1. The organization of virtual memory as seen by user processes in tradi- 
tional Unix (left) and Sprite (right). In both systems there are three distinct seg- 
ments. The lower portion of the data segment contains static data known at 
compile time, and the upper portion expands to accommodate dynamically allo- 
cated data. In Unix, processes may share code, but not data or stack. In Sprite, the 
data segment may be shared between processes, including both statically allocated 
and dynamic data. Private static data may be stored at the top of the stack 
segment. 

synchronize using hardware mutual- 
exclusion instructions (for example, test- 
and-set) directly on shared memory. In 
most cases it will not be necessary to 
invoke the kernel, so synchronization can 
be accomplished in just a few instructions. 
The kernel participates only when it is 
necessary to delay process execution (for 
example, to wait for a lock to be released). 
For these situations, Sprite provides ker- 
nel calls that put a process to sleep and 

wake it up later. This permits efficient 
implementation of synchronization 
primitives. 

Process migration. In an environment 
that has a workstation for each person, 
many machines will be idle at any given 
time. To allow users to harness this idle 
computing power, Sprite provides a new 
kernel call, Proc-Migrate, that will move 
a process or group of processes to an idle 

Parent 

fork 
d 

Parent Child Parent 

Code 

Parent Child 

shared fork - 
(shared read-write) 

(shared read-only) 

Figure 2. The Unix fork operation (a) creates a new process that shares code with its parent while using private copies of the 
data and stack segments. Sprite provides both the traditional fork and a shared fork (b) in which the child shares its parent’s 
data as well as code. 

February 1988 25 



machine. Processes sharing a heap seg- 
ment must migrate together. Sprite keeps 
track of which machines are idle and 
selects one as the target for the migration. 
The fact that a process has migrated is 
transparent both to the migrated process 
and to  the user, as described below. The 
only noticeable difference after migration 
will be a reduction in the home machine’s 
load. 

Initially, we expect migration to be used 
in two ways. First, shell commands for 
manual migration will allow users to  
migrate processes in much the same way 
the Unix shell allows users to place 
processes in the background. Second, a 
new version of the Unix Make utility, 
called Pmake, recompiles programs when 
their source files change. Make invokes 
recompilations sequentially, but Pmake is 
organized to  invoke multiple recompila- 
tions concurrently, using process migra- 
tion to  offload the compilations to idle 
machines. We hope to  see more and more 
automatic uses of migration, like Pmake, 
in the future. 

The idea of moving work to idle 
machines is not a new one. Unfortunately, 
the most widely available facilities (for 
example, the rsh command of 4.2 BSD 
Unix and the rex facility of Sun’s Unix) 
provide only remote invocation, which is 
the ability to  initiate new processes on 
other machines, but not the ability to move 
processes once they have started execu- 
tion. Process migration, which allows 
processes to  be moved at any time, has 
been implemented in several systems (for 
example, Locus,’ V,6 and Accent’) but is 
not widely available. For Sprite, we 
decided to  implement process migration. 
We think the additional flexibility migra- 
tion provides is particularly important in 
a workstation environment. For example, 
if remote invocation is used to offload 
work onto an idle machine and then the 
machine’s user returns, either the foreign 
processes have to be killed or the 
machine’s user receives a degraded 
response until the foreign processes are 
complete. In Sprite, the foreign processes 
can be migrated away. 

One of the most important attributes of 
Sprite’s migration mechanism is its trans- 
parency, both to the process and to the 
user. When migrated, a process will pro- 
duce exactly the same results as if it were 
not migrated; Sprite preserves the environ- 
ment of the process as it migrates, includ- 
ing files, working directory, device access, 
environment variables, and anything else 
that could affect process execution. In 

addition, a migrated process appears still 
to be running on the user’s home machine; 
it will appear in listings of processes on that 
machine and can be stopped, killed, or 
debugged just like the user’s other 
processes. In contrast, rsh does not pre- 
serve the working directory and other 
aspects of the environment, and neither 
rsh nor rex allows a remotely executing 
process to  be examined or manipulated in 
the same fashion as local processes. Other 
implementations of process migration 
tend not to provide complete transparency 
to  users, although they d o  provide com- 
plete transparency t o  the migrated 
processes. (How Sprite achieves execution 
transparency is described in a later 
section.) 

Basic kernel structure 
Application programs invoke kernel 

functions via a collection of kernel calls. 
Sprite’s basic flow of control in a kernel 
call is similar to  that in Unix: user 
processes execute “trap” instructions to  
switch to  the supervisor state, and the ker- 
nel executes as a privileged extension of the 
user process, using a small per-process ker- 
nel stack for procedure invocation within 
the kernel. 

Two features of Sprite’s basic kernel 
structure support multiprocessor and net- 
work operation. First, a multithreaded 
synchronization structure allows the Sprite 
kernel to  run efficiently on multiproces- 
sors. Second, a remote procedure call 
facility allows kernels to invoke operations 
remotely over the network. 

Multithreading. Many operating system 
kernels, including Unix, are single- 
threaded, which means that a single lock 
is acquired when a process calls the kernel 
and released when the process puts itself 
to  sleep or returns to user state. In these 
systems, processes are never preempted 
while executing kernel code, except by 
interrupt routines. The single-threaded 
approach simplifies kernel implementa- 
tion by eliminating many potential syn- 
chronization problems between processes. 
Unfortunately, it does not adapt well to a 
multiprocessor environment. With more 
than a few processors, contention for the 
single kernel lock will limit system per- 
formance. 

In contrast, the Sprite kernel is mul- 
tithreaded, which means that several 
processes may execute in the kernel at the 
same time. The kernel is organized in a 

monitor-like style with many small locks, 
instead of a single overall lock, protecting 
individual modules or data structures. 
Many processes may execute in the kernel 
simultaneously as long as they do not 
attempt to  access the same monitored code 
or data. The multithreaded approach 
allows Sprite to  run more efficiently on 
multiprocessors, but the multiplicity of 
locks makes the kernel more complex and 
slightly less efficient since many locks may 
have to  be acquired and released over the 
lifetime of each kernel call. 

Remote procedure calls. In designing 
Sprite for a network of workstations, one 
of our most important goals was to  pro- 
vide a simple, efficient way for the kernels 
of  different workstations to  invoke each 
others’ services. The mechanism we chose 
is a kernel-to-kernel RPC facility similar 
to  the one described by Birrell and Nel- 
son.’ We chose RPC rather than a mes- 
sage style because RPC provides a simple 
programming model (remote operations 
appear just like local procedure calls) and 
because the RPC approach is particularly 
efficient for request-response transac- 
tions, which we expected to  be the most 
common form of interaction between 
kernels. 

The RPC implementation consists of 
stubsand RPCtransport, as shown in Fig- 
ure 3. Together they hide the fact that the 
calling procedure and the called procedure 
are on different machines. Each remote 
call has two stubs, one on the client work- 
station and one on the server. The client 
stub copies its arguments into a request 
message and returns values from a result 
message, so the calling procedure is not 
aware of the underlying message commu- 
nication. The server stub passes arguments 
from the incoming message to  the desired 
procedure and packages results from the 
procedure, so the called procedure is not 
aware that its real caller is on a different 
machine. Birrell and Nelson modified their 
compiler to generate the stubs automati- 
cally from a specification of procedure 
interfaces. To avoid changing our C com- 
piler, we hand-generated the stubs for the 
40 or so remote operations used in the 
Sprite kernel. Although this was workable, 
it would have been more convenient if an 
automated stub-generator had been 
available. 

The second part of the RPC implemen- 
tation is RPC transport. It delivers mes- 
sages across the network and assigns 
incoming requests to kernel processes that 
execute the server stubs and called proce- 
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Figure 3. Sprite’s remote procedure call mechanism makes it appear as if a remote procedure can be invoked directly (a). The 
actual situation (b) is that stub procedures copy procedure arguments and results into and out of messages, and a transport 
mechanism delivers the messages reliably and assigns server processes to requests. 

dures. The goal of RPC transport is to pro- 
vide the most efficient possible 
communication between the stubs while 
ensuring that messages are delivered relia- 
bly. Sprite’s RPC transport uses two tech- 
niques t o  gain efficiency: implicit 
acknowledgments and fragmentation. 

Since network transmission is not per- 
fectly reliable, each request and response 
message must be acknowledged; if no 
acknowledgment is received within a 
reasonable time, the sender retransmits. 
To reduce the overhead associated with 
processing acknowledgment packets, 
Sprite uses the scheme described by Birrell 
and Nelson, where each request or 
response message serves as an implicit 
acknowledgment for the previous response 
or request message from that client, 
respectively. In the common case of short, 
closely spaced operations, only two 
packets are transmitted for each remote 
call: one for the request and one for the 
response. 

The simplest way to implement RPC is 
to limit the total size of the arguments or 
results for any given RPC so that each 
request and response message can fit into 
a single network packet. Unfortunately, 
the maximum allowable size for a network 

packet is relatively small (about 1500 bytes 
for Ethernet), so this approach would 
result in high overhead for bulk transfers. 
The delays associated with sending a 
request, dispatching to a server process, 
and returning a response would be 
incurred for each 1500 bytes. Since remote 
file access is one of RPC’s most common 
uses, we were unwilling to accept this per- 
formance limitation. 

Sprite’s RPC mechanism differs from 
the Birrell-Nelson scheme in that it uses 
fragmentation to ship large blocks of data 
(up to 16 kilobytes) in a single remote oper- 
ation. If a request or reply message is too 
long to fit in a single packet, RPC trans- 
port breaks the message into multiple 
packets (fragments), which it transmits in 
order without waiting for acknowledg- 
ment. The receiving RPC transport reas- 
sembles the fragments into a single large 
message. A single acknowledgment for all 
the  f ragments  uses the implicit 
acknowledgment scheme described above. 
When packets are lost in transmission, the 
acknowledgment indicates which frag- 
ments have been received so that only lost 
fragments are retransmitted. 

Sprite kernels trust each other, and we 
assume that the network wire is physically 

secure (all workstations on the network 
must run the Sprite kernel or some other 
trustworthy software). Thus, the RPC 
mechanism does not use encryption, nor 
do the kernels validate RPC operations 
except to prevent user errors and detect 
system bugs. The RPC mechanism is used 
only by the kernels and is not directly visi- 
ble to user applications. 

Figure 4 shows the measured perfor- 
mance of the Sprite RPC mechanism. Fig- 
ure 4a shows that the minimum round-trip 
time for the simplest possible RPC is about 
2.8 milliseconds between Sun-3/75 work- 
stations, with an additional 1.2 milli- 
seconds for each kilobyte of data. Figure 
4b shows that throughputs greater than 
700 kilobytes per second (nearly 60 percent 
of the total Ethernet bandwidth of 10 
megabits per second) can be achieved 
between two workstations if  each RPC 
transfers a large amount of data. Without 
fragmentation (at most 1500 bytes trans- 
mitted per RPC) the throughput is reduced 
by more than a factor of two. The meas- 
urements in Figure 4 are for operations 
between kernels. User-visible performance 
is slightly worse; for example, a user proc- 
ess can achieve a throughput of only 475 
kilobytes per second when it reads a file 
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Figure 4. Measured performance of Sprite’s remote procedure call mechanism between Sun-3/75 workstations. The test con- 
sisted of one kernel invoking a remote procedure in another kernel, passing to it the contents of a variable-size array as an 
argument. The called procedure returned immediately. Part (a) shows the round-trip time for an individual RPC as a function 
of the amount of data passed to the remote procedure; (b) shows the throughput when repeated RPCs are made. Larger trans- 
fers, which use fragments on 1500-byte boundaries, are most efficient. The jumps in the curves occur at the points where addi- 
tional packets become necessary. 

that is cached in the main memory of a 
remote server and the kernel makes four- 
kilobyte RPC requests. 

Managing the file name 
space-prefix tables 

In designing the Sprite file system for a 
network environment, we were particu- 
larly concerned about two implementation 
issues: how to manage the file name space 
in a way that simplifies system administra- 
tion, and how to manage the file data in a 
way that provides high performance. Fur- 
thermore, we felt that it was important to 
provide easy administration and high per- 
formance without compromising users’ 
ability to share files. 

To users, the Sprite file system is a sin- 
gle hierarchy, just as in time-shared Unix. 
To system administrators, the file system 
is a collection of domains, which are simi- 
lar to file systems in Unix. Each domain 
contains a tree-structured portion of the 
overall hierarchy. The domains are joined 
into a single hierarchy by overlaying the 
leaves of some domains with the roots of 
other domains as illustrated in Figure 5 .  
(In Unix terms, the subdomains are 

mounted on their parents; the leaves where 
mounting occurs, such as “/a” in Figure 
5, are called mountpoints.) As the oper- 
ating system traverses the components of 
a file name during name lookup, it must 
move automatically from domain to 
domain to keep the domain boundaries 
from being visible to users. 

The interesting naming issues are how to 
keep track of the domain structure and 
how to handle file names that cross 
domain boundaries. These issues are par- 
ticularly interesting in a network environ- 
ment where the domains may be stored on 
different servers and where the server con- 
figuration may change frequently. Unix 
and most of its derivatives (such as NFS) 
use static mount tables to keep track of 
domains; the mount tables are established 
by reading a local configuration file at 
boot-time. This makes it difficult for the 
systems to respond to configuration 
changes. In our NFS clusters, for example, 
any change to the domain structure typi- 
cally requires each user to modify the con- 
figuration file on their workstation and 
reboot. Even in small clusters we have 
found that such changes occur distress- 
ingly often. 

In Sprite, we use a more dynamic 
approach to managing the domain struc- 
ture, which we callprefix tables. Each cli- 
ent machine’s kernel maintains a private 
prefix table. Each entry in a prefix table 
corresponds to a domain; it gives the full 
name of the top-level directory in the 
domain (that is, the common prefix shared 
by the names of all files in the domain), the 
name of the server on which that domain 
is stored, and an additional token to pass 
to the server to identify the domain (see 
Table 1). Prefix tables are not normally 
visible to user processes. 

Locating a file. In Sprite, as in Unix, 
application programs refer to files by giv- 
ing either an absolutepath name for the 
file (one starting at the file system root, 
such as “/d/k/p/r” in Figure 5 )  or a rela- 
tive path name, which is interpreted as 
starting at a previously specified working 
directory (if the working directory is 
“/d/k/p” in Figure 5 ,  then the relative 
name “r” refers to the same file as 
“/d/k/p/r”). To look up an absolute path 
name, a client kernel matches the name 
against all entries in its prefix table and 
chooses the entry with the longest match- 
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ing prefix. In the example of Figure 5 ,  the 
file name “/d/k/p/r” will match three 
entries in the table, of which the entry for 
server Z has the longest prefix. The client 
strips the prefix from the file name and 
uses the RPC facility to send the remainder 
of the name (“p/r“) to the server, along 
with the token from the prefix table en- 
try ( 5 ) .  The server uses the token to  locate 
the root directory of the domain, looks up 
the remainder of the file name, and replies 
with a token identifying the file. The cli- 
ent can then issue read, write, and close 
requests by making RPCs to the server 
with the file’s token. 

Sprite handles working directories by 
opening the working directory and storing 
its token and server address as part of the 
process’ state. When a file name is speci- 
fied relative to the working directory, the 
client kernel uses the token and server 
address corresponding to the working 
directory rather than those from a prefix 
table entry. Thus, absolute and relative 
path name lookups appear identical to the 
server. 

There are several cases where the initial 
server that receives a file name cannot 
completely process the name. These cor- 
respond to situations where the file’s name 
crosses a domain boundary. For example, 
“..” components in a name (which refer 
to the parent directory) could cause it to 
ascend back up the hierarchy and out 
the top of the domain; or the name could 
refer to a symbolic link containing an 
absolute file name for a different domain; 
or a relative path name could start at the 
current working directory and descend 
into a new domain. In each of these cases, 
the initial server processes as many com- 
ponents of the file name as it can, then 
returns a new name to the client instead of 
a file token. The client takes the new name, 
processes it with its prefix table, and sends 
it to a new server. This process repeats 
until the name is completely resolved (see 
Welch and Ousterhout9 for details). 

The prefix approach bypasses the root 
domain (and its server) when looking up 
absolute names of  files in nonroot 
domains. Since a large fraction of all name 
lookups involves absolute path names, we 
expect this approach to reduce the load on 
the root server and increase the scalability 
of  the system relative to schemes that 
require root server participation for every 
absolute path name. It may also let the sys- 
tem provide limited service even when the 
root server is down. 

Managing prefix tables. One of the 

(a) 
l r n  n o A  

Server Y, Domain 63 

j Server Y, Domain 44 

. .  
: I  4’ 

r---+------i 

L.-.-.-!L!_?J 
Server Z, Domain 5 

Figure 5.  Although the Sprite file system behaves as if it were a single hierarchy (a), 
it is actually divided up into domains (b). Each domain may be stored on a 
different server. 

greatest advantages of prefix tables is that 
they are created dynamically and updated 
automatically when the system configura- 
tion changes. To add a new entry to its pre- 
fix table, a client broadcasts a prefix name 
to all servers. The server storing the 
domain replies with its address and the 
token corresponding to  the domain. The 
client uses this information to create a new 
prefix table entry. Initially, each client 
starts out with an empty prefix table and 
broadcasts to  find the entry for “/.” As 
it uses more files, it gradually adds entries 
to its prefix table. 

How does a client know when to add a 
new prefix to  its table? The file at the 
mount point for each domain is a special 

Table 1. A prefix table corresponding 
to the domain structure of Figure 5.* 

I Prefix Server Token I 
/ x 17 
/a/ Y 63 
/d/ Y 44 
/d/k/ Z 5 

*Prefix tables are loaded dynamically, so 
they need not hold complete file information 
at  any given time. 

link, called a remote link, which identifies 
the file as the mount point for a new 
domain. For example, in Figure 5 the file 
“/d/k” in server Y’s domain is a remote 
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Figure 6. Caches in the Sprite file system. When a process makes a file access, it is 
presented first to the cache of the process’ workstation (file traffic). If not satisfied 
there, the request is passed either to a local disk, if the file is stored locally (disk 
traffic), or to the server where the file is stored (server traffic). Servers also main- 
tain caches to reduce their disk traffic. 

link. A remote link is similar to a symbolic 
link in that it stores a file name; for remote 
links, this is the prefix name (that is, the 
file’s absolute name). Whenever a remote 
link is encountered in file name lookup, 
the server returns to the client the prefix 
name and the remainder of the name being 
looked up. The client uses the broadcast 
protocol to make a new prefix table entry 
and then reprocesses the remainder of the 
name. Remote links do  not store any net- 
work address information; they simply 
indicate the presence of a domain. This 
feature permits the system to adapt quickly 
to changes in configuration. 

Prefix table entries are treated as hints 
and are adjusted automatically as the sys- 
tem configuration changes. When a client 
sends an open request to a server, it is pos- 
sible for the request to fail with a timeout 
(if the server has crashed) or a rejection (if 
the server no longer stores the domain). In 
either case, the client invalidates the pre- 
fix table entry for the domain and rebroad- 
casts. If the domain has moved, the new 
server will respond to the rebroadcast, and 
the client will establish a new prefix table 
entry and retry the open. In this case, the 
configuration change will be invisible to 
user processes. If the server has crashed, 
then the broadcast will timeout; each addi- 
tional open will also broadcast and 
timeout. During the time the server is 
down, user processes will receive errors 
analogous to disk-off-line errors in time- 
shared Unix. Eventually, the domain will 
become available again, and the next open 
will reestablish the prefix table entry. 

Adding a new domain to the file system 
requires only adding a remote link at the 
mount point for the domain and arrang- 
ing for the server to respond to requests. 

Managing file data- 
client and server caches 

The Sprite file system is implemented 
using large caches of recently used file 
blocks stored in the main memories of 
both clients and servers. The caches pro- 
vide two benefits that are especially impor- 
tant when most of the workstations are 
diskless. First, the caches improve file sys- 
tem performance by eliminating disk 
accesses and network transactions. Sec- 
ond, they reduce the loading on the net- 
work and the servers, which increases the 
scalability of the system. Sprite’s caches 
use a consistency protocol that allows 
applications on  different workstations to 
share files just as if they were running on  
a single time-sharing system. 

Basic cache design. Each client and 
server workstation maintains a large cache 
of recently accessed file blocks, as shown 
in Figure 6 .  The caches are organized on 
a block basis, rather than a whole-file basis 
as in the Andrew file ~ y s t e m , ~  and are 
stored in main memory rather than on a 
local disk. Blocks are currently four kilo- 
bytes. Each block in the cache is identified 
by a token for a file and a block location 
within the file. When the Fs-Read kernel 
call is invoked to read a block of a file, the 

kernel first checks its cache and returns the 
information from the cache if it is present. 
If the block is not in the cache, the kernel 
reads it from disk (if the file is on a local 
disk) or requests it from a server; in either 
case, the block is added to the cache, 
replacing the least-recently used block. If 
the block is requested from a server, the 
server checks its own cache before issuing 
a disk 1/0 and adds the block to its cache 
if the block was not already there. 

Sprite uses a delayed-write approach to 
handle file writes. When an application 
issues an Fs-Write kernel call, the kernel 
simply writes the block into its cache and 
returns to the application. The block is not 
written through to the disk or server until 
it is ejected from the cache or 30 seconds 
have elapsed since the block was last modi- 
fied. This policy is similar to the one used 
in time-shared Unix. It means some recent 
work may be lost in a system crash, but it 
provides much higher performance to 
applications than a policy based on write- 
through, since the application can con- 
tinue without waiting for information to  
be flushed to disk. For applications with 
special reliability requirements, Sprite pro- 
vides a kernel call to flush one or more 
blocks of a file to disk. 

Cache consistency. When clients cache 
files, a consistency problem arises: What 
happens if one client modifies a file that is 
cached by other clients? Can subsequent 
references to the file by the other clients 
return “stale” data? Most network file 
systems, such as Sun’s NFS, provide only 
limited guarantees about consistency. In 
NFS, for example, other clients with the 
file open may see stale data until they close 
the file and reopen it. Sprite guarantees 
consistency; each Fs-Read kernel call 
always returns the most up-to-date data 
for a file, regardless of how the file is being 
used around the network. This means that 
application programs running on different 
workstations under Sprite behave as if they 
were all running on a single, time-shared 
Unix system. 

To simplify the implementation of 
cache consistency, we considered two sep- 
arate cases. The first case is sequential 
write-sharing, where a file is modified by 
one workstation, read later by another 
workstation, but never open on both 
workstations at the same time. We expect 
this to be the most common form of write- 
sharing. The second case is concurrent 
write-sharing, where one workstation 
modifies a file while it is open on another 
workstation. Our solution to this situation 
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Figure 7. Client degradation and network traffic as a function of maximum client cache size for diskless Sun-3/75s with client 
caches using an unloaded Sun-3/180 file server. For each point the cache size was allowed to vary up to  the given maximum. 
Part (a) plots degradation, which is the additional time required by a diskless workstation to complete the benchmark, relative 
to the time to complete the benchmark with a local disk and four-megabyte cache; (b) plots network traffic, including bytes 
transmitted in packet headers and control packets as well as file data. 

is more expensive, but we d o  not expect it 
to occur very often. 

Sprite uses version numbers to handle 
sequential write-sharing. When a client 
opens a file, the server returns the file's 
current version number, which the client 
compares to the version number associated 
with its cached blocks for the file. If they 
are different, the file must have been modi- 
fied recently on some other workstation. 
In this case, the client discards all cached 
blocks for the file and reloads its cache 
from the server when the blocks are 
needed. Because of Sprite's delayed-write 
policy, the server does not always have cur- 
rent file data (the last writer need not have 
flushed dirty blocks back to the server 
when it closed the file). Servers handle this 
situation by keeping track of the last writer 
for each file; when a client other than the 
last writer opens the file, the server forces 
the last writer to write all its dirty blocks 
back to the server's cache. This guarantees 
that the server has up-to-date file informa- 
tion whenever a client needs it. 

For concurrent write-sharing, where the 
file is open on two or more workstations 
and at least one of them is writing the file, 
Sprite disables client caching for that file. 

When the server receives an open request 
that will cause concurrent write-sharing, it 
flushes dirty blocks back from the current 
writer (if any) and notifies all clients hav- 
ing the file open that they should not cache 
the file anymore. Cache disabling is done 
on a file-by-file basis, and only when con- 
current write-sharing occurs. A file may be 
cached simultaneously by several active 
readers. 

There are two potential disadvantages 
to Sprite's cache consistency mechanism. 
First, it results in substantially dower file 
access when caching has been disabled. 
Fortunately, measurements and simula- 
tions in Nelson et al." and Ousterhout et 
al." show that files tend to  be open for 
only short periods and are rarely write- 
shared, so cache disabling seldom occurs. 
Second, the Sprite approach depends on 
the fact that the server is notified whenever 
a file is opened or closed. This prohibits 
performance optimizations (such as name 
caching) in which clients open files with- 
out contacting the files' servers. Our 
benchmark results in Nelson et al." sug- 
gest that such optimizations would provide 
little performance improvement. 

It is important to distinguish between 

consistency and correct synchronization. 
Sprite's mechanism provides consistency; 
each read will return the most up-to-date 
data. However, the cache consistency 
mechanism will not guarantee that appli- 
cations perform their reads and writes in 
a sensible order. For this to occur, appli- 
cations must synchronize their actions on 
the file using the Fs-Lock system call or 
other available communication mechan- 
isms. The cache consistency provided by 
Sprite simply eliminates the network issues 
and reduces the problem to that of time- 
sharing systems. 

File system performance. To measure 
the benefits of caching, we ran a series of 
file-intensive benchmark programs on 
Sun-3/75 workstat ions.  A single 
Sun-3/180 file server was used for all cli- 
ent 1 /0  and paging traffic. Because the 
benchmarks d o  not involve file sharing, 
they d o  not measure the overhead 
associated with cache consistency. (For 
descriptions of the benchmarks and addi- 
tional performance measurements, see 
Nelson et al. '4 

Figure 7 shows that diskless worksta- 
tions with caches of a few megabytes can 

February 1988 31 



1604 _ 
C O  

1 0  
e 

1204 
t 

lo(-jyo. D 

! 1404 

............................. ,F ................................. 

.................. 

.................................................................. 
No Client Caches 

I 

........................................................ + I--..-.. 

................................................. L ................ 
I 

I 
I 

....................................... 4 ........................ 
I 

a 40% ................... w'" ............................ 
ith Client Caches 

0%- 
0 1 2 3 4 5 6 7 8  

Number of Clients 

(a) 

S 
e 
r 

e 
r 
U 
t 

i 

a 
t 
,i 
0 
n 

V 

f 
z 

804 .................................................................... 
No Client Caches,, '* 

704 ................................................ < ................... 1 ,* 
.................................... ............................. 

104 ....... #/ ........................................................ 
O t  

0%' 
0 1 2 3 4 5 6 7 8  

Number of Clients 

(b) 

Figure 8. Effects of server contention when multiple diskless clients ran the most intensive benchmark (Andrew) simultane- 
ously on different files using Sun-3/75 workstations. Andrew, written by M. Sa t~anarayanan ,~  is a composite benchmark that 
includes directory searches, file copying, version checking, and compilation. Part (a) shows the additional time required by 
each diskless client to complete the benchmark, relative to a single client running with local disk and cache; (b) shows server 
CPU use. When client caches were enabled, they were allowed to grow to four megabytes. 
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Figure 9. Sprite's paging structure. The code is paged in on-demand from the proc- 
ess' object file; since the code is read-only, it need not be written to backing storage 
and can be reloaded from the object file when needed. An ordinary file is used to 
back each data and stack segment. Initialized portions of the data segment are read 
in from the object file on first reference, then written to the backing file during 
page replacement and reused from there. For the stack segment and the uninitial- 
ized portions of the data segment, pages are filled with zeros on first reference, 
then paged to and from the backing files. 

achieve performance within one to 12 per- 
cent of workstations with local disks, 
whereas diskless workstations without 
caches typically run 10 to 40 percent slower 

than workstations with disks. It also shows 
that client caching reduces network traf- 
fic by a factor of four or more. Without 
client caching, we believe that Ethernet's 

10-megabit-per-second bandwidth will be 
a major bottleneck for next-generation 
workstations with five to 10 million 
instructions per second of processing 
power (for example, SPUR or the Sun-4 
family). Even with client caching, faster 
networks will be needed to support the 
next generation of workstations after that. 

Figure 8 shows that client caching 
reduces the server load by about a factor 
of two and suggests that a single server 
could support 10 or more active clients 
without excessive performance degrada- 
tion. Normal users are rarely as active as 
the benchmark in Figure 8; Howard et 
al.3 and Nelson et al." estimate that one 
instance of the benchmark presents a load 
equivalent to at least five average users. 
This suggests that a Sun-3/180 Sprite file 
server can support at least 50 user work- 
stations. 

In comparisons with Sun's NFS, Sprite 
completed the Andrew benchmark 30 per- 
cent faster and generated only about one- 
fourth the server load. Since our NFS 
servers can support 10 to 20 clients, the 
NFS comparison supports our estimate of 
at least 50 clients per Sprite file server. (See 
Nelson et al." for more information on 
the NFS comparison.) 
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Virtual memory 
Sprite’s virtual memory implementation 

is traditional in many respects. For exam- 
ple, it uses a “clock” algorithm variation 
for its page replacement mechanism and 
uses a straightforward extension of the 
time-shared Unix mechanism to provide 
shared read-write data segments. These 
and other aspects of the virtual memory 
system are described in detail by Nelson.” 

This section focuses on three aspects of 
the virtual memory implementation where 
we intentionally deviated from Unix to  
better use networks and large physical 
memories. First, Sprite uses ordinary files 
for backing storage to  simplify process 
migration, to  share backing storage 
between workstations, and to capitalize on 
server caches. In addition, Sprite provides 
“sticky segments” and a dynamic trade- 
off of physical memory between the virtual 
memory system and the file cache; these 
mechanisms were implemented to  make 
the best possible use of physical memory 
as a cache for programs and files. 

Backing storage. Backing storage is the 
portion of disk used to hold pages that 
have been swapped out of physical mem- 
ory. Most versions of Unix use a special 
disk partition for backing storage and 
manage that partition with special 
algorithms. In networked Unix systems, 
each machine has its own private disk par- 
tition for backing storage. In contrast, 
Sprite uses ordinary files, stored in the 
network file system, for backing storage. 
A separate backing file is used for each 
data and stack segment, as illustrated in 
Figure 9. Each workstation is assigned a 
separate directory in which to create back- 
ing files for its processes. 

There are several advantages to  paging 
from files. First, it simplifies the imple- 
mentation of virtual memory by reusing 
the existing file mechanisms. Second, it 
provides flexibility not present when each 
machine uses a private partition for back- 
ing storage. Many workstations may store 
their backing files in the same file system 
domain; this uses disk space more effi- 
ciently than schemes based on statically 
allocated private partitions. The network 
file system also simplifies backing file allo- 
cation on local disks or remote servers and 
simplifies process migration by making all 
backing files accessible to all workstations. 

Backing files also have interesting per- 
formance consequences. In Sprite, remote 
backing files are cached in the main mem- 

ories of servers, just like all other files. Our 
initial measurements show that a client can 
read random pages from a file in the 
server’s cache faster than from a local 
disk, which means that a server with a large 
cache may provide better paging perfor- 
mance than a local disk. We think that 
CPU and network speeds are likely to 
increase at a much faster rate than disk 
speeds over the next few years, which will 
make remote paging to and from a server’s 
cache even more attractive in the future. 

Sticky segments. When a program starts 
execution, the pages in its code and data 
segments are loaded on-demand from the 
program’s object file when page faults 
occur. To reduce this cost for frequently 
invoked programs, Sprite keeps a pro- 
gram’s code pages in memory even after 
the program exits. The pages remain in 
memory until they are replaced using the 
normal clock mechanism. We call this 
mechanism sticky segments. If the same 
object fileis reinvoked, then the new pro- 
cess can be started more quickly by reus- 
ing the sticky segment. If the object file is 
modified between executions, then the 
sticky segment will be discarded on the 
next execution. Data and stack segments 
are modified during execution, so they 
cannot be retained after the process com- 
pletes. 

Double caching. Double caching (cach- 
ing the same file block in two different 
memory locations) is a potential issue 
because the virtual memory system is a 
user of the file system. A naive implemen- 
tation might cause pages being read from 
backing files to  end up in both the file 
cache and the virtual memory page pool; 
pages being eliminated from the virtual 
memory page pool might simply get 
moved to the file cache, where they would 
have to  age again before being sent to the 
server. To  avoid these inefficiencies, the 
virtual memory system bypasses the local 
file cache when reading and writing back- 
ing files. A similar problem occurs when 
demand-loading code from its executable 
file. In this case, the pages may already be 
in the file cache (for example, because the 
program was just-recompiled). If so, the 
page is copied to  the virtual memory page 
pool and the block in the file cache is given 
an infinite age so that it will be replaced 
before anything else in memory. The sticky 
segment mechanism will cache the page in 
the virtual memory system, so it is not 
necessary to keep it in the file cache as well. 
For the portions of object files cor- 

responding to  data pages, Sprite permits 
double caching to provide faster program 
start-up (the dirty data pages are discarded 
on program exit, but clean ones can be 
quickly reloaded from the file cache). 

Although the virtual memory system 
bypasses its local file cache when reading 
and writing backing files, the backing files 
will be cached on servers. This makes 
servers’ memories into an extended main 
memory for their clients. Servers do not 
cache backing files for their own 
processes, since this would constitute dou- 
ble caching; they only cache backing files 
for their clients. 

Virtual memory-file system negotiation. 
The virtual memory system and file system 
have conflicting needs for physical mem- 
ory. File system performance is best when 
the file cache is as large as possible, while 
virtual memory performance will be best 
when the file cache is as small as possible 
so that most of the physical memory may 
be used for virtual memory. To get the best 
overall performance, Sprite allows the file 
cache on cach workstation to grow and 
shrink in response to  changing demands 
on the machine’s virtual memory and file 
system. This is accomplished by having the 
two modules negotiate over physical mem- 
ory usage. The result is that small I/O- 
intensive programs, like compilers, may 
use almost all of the memory for a file 
cache, while large CPU-bound programs 
may use almost all of the memory for their 
virtual address spaces. 

The file system and the virtual memory 
system manage separate pools of physical 
memory pages. Each module keeps an 
approximate time-of-last-access for each 
page (using different techniques in each 
module). Whenever either module needs 
additional memory (because of a page 
fault or a miss in the file cache), it com- 
pares the age of its oldest page with the age 
of the oldest page from the other module, 
replacing whichever is older. This allows 
memory to  flow back and forth between 
the virtual memory page pool and the file 
cache, depending on the needs of the cur- 
rent applications. 

We also considered more centralized 
approaches to  trading off physical mem- 
ory between the virtual memory page pool 
and the file cache. One possibility would 
be to  access all information through the 
virtual memory system. To access a file, it 
would first be mapped into a process’ vir- 
tual address space and then read or writ- 
ten just like virtual memory, as in Apollo’s 
Aegis system’ or Mach.13 This approach 
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Table 2. The time required to migrate a process on Sun-3/75 workstations.* 

Action Cost or speed 

Migrate smallest possible process 
Flush dirty pages 585 Kbytedsec 
Demand-load pages 545 Kbytedsec 
Transfer info for open files ! *The total time Flush depends file cache on how many dirty pages the process has 585 (these Kbytedsec must be flushed to 

the server during migration), how large its address space is (pages must be loaded on-demand 
on the process’ new host), how many open files it has, and how many dirty blocks for those 
files are cached locally (they must be flushed). “Smallest possible process” refers to a process 
with no open files and one page each of code, data, and stack. 

190 msec 

14 msec/file 

Table 3. Costs and benefits of process migration, measured by running several 
compilations concurrently.* 

Program Execution time Improvement 
Local Migrated 

One compilation 15.5 sec 15.9 sec - 3% 
Two compilations 30 sec 17 sec 43 qo 
Three compilations 45 sec 18 sec 60% r Four comDilations 60 sec 20 sec 67 Yo 

*In the “local” column, all the compilations were run concurrently on a single machine. In 
the “migrated” column, one compilation was run locally and each of the others was migrated 
to a different workstation (except for the “one compilation” row, where the single compila- 
tion was migrated). 

would eliminate the file cache entirely; the 
standard page replacement mechanisms 
would automatically balance physical 
memory use between file and program 
information. 

We rejected the mapped-file approach 
for several reasons, the most important 
one being that it would have forced us to 
use a more complicated cache consistency 
scheme. Since a mapped-file approach 
requires a file’s pages to be cached in a 
workstation’s memory before they can be 
accessed, we would not have been able to 
implement cache consistency by refusing 
to  cache shared files. A second reason for 
rejecting the mapped-file approach is that 
we wished to retain the Unix notion that 
1/0 devices and files are accessed in 
exactly the same fashion; a mapped-file 
framework, with the assumed ability to 
access bytes in random order, does not 
seem natural for device I/O, which is most 
often sequential. 

Process migration 
Sprite’s implementation of process 

migration differs from other implementa- 
tions, such as those in the V System,6 
Accent,’ or Locus: in two major ways. 
The first difference is the way in which a 
process’ virtual memory is transferred 
between machines, and the second differ- 
ence is the way migration is made transpar- 
ent to the migrated process. 

The simplest approach to process migra- 
tion is 

“freeze” the process (prevent it from 
executing any more); 

transfer its state to the new machine, 
including registers and execution 
state, virtual memory, and file access; 

“unfreeze” the process on its new 
machine so that it can continue 
executing. 

The virtual memory transfer is the dom- 
inant cost in migration, so various tech- 
niques have been applied to reduce it. For 
example, V uses precopying, where the 
process continues executing while its mem- 
ory is transferred. The process is then fro- 
zen, and any pages that have been 
modified are recopied. Accent uses a 
“lazy” approach in which the virtual 
memory image is left on  the old machine 
and transferred to the new machine one 
page at a time when page faults occur. 
Locus checks for a read-only code segment 
and reopefils it on the new machine, rather 
than copying it from the old machine; this 
allows the process to share a preexisting 
copy of the code on the new machine, if 
there is one. 

In Sprite, backing files simplify the 
transfer of the virtual memory image. The 
old machine simply pages out the process’ 
dirty pages and transfers information 
about the backing files to the target 
machine. If the code segment already 
exists on the new machine, the migrating 
process shares it, as in Locus. Pages get 
reloaded in the process’ new machine on 
demand, using the standard virtual mem- 
ory mechanisms. Thus, the process need 
only be frozen long enough to write out its 
dirty pages. The Sprite approach requires 
processes to be frozen longer than with 
either V or Accent, but it requires less data 
copying than V and does not require page 
fault servicing by the old machine after 
unfreezing on the new machine. 

The second, and more important, issue 
in process migration is achieving transpar- 
ent remote execution. A migrated process 
must produce the same results it would 
produce if it were not migrated, and spe- 
cial coding must not be required for a 
process to be migratable. For message- 
based systems like V and Accent, trans- 
parency is achieved by redirecting the 
process’ message traffic to its new home. 
Since processes communicate with the rest 
of the world only by sending and receiving 
messages, this is sufficient to guarantee 
transparency. In contrast, Sprite processes 
communicate with the rest of the world by 
invoking kernel calls. Kernel calls are nor- 
mally executed on the invoking machine 
(unless they make RPCs to other kernels), 
and some kernel calls will produce differ- 
ent results on different machines. For 
example, Sprite kernels maintain shared 
environment variables; Proc-GetEnviron 
may return different results on different 
machines. 

Sprite achieves transparency in a fash- 
ion similar to Locus by assigning each 
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process a home node. A process‘ home 
node is the machine on which the process 
wascreated,unless theprocesswascreated 
by a migrated process; in this case, the 
process’ home node is the same as the 
home node of its parent. Whenever a pro- 
cess invokes a kernel call whose results are 
machine-dependent, the kernel call is for- 
warded to the process’ home node (using 
the RPC mechanism) and executed there. 
This guarantees that the process produces 
the same results as if it were executing at 
home, To the outside world, the process 
still appears to be executing at home. Its 
process identifier does not change; it will 
appear in a process listing on the home 
node; and it can be debugged and termi- 
nated in the same way as other processes 
on the home node. 

For each kernel call, we thus had two 
choices: either transfer all the state 
associated with the call at migration time 
so that the call can be executed remotely, 
or forward home all invocations of the call 
made by migrated processes. For calls that 
are invoked frequently, such as all the file 
system calls, wechosethe first course(this 
was particularly simple for files, since the 
cache consistency mechanism already 
takes care of moving the file’s data 
between caches). For infrequently invoked 
calls, or those whose state is difficult or 
impossible to transfer (for example, calls 
that deal with the home node’s process 
table), we chose the forwarding approach. 

Table 2 gives some preliminary meas- 
urements of process migration costs. If a 
processismigrated whenit startsexecution 
(before it has generated many dirty pages), 
the migration requires only a few hundred 
milliseconds on Sun-3/15 workstations. 
We expect this to be the most common sce- 
nario, The other major use of migration 
will beto evict migrated processes from a 
workstation whose user has just returned. 
In this case, the major factor will be the 
number of dirty pages. Even in the worst 
case (all memory dirty), all processes can 
be evicted from an eight-megabyte work- 
station in about 15 to 20 seconds. Table 3 
shows that remote execution costs are 
acceptable (less than five percent penalty 
over executing at home for a compilation 
benchmark) and that migration may allow 
much more rapid completion of a collec- 
tion of  jobs. (See Douglis and 
Ousterhout14 for more information on 
process migration in Sprite.) 

s of this writing, all features dis- 
cussed are operational-except A for the code to choose a target 
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for process migration and to evict 
migrated processes when a workstation’s 
user returns, which is currently under 
development. In addition, Sprite supports 
the Internet protocol family (IP/TCP) for 
communication with other systems, and 
Sun NFS protocol support is planned. The 
Sprite kernel contains approximately 
100,ooO lines of code, about half of which 
arecomments. All but a few hundred lines 
of code are in C; the remainder are writ- 
ten in assembler. Sprite currently runs on 
Sun-2 and Sun-3 workstations. Recently, 
we began using it for all of our everyday 
computing, including maintaining Sprite. 
Weplanto port SpritetotheSPURmulti- 
processor as prototypes become available 
later in 1988. We hope that Sprite will be 
portable enough to run on a variety of 
workstation platforms, and that it will be 
attractive enough for people outside the 
Sprite group to want to use it for their 
everyday computing. 

In conclusion, we hope that Sprite will 
provide three overall features: sharing, 
flexibility, and performance. Users want 
sharing so that they can work coopera- 
tively and use hardware resources fully. 
Sprite provides sharing at  several levels: 
tightly coupled processes on the same 
workstation may share memory; processes 
everywhere may share files; and users may 
share processing power using the process 
migration mechanism. System administra- 
tors want flexibility so that the system can 
evolve gracefully. Sprite provides flexibil- 
ity in the form of prefix tables, which allow 
user-transparent reconfiguration of the 
file system, and in the form of backing 
files, which allow workstations to share 
backing storage. Finally, everyone wants 
performance. Sprite provides high perfor- 
mance by using a special-purpose RPC 
protocol for communication between ker- 
nels and by using physical memory as a 
flexible cache for both Dronrams and . -  
files.0 
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