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Motivation

By the mid 1980�s, the trend in computing was away from large centralized time-shared
computers towards networks of smaller, personal machines, typically UNIX �worksta
tions�. People had grown weary of overloaded, bureaucratic timesharing machines and
were eager to move to small, self-maintained systems, even if that meant a net loss in
computing power. As microcomputers became faster, even that loss was recovered, and
this style of computing remains popular today.

In the rush to personal workstations, though, some of their weaknesses were over
looked. First, the operating system they run, UNIX, is itself an old timesharing system
and has had trouble adapting to ideas born after it. Graphics and networking were
added to UNIX well into its lifetime and remain poorly integrated and difficult to admin
ister. More important, the early focus on having private machines made it difficult for
networks of machines to serve as seamlessly as the old monolithic timesharing systems.
Timesharing centralized the management and amortization of costs and resources; per
sonal computing fractured, democratized, and ultimately amplified administrative prob
lems. The choice of an old timesharing operating system to run those personal
machines made it difficult to bind things together smoothly.

Plan 9 began in the late 1980�s as an attempt to have it both ways: to build a sys
tem that was centrally administered and cost-effective using cheap modern microcom
puters as its computing elements. The idea was to build a time-sharing system out of
workstations, but in a novel way. Different computers would handle different tasks:
small, cheap machines in people�s offices would serve as terminals providing access to
large, central, shared resources such as computing servers and file servers. For the cen
tral machines, the coming wave of shared-memory multiprocessors seemed obvious
candidates. The philosophy is much like that of the Cambridge Distributed System
[NeHe82]. The early catch phrase was to build a UNIX out of a lot of little systems, not a
system out of a lot of little UNIXes.

The problems with UNIX were too deep to fix, but some of its ideas could be
brought along. The best was its use of the file system to coordinate naming of and
__________________
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access to resources, even those, such as devices, not traditionally treated as files. For
Plan 9, we adopted this idea by designing a network-level protocol, called 9P, to enable
machines to access files on remote systems. Above this, we built a naming system that
lets people and their computing agents build customized views of the resources in the
network. This is where Plan 9 first began to look different: a Plan 9 user builds a private
computing environment and recreates it wherever desired, rather than doing all comput
ing on a private machine. It soon became clear that this model was richer than we had
foreseen, and the ideas of per-process name spaces and file-system-like resources
were extended throughout the system�to processes, graphics, even the network itself.

By 1989 the system had become solid enough that some of us began using it as
our exclusive computing environment. This meant bringing along many of the services
and applications we had used on UNIX. We used this opportunity to revisit many issues,
not just kernel-resident ones, that we felt UNIX addressed badly. Plan 9 has new com
pilers, languages, libraries, window systems, and many new applications. Many of the
old tools were dropped, while those brought along have been polished or rewritten.

Why be so all-encompassing? The distinction between operating system, library,
and application is important to the operating system researcher but uninteresting to the
user. What matters is clean functionality. By building a complete new system, we were
able to solve problems where we thought they should be solved. For example, there is
no real �tty driver� in the kernel; that is the job of the window system. In the modern
world, multi-vendor and multi-architecture computing are essential, yet the usual com
pilers and tools assume the program is being built to run locally; we needed to rethink
these issues. Most important, though, the test of a system is the computing environ
ment it provides. Producing a more efficient way to run the old UNIX warhorses is
empty engineering; we were more interested in whether the new ideas suggested by the
architecture of the underlying system encourage a more effective way of working. Thus,
although Plan 9 provides an emulation environment for running POSIX commands, it is a
backwater of the system. The vast majority of system software is developed in the
�native� Plan 9 environment.

There are benefits to having an all-new system. First, our laboratory has a history
of building experimental peripheral boards. To make it easy to write device drivers, we
want a system that is available in source form (no longer guaranteed with UNIX, even in
the laboratory in which it was born). Also, we want to redistribute our work, which
means the software must be locally produced. For example, we could have used some
vendors� C compilers for our system, but even had we overcome the problems with
cross-compilation, we would have difficulty redistributing the result.

This paper serves as an overview of the system. It discusses the architecture from
the lowest building blocks to the computing environment seen by users. It also serves
as an introduction to the rest of the Plan 9 Programmer�s Manual, which it accompanies.
More detail about topics in this paper can be found elsewhere in the manual.

Design

The view of the system is built upon three principles. First, resources are named
and accessed like files in a hierarchical file system. Second, there is a standard proto
col, called 9P, for accessing these resources. Third, the disjoint hierarchies provided by
different services are joined together into a single private hierarchical file name space.
The unusual properties of Plan 9 stem from the consistent, aggressive application of
these principles.

A large Plan 9 installation has a number of computers networked together, each
providing a particular class of service. Shared multiprocessor servers provide comput
ing cycles; other large machines offer file storage. These machines are located in an
air-conditioned machine room and are connected by high-performance networks.
Lower bandwidth networks such as Ethernet or ISDN connect these servers to office-
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and home-resident workstations or PCs, called terminals in Plan 9 terminology. Figure
1 shows the arrangement.
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Figure 1. Structure of a large Plan 9 installation. CPU servers and file servers share fast local-area

networks, while terminals use slower wider-area networks such as Ethernet, Datakit, or telephone

lines to connect to them. Gateway machines, which are just CPU servers connected to multiple net

works, allow machines on one network to see another.

The modern style of computing offers each user a dedicated workstation or PC.
Plan 9�s approach is different. The various machines with screens, keyboards, and mice
all provide access to the resources of the network, so they are functionally equivalent, in
the manner of the terminals attached to old timesharing systems. When someone uses
the system, though, the terminal is temporarily personalized by that user. Instead of
customizing the hardware, Plan 9 offers the ability to customize one�s view of the sys
tem provided by the software. That customization is accomplished by giving local, per
sonal names for the publicly visible resources in the network. Plan 9 provides the mech
anism to assemble a personal view of the public space with local names for globally
accessible resources. Since the most important resources of the network are files, the
model of that view is file-oriented.

The client�s local name space provides a way to customize the user�s view of the
network. The services available in the network all export file hierarchies. Those impor
tant to the user are gathered together into a custom name space; those of no immediate
interest are ignored. This is a different style of use from the idea of a �uniform global
name space�. In Plan 9, there are known names for services and uniform names for files
exported by those services, but the view is entirely local. As an analogy, consider the
difference between the phrase �my house� and the precise address of the speaker�s
home. The latter may be used by anyone but the former is easier to say and makes
sense when spoken. It also changes meaning depending on who says it, yet that does
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not cause confusion. Similarly, in Plan 9 the name /dev/cons always refers to the
user�s terminal and /bin/date the correct version of the date command to run, but
which files those names represent depends on circumstances such as the architecture of
the machine executing date. Plan 9, then, has local name spaces that obey globally
understood conventions; it is the conventions that guarantee sane behavior in the pres
ence of local names.

The 9P protocol is structured as a set of transactions that send a request from a
client to a (local or remote) server and return the result. 9P controls file systems, not
just files: it includes procedures to resolve file names and traverse the name hierarchy
of the file system provided by the server. On the other hand, the client�s name space is
held by the client system alone, not on or with the server, a distinction from systems
such as Sprite [OCDNW88]. Also, file access is at the level of bytes, not blocks, which
distinguishes 9P from protocols like NFS and RFS. A paper by Welch compares Sprite,
NFS, and Plan 9�s network file system structures [Welc94].

This approach was designed with traditional files in mind, but can be extended to
many other resources. Plan 9 services that export file hierarchies include I/O devices,
backup services, the window system, network interfaces, and many others. One exam
ple is the process file system, /proc, which provides a clean way to examine and con
trol running processes. Precursor systems had a similar idea [Kill84], but Plan 9 pushes
the file metaphor much further [PPTTW93]. The file system model is well-understood,
both by system builders and general users, so services that present file-like interfaces
are easy to build, easy to understand, and easy to use. Files come with agreed-upon
rules for protection, naming, and access both local and remote, so services built this
way are ready-made for a distributed system. (This is a distinction from �object-
oriented� models, where these issues must be faced anew for every class of object.)
Examples in the sections that follow illustrate these ideas in action.

The Command-level View

Plan 9 is meant to be used from a machine with a screen running the window sys
tem. It has no notion of �teletype� in the UNIX sense. The keyboard handling of the
bare system is rudimentary, but once the window system, 8½ [Pike91], is running, text
can be edited with �cut and paste� operations from a pop-up menu, copied between win
dows, and so on. 8½ permits editing text from the past, not just on the current input
line. The text-editing capabilities of 8½ are strong enough to displace special features
such as history in the shell, paging and scrolling, and mail editors. 8½ windows do not
support cursor addressing and, except for one terminal emulator to simplify connecting
to traditional systems, there is no cursor-addressing software in Plan 9.

Each window is created in a separate name space. Adjustments made to the name
space in a window do not affect other windows or programs, making it safe to experi
ment with local modifications to the name space, for example to substitute files from
the dump file system when debugging. Once the debugging is done, the window can be
deleted and all trace of the experimental apparatus is gone. Similar arguments apply to
the private space each window has for environment variables, notes (analogous to UNIX
signals), etc.

Each window is created running an application, such as the shell, with standard
input and output connected to the editable text of the window. Each window also has a
private bitmap and multiplexed access to the keyboard, mouse, and other graphical
resources through files like /dev/mouse, /dev/bitblt, and /dev/cons (analo
gous to UNIX�s /dev/tty). These files are provided by 8½, which is implemented as a
file server. Unlike X windows, where a new application typically creates a new window to
run in, an 8½ graphics application usually runs in the window where it starts. It is possi
ble and efficient for an application to create a new window, but that is not the style of
the system. Again contrasting to X, in which a remote application makes a network call
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to the X server to start running, a remote 8½ application sees the mouse, bitblt, and
cons files for the window as usual in /dev; it does not know whether the files are
local. It just reads and writes them to control the window; the network connection is
already there and multiplexed.

The intended style of use is to run interactive applications such as the window sys
tem and text editor on the terminal and to run computation- or file-intensive applica
tions on remote servers. Different windows may be running programs on different
machines over different networks, but by making the name space equivalent in all win
dows, this is transparent: the same commands and resources are available, with the
same names, wherever the computation is performed.

The command set of Plan 9 is similar to that of UNIX. The commands fall into sev
eral broad classes. Some are new programs for old jobs: programs like ls, cat, and
who have familiar names and functions but are new, simpler implementations. Who, for
example, is a shell script, while ps is just 95 lines of C code. Some commands are
essentially the same as their UNIX ancestors: awk, troff, and others have been con
verted to ANSI C and extended to handle Unicode, but are still the familiar tools. Some
are entirely new programs for old niches: the shell rc, text editor sam, debugger
acid, and others displace the better-known UNIX tools with similar jobs. Finally, about
half the commands are new.

Compatibility was not a requirement for the system. Where the old commands or
notation seemed good enough, we kept them. When they didn�t, we replaced them.

The File Server

A central file server stores permanent files and presents them to the network as a
file hierarchy exported using 9P. The server is a stand-alone system, accessible only
over the network, designed to do its one job well. It runs no user processes, only a
fixed set of routines compiled into the boot image. Rather than a set of disks or sepa
rate file systems, the main hierarchy exported by the server is a single tree, represent
ing files on many disks. That hierarchy is shared by many users over a wide area on a
variety of networks. Other file trees exported by the server include special-purpose sys
tems such as temporary storage and, as explained below, a backup service.

The file server has three levels of storage. The central server in our installation has
about 100 megabytes of memory buffers, 27 gigabytes of magnetic disks, and 350 giga
bytes of bulk storage in a write-once-read-many (WORM) jukebox. The disk is a cache
for the WORM and the memory is a cache for the disk; each is much faster, and sees
about an order of magnitude more traffic, than the level it caches. The addressable data
in the file system can be larger than the size of the magnetic disks, because they are
only a cache; our main file server has about 40 gigabytes of active storage.

The most unusual feature of the file server comes from its use of a WORM device
for stable storage. Every morning at 5 o�clock, a dump of the file system occurs auto
matically. The file system is frozen and all blocks modified since the last dump are
queued to be written to the WORM. Once the blocks are queued, service is restored and
the read-only root of the dumped file system appears in a hierarchy of all dumps ever
taken, named by its date. For example, the directory /n/dump/1995/0315 is the
root directory of an image of the file system as it appeared in the early morning of
March 15, 1995. It takes a few minutes to queue the blocks, but the process to copy
blocks to the WORM, which runs in the background, may take hours.

There are two ways the dump file system is used. The first is by the users them
selves, who can browse the dump file system directly or attach pieces of it to their name
space. For example, to track down a bug, it is straightforward to try the compiler from
three months ago or to link a program with yesterday�s library. With daily snapshots of
all files, it is easy to find when a particular change was made or what changes were
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made on a particular date. People feel free to make large speculative changes to files in
the knowledge that they can be backed out with a single copy command. There is no
backup system as such; instead, because the dump is in the file name space, backup
problems can be solved with standard tools such as cp, ls, grep, and diff.

The other (very rare) use is complete system backup. In the event of disaster, the
active file system can be initialized from any dump by clearing the disk cache and set
ting the root of the active file system to be a copy of the dumped root. Although easy to
do, this is not to be taken lightly: besides losing any change made after the date of the
dump, this recovery method results in a very slow system. The cache must be reloaded
from WORM, which is much slower than magnetic disks. The file system takes a few
days to reload the working set and regain its full performance.

Access permissions of files in the dump are the same as they were when the dump
was made. Normal utilities have normal permissions in the dump without any special
arrangement. The dump file system is read-only, though, which means that files in the
dump cannot be written regardless of their permission bits; in fact, since directories are
part of the read-only structure, even the permissions cannot be changed.

Once a file is written to WORM, it cannot be removed, so our users never see
��please clean up your files�� messages and there is no df command. We regard the
WORM jukebox as an unlimited resource. The only issue is how long it will take to fill.
Our WORM has served a community of about 50 users for five years and has absorbed
daily dumps, consuming a total of 65% of the storage in the jukebox. In that time, the
manufacturer has improved the technology, doubling the capacity of the individual
disks. If we were to upgrade to the new media, we would have more free space than in
the original empty jukebox. Technology has created storage faster than we can use it.

Unusual file servers

Plan 9 is characterized by a variety of servers that offer a file-like interface to
unusual services. Many of these are implemented by user-level processes, although the
distinction is unimportant to their clients; whether a service is provided by the kernel, a
user process, or a remote server is irrelevant to the way it is used. There are dozens of
such servers; in this section we present three representative ones.

Perhaps the most remarkable file server in Plan 9 is 8½, the window system. It is
discussed at length elsewhere [Pike91], but deserves a brief explanation here. 8½ pro
vides two interfaces: to the user seated at the terminal, it offers a traditional style of
interaction with multiple windows, each running an application, all controlled by a
mouse and keyboard. To the client programs, the view is also fairly traditional: pro
grams running in a window see a set of files in /dev with names like mouse, screen,
and cons. Programs that want to print text to their window write to /dev/cons; to
read the mouse, they read /dev/mouse. In the Plan 9 style, bitmap graphics is imple
mented by providing a file /dev/bitblt on which clients write encoded messages to
execute graphical operations such as bitblt (RasterOp). What is unusual is how this
is done: 8½ is a file server, serving the files in /dev to the clients running in each win
dow. Although every window looks the same to its client, each window has a distinct set
of files in /dev. 8½ multiplexes its clients� access to the resources of the terminal by
serving multiple sets of files. Each client is given a private name space with a different
set of files that behave the same as in all other windows. There are many advantages to
this structure. One is that 8½ serves the same files it needs for its own
implementation�it multiplexes its own interface�so it may be run, recursively, as a
client of itself. Also, consider the implementation of /dev/tty in UNIX, which
requires special code in the kernel to redirect open calls to the appropriate device.
Instead, in 8½ the equivalent service falls out automatically: 8½ serves /dev/cons as
its basic function; there is nothing extra to do. When a program wants to read from the
keyboard, it opens /dev/cons, but it is a private file, not a shared one with special
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properties. Again, local name spaces make this possible; conventions about the consis
tency of the files within them make it natural.

8½ has a unique feature made possible by its design. Because it is implemented as
a file server, it has the power to postpone answering read requests for a particular win
dow. This behavior is toggled by a reserved key on the keyboard. Toggling once sus
pends client reads from the window; toggling again resumes normal reads, which
absorb whatever text has been prepared, one line at a time. This allows the user to edit
multi-line input text on the screen before the application sees it, obviating the need to
invoke a separate editor to prepare text such as mail messages. A related property is
that reads are answered directly from the data structure defining the text on the display:
text may be edited until its final newline makes the prepared line of text readable by the
client. Even then, until the line is read, the text the client will read can be changed. For
example, after typing

% make
rm *

to the shell, the user can backspace over the final newline at any time until make fin
ishes, holding off execution of the rm command, or even point with the mouse before
the rm and type another command to be executed first.

There is no ftp command in Plan 9. Instead, a user-level file server called ftpfs
dials the FTP site, logs in on behalf of the user, and uses the FTP protocol to examine
files in the remote directory. To the local user, it offers a file hierarchy, attached to
/n/ftp in the local name space, mirroring the contents of the FTP site. In other
words, it translates the FTP protocol into 9P to offer Plan 9 access to FTP sites. The
implementation is tricky; ftpfs must do some sophisticated caching for efficiency and
use heuristics to decode remote directory information. But the result is worthwhile: all
the local file management tools such as cp, grep, diff, and of course ls are avail
able to FTP-served files exactly as if they were local files. Other systems such as Jade
and Prospero have exploited the same opportunity [Rao81, Neu92], but because of local
name spaces and the simplicity of implementing 9P, this approach fits more naturally
into Plan 9 than into other environments.

One server, exportfs, is a user process that takes a portion of its own name
space and makes it available to other processes by translating 9P requests into system
calls to the Plan 9 kernel. The file hierarchy it exports may contain files from multiple
servers. Exportfs is usually run as a remote server started by a local program, either
import or cpu. Import makes a network call to the remote machine, starts
exportfs there, and attaches its 9P connection to the local name space. For example,

import helix /net

makes Helix�s network interfaces visible in the local /net directory. Helix is a central
server and has many network interfaces, so this permits a machine with one network to
access to any of Helix�s networks. After such an import, the local machine may make
calls on any of the networks connected to Helix. Another example is

import helix /proc

which makes Helix�s processes visible in the local /proc, permitting local debuggers to
examine remote processes.

The cpu command connects the local terminal to a remote CPU server. It works in
the opposite direction to import: after calling the server, it starts a local exportfs
and mounts it in the name space of a process, typically a newly created shell, on the
server. It then rearranges the name space to make local device files (such as those
served by the terminal�s window system) visible in the server�s /dev directory. The
effect of running a cpu command is therefore to start a shell on a fast machine, one
more tightly coupled to the file server, with a name space analogous to the local one.
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All local device files are visible remotely, so remote applications have full access to local
services such as bitmap graphics, /dev/cons, and so on. This is not the same as
rlogin, which does nothing to reproduce the local name space on the remote system,
nor is it the same as file sharing with, say, NFS, which can achieve some name space
equivalence but not the combination of access to local hardware devices, remote files,
and remote CPU resources. The cpu command is a uniquely transparent mechanism.
For example, it is reasonable to start a window system in a window running a cpu com
mand; all windows created there automatically start processes on the CPU server.

Configurability and administration

The uniform interconnection of components in Plan 9 makes it possible to config
ure a Plan 9 installation many different ways. A single laptop PC can function as a
stand-alone Plan 9 system; at the other extreme, our setup has central multiprocessor
CPU servers and file servers and scores of terminals ranging from small PCs to high-end
graphics workstations. It is such large installations that best represent how Plan 9 oper
ates.

The system software is portable and the same operating system runs on all hard
ware. Except for performance, the appearance of the system on, say, an SGI workstation
is the same as on a laptop. Since computing and file services are centralized, and termi
nals have no permanent file storage, all terminals are functionally identical. In this way,
Plan 9 has one of the good properties of old timesharing systems, where a user could sit
in front of any machine and see the same system. In the modern workstation commu
nity, machines tend to be owned by people who customize them by storing private infor
mation on local disk. We reject this style of use, although the system itself can be used
this way. In our group, we have a laboratory with many public-access machines�a ter
minal room�and a user may sit down at any one of them and work.

Central file servers centralize not just the files, but also their administration and
maintenance. In fact, one server is the main server, holding all system files; other
servers provide extra storage or are available for debugging and other special uses, but
the system software resides on one machine. This means that each program has a sin
gle copy of the binary for each architecture, so it is trivial to install updates and bug
fixes. There is also a single user database; there is no need to synchronize distinct
/etc/passwd files. On the other hand, depending on a single central server does
limit the size of an installation.

Another example of the power of centralized file service is the way Plan 9 adminis
ters network information. On the central server there is a directory, /lib/ndb, that
contains all the information necessary to administer the local Ethernet and other net
works. All the machines use the same database to talk to the network; there is no need
to manage a distributed naming system or keep parallel files up to date. To install a
new machine on the local Ethernet, choose a name and IP address and add these to a
single file in /lib/ndb; all the machines in the installation will be able to talk to it
immediately. To start running, plug the machine into the network, turn it on, and use
BOOTP and TFTP to load the kernel. All else is automatic.

Finally, the automated dump file system frees all users from the need to maintain
their systems, while providing easy access to backup files without tapes, special com
mands, or the involvement of support staff. It is difficult to overstate the improvement
in lifestyle afforded by this service.

Plan 9 runs on a variety of hardware without constraining how to configure an
installation. In our laboratory, we chose to use central servers because they amortize
costs and administration. A sign that this is a good decision is that our cheap terminals
remain comfortable places to work for about five years, much longer than workstations
that must provide the complete computing environment. We do, however, upgrade the
central machines, so the computation available from even old Plan 9 terminals improves
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with time. The money saved by avoiding regular upgrades of terminals is instead spent
on the newest, fastest multiprocessor servers. We estimate this costs about half the
money of networked workstations yet provides general access to more powerful
machines.

C Programming

Plan 9 utilities are written in several languages. Some are scripts for the shell, rc
[Duff90]; a handful are written in a new C-like concurrent language called Alef [Wint95],
described below. The great majority, though, are written in a dialect of ANSI C [ANSIC].
Of these, most are entirely new programs, but some originate in pre-ANSI C code from
our research UNIX system [UNIX85]. These have been updated to ANSI C and reworked
for portability and cleanliness.

The Plan 9 C dialect has some minor extensions, described elsewhere [Pike95], and
a few major restrictions. The most important restriction is that the compiler demands
that all function definitions have ANSI prototypes and all function calls appear in the
scope of a prototyped declaration of the function. As a stylistic rule, the prototyped
declaration is placed in a header file included by all files that call the function. Each sys
tem library has an associated header file, declaring all functions in that library. For
example, the standard Plan 9 library is called libc, so all C source files include
<libc.h>. These rules guarantee that all functions are called with arguments having
the expected types � something that was not true with pre-ANSI C programs.

Another restriction is that the C compilers accept only a subset of the preprocessor
directives required by ANSI. The main omission is #if, since we believe it is never nec
essary and often abused. Also, its effect is better achieved by other means. For
instance, an #if used to toggle a feature at compile time can be written as a regular if
statement, relying on compile-time constant folding and dead code elimination to dis
card object code.

Conditional compilation, even with #ifdef, is used sparingly in Plan 9. The only
architecture-dependent #ifdefs in the system are in low-level routines in the graph
ics library. Instead, we avoid such dependencies or, when necessary, isolate them in
separate source files or libraries. Besides making code hard to read, #ifdefs make it
impossible to know what source is compiled into the binary or whether source protected
by them will compile or work properly. They make it harder to maintain software.

The standard Plan 9 library overlaps much of ANSI C and POSIX [POSIX], but
diverges when appropriate to Plan 9�s goals or implementation. When the semantics of
a function change, we also change the name. For instance, instead of UNIX�s creat,
Plan 9 has a create function that takes three arguments, the original two plus a third
that, like the second argument of open, defines whether the returned file descriptor is
to be opened for reading, writing, or both. This design was forced by the way 9P imple
ments creation, but it also simplifies the common use of create to initialize a tempo
rary file.

Another departure from ANSI C is that Plan 9 uses a 16-bit character set called Uni
code [ISO10646, Unicode]. Although we stopped short of full internationalization, Plan
9 treats the representation of all major languages uniformly throughout all its software.
To simplify the exchange of text between programs, the characters are packed into a
byte stream by an encoding we designed, called UTF-8, which is now becoming
accepted as a standard [FSSUTF]. It has several attractive properties, including byte-
order independence, backwards compatibility with ASCII, and ease of implementation.

There are many problems in adapting existing software to a large character set
with an encoding that represents characters with a variable number of bytes. ANSI C
addresses some of the issues but falls short of solving them all. It does not pick a char
acter set encoding and does not define all the necessary I/O library routines.
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Furthermore, the functions it does define have engineering problems. Since the stan
dard left too many problems unsolved, we decided to build our own interface. A sepa
rate paper has the details [Pike93].

A small class of Plan 9 programs do not follow the conventions discussed in this
section. These are programs imported from and maintained by the UNIX community;
tex is a representative example. To avoid reconverting such programs every time a
new version is released, we built a porting environment, called the ANSI C/POSIX Envi
ronment, or APE [Tric95]. APE comprises separate include files, libraries, and com
mands, conforming as much as possible to the strict ANSI C and base-level POSIX speci
fications. To port network-based software such as X Windows, it was necessary to add
some extensions to those specifications, such as the BSD networking functions.

Portability and Compilation

Plan 9 is portable across a variety of processor architectures. Within a single com
puting session, it is common to use several architectures: perhaps the window system
running on an Intel processor connected to a MIPS-based CPU server with files resident
on a SPARC system. For this heterogeneity to be transparent, there must be conventions
about data interchange between programs; for software maintenance to be straightfor
ward, there must be conventions about cross-architecture compilation.

To avoid byte order problems, data is communicated between programs as text
whenever practical. Sometimes, though, the amount of data is high enough that a
binary format is necessary; such data is communicated as a byte stream with a pre-
defined encoding for multi-byte values. In the rare cases where a format is complex
enough to be defined by a data structure, the structure is never communicated as a unit;
instead, it is decomposed into individual fields, encoded as an ordered byte stream, and
then reassembled by the recipient. These conventions affect data ranging from kernel
or application program state information to object file intermediates generated by the
compiler.

Programs, including the kernel, often present their data through a file system inter
face, an access mechanism that is inherently portable. For example, the system clock is
represented by a decimal number in the file /dev/time; the time library function
(there is no time system call) reads the file and converts it to binary. Similarly, instead
of encoding the state of an application process in a series of flags and bits in private
memory, the kernel presents a text string in the file named status in the /proc file
system associated with each process. The Plan 9 ps command is trivial: it prints the
contents of the desired status files after some minor reformatting; moreover, after

import helix /proc

a local ps command reports on the status of Helix�s processes.

Each supported architecture has its own compilers and loader. The C and Alef
compilers produce intermediate files that are portably encoded; the contents are unique
to the target architecture but the format of the file is independent of compiling proces
sor type. When a compiler for a given architecture is compiled on another type of pro
cessor and then used to compile a program there, the intermediate produced on the
new architecture is identical to the intermediate produced on the native processor.
From the compiler�s point of view, every compilation is a cross-compilation.

Although each architecture�s loader accepts only intermediate files produced by
compilers for that architecture, such files could have been generated by a compiler exe
cuting on any type of processor. For instance, it is possible to run the MIPS compiler on
a 486, then use the MIPS loader on a SPARC to produce a MIPS executable.

Since Plan 9 runs on a variety of architectures, even in a single installation, distin
guishing the compilers and intermediate names simplifies multi-architecture
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development from a single source tree. The compilers and the loader for each architec
ture are uniquely named; there is no cc command. The names are derived by concate
nating a code letter associated with the target architecture with the name of the com
piler or loader. For example, the letter �8� is the code letter for Intel x86 processors; the
C compiler is named 8c, the Alef compiler 8al, and the loader is called 8l. Similarly,
the compiler intermediate files are suffixed .8, not .o.

The Plan 9 build program mk, a relative of make, reads the names of the current
and target architectures from environment variables called $cputype and $objtype.
By default the current processor is the target, but setting $objtype to the name of
another architecture before invoking mk results in a cross-build:

% objtype=sparc mk

builds a program for the SPARC architecture regardless of the executing machine. The
value of $objtype selects a file of architecture-dependent variable definitions that
configures the build to use the appropriate compilers and loader. Although simple-
minded, this technique works well in practice: all applications in Plan 9 are built from a
single source tree and it is possible to build the various architectures in parallel without
conflict.

Parallel programming

Plan 9�s support for parallel programming has two aspects. First, the kernel pro
vides a simple process model and a few carefully designed system calls for synchroniza
tion and sharing. Second, a new parallel programming language called Alef supports
concurrent programming. Although it is possible to write parallel programs in C, Alef is
the parallel language of choice.

There is a trend in new operating systems to implement two classes of processes:
normal UNIX-style processes and light-weight kernel threads. Instead, Plan 9 provides
a single class of process but allows fine control of the sharing of a process�s resources
such as memory and file descriptors. A single class of process is a feasible approach in
Plan 9 because the kernel has an efficient system call interface and cheap process cre
ation and scheduling.

Parallel programs have three basic requirements: management of resources shared
between processes, an interface to the scheduler, and fine-grain process synchroniza
tion using spin locks. On Plan 9, new processes are created using the rfork system
call. Rfork takes a single argument, a bit vector that specifies which of the parent
process�s resources should be shared, copied, or created anew in the child. The
resources controlled by rfork include the name space, the environment, the file
descriptor table, memory segments, and notes (Plan 9�s analog of UNIX signals). One of
the bits controls whether the rfork call will create a new process; if the bit is off, the
resulting modification to the resources occurs in the process making the call. For exam
ple, a process calls rfork(RFNAMEG) to disconnect its name space from its parent�s.
Alef uses a fine-grained fork in which all the resources, including memory, are shared
between parent and child, analogous to creating a kernel thread in many systems.

An indication that rfork is the right model is the variety of ways it is used. Other
than the canonical use in the library routine fork, it is hard to find two calls to rfork
with the same bits set; programs use it to create many different forms of sharing and
resource allocation. A system with just two types of processes�regular processes and
threads�could not handle this variety.

There are two ways to share memory. First, a flag to rfork causes all the mem
ory segments of the parent to be shared with the child (except the stack, which is forked
copy-on-write regardless). Alternatively, a new segment of memory may be attached
using the segattach system call; such a segment will always be shared between par
ent and child.
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The rendezvous system call provides a way for processes to synchronize. Alef
uses it to implement communication channels, queuing locks, multiple reader/writer
locks, and the sleep and wakeup mechanism. Rendezvous takes two arguments, a
tag and a value. When a process calls rendezvous with a tag it sleeps until another
process presents a matching tag. When a pair of tags match, the values are exchanged
between the two processes and both rendezvous calls return. This primitive is suffi
cient to implement the full set of synchronization routines.

Finally, spin locks are provided by an architecture-dependent library at user level.
Most processors provide atomic test and set instructions that can be used to implement
locks. A notable exception is the MIPS R3000, so the SGI Power series multiprocessors
have special lock hardware on the bus. User processes gain access to the lock hardware
by mapping pages of hardware locks into their address space using the segattach
system call.

A Plan 9 process in a system call will block regardless of its �weight�. This means
that when a program wishes to read from a slow device without blocking the entire cal
culation, it must fork a process to do the read for it. The solution is to start a satellite
process that does the I/O and delivers the answer to the main program through shared
memory or perhaps a pipe. This sounds onerous but works easily and efficiently in
practice; in fact, most interactive Plan 9 applications, even relatively ordinary ones writ
ten in C, such as the text editor Sam [Pike87], run as multiprocess programs.

The kernel support for parallel programming in Plan 9 is a few hundred lines of
portable code; a handful of simple primitives enable the problems to be handled cleanly
at user level. Although the primitives work fine from C, they are particularly expressive
from within Alef. The creation and management of slave I/O processes can be written in
a few lines of Alef, providing the foundation for a consistent means of multiplexing data
flows between arbitrary processes. Moreover, implementing it in a language rather than
in the kernel ensures consistent semantics between all devices and provides a more gen
eral multiplexing primitive. Compare this to the UNIX select system call: select
applies only to a restricted set of devices, legislates a style of multiprogramming in the
kernel, does not extend across networks, is difficult to implement, and is hard to use.

Another reason parallel programming is important in Plan 9 is that multi-threaded
user-level file servers are the preferred way to implement services. Examples of such
servers include the programming environment Acme [Pike94], the name space exporting
tool exportfs [PPTTW93], the HTTP daemon, and the network name servers cs and
dns [PrWi93]. Complex applications such as Acme prove that careful operating system
support can reduce the difficulty of writing multi-threaded applications without moving
threading and synchronization primitives into the kernel.

Implementation of Name Spaces

User processes construct name spaces using three system calls: mount, bind,
and unmount. The mount system call attaches a tree served by a file server to the
current name space. Before calling mount, the client must (by outside means) acquire
a connection to the server in the form of a file descriptor that may be written and read
to transmit 9P messages. That file descriptor represents a pipe or network connection.

The mount call attaches a new hierarchy to the existing name space. The bind
system call, on the other hand, duplicates some piece of existing name space at another
point in the name space. The unmount system call allows components to be removed.

Using either bind or mount, multiple directories may be stacked at a single point
in the name space. In Plan 9 terminology, this is a union directory and behaves like the
concatenation of the constituent directories. A flag argument to bind and mount
specifies the position of a new directory in the union, permitting new elements to be
added either at the front or rear of the union or to replace it entirely. When a file lookup
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is performed in a union directory, each component of the union is searched in turn and
the first match taken; likewise, when a union directory is read, the contents of each of
the component directories is read in turn. Union directories are one of the most widely
used organizational features of the Plan 9 name space. For instance, the directory
/bin is built as a union of /$cputype/bin (program binaries), /rc/bin (shell
scripts), and perhaps more directories provided by the user. This construction makes
the shell $PATH variable unnecessary.

One question raised by union directories is which element of the union receives a
newly created file. After several designs, we decided on the following. By default, direc
tories in unions do not accept new files, although the create system call applied to an
existing file succeeds normally. When a directory is added to the union, a flag to bind
or mount enables create permission (a property of the name space) in that directory.
When a file is being created with a new name in a union, it is created in the first direc
tory of the union with create permission; if that creation fails, the entire create fails.
This scheme enables the common use of placing a private directory anywhere in a union
of public ones, while allowing creation only in the private directory.

By convention, kernel device file systems are bound into the /dev directory, but to
bootstrap the name space building process it is necessary to have a notation that per
mits direct access to the devices without an existing name space. The root directory of
the tree served by a device driver can be accessed using the syntax #c, where c is a
unique character (typically a letter) identifying the type of the device. Simple device
drivers serve a single level directory containing a few files. As an example, each serial
port is represented by a data and a control file:

% bind -a '#t' /dev
% cd /dev
% ls -l eia*
--rw-rw-rw- t 0 bootes bootes 0 Feb 24 21:14 eia1
--rw-rw-rw- t 0 bootes bootes 0 Feb 24 21:14 eia1ctl
--rw-rw-rw- t 0 bootes bootes 0 Feb 24 21:14 eia2
--rw-rw-rw- t 0 bootes bootes 0 Feb 24 21:14 eia2ctl

The bind program is an encapsulation of the bind system call; its -a flag positions
the new directory at the end of the union. The data files eia1 and eia2 may be read
and written to communicate over the serial line. Instead of using special operations on
these files to control the devices, commands written to the files eia1ctl and
eia2ctl control the corresponding device; for example, writing the text string b1200
to /dev/eia1ctl sets the speed of that line to 1200 baud. Compare this to the UNIX
ioctl system call: in Plan 9, devices are controlled by textual messages, free of byte
order problems, with clear semantics for reading and writing. It is common to configure
or debug devices using shell scripts.

It is the universal use of the 9P protocol that connects Plan 9�s components
together to form a distributed system. Rather than inventing a unique protocol for each
service such as rlogin, FTP, TFTP, and X windows, Plan 9 implements services in
terms of operations on file objects, and then uses a single, well-documented protocol to
exchange information between computers. Unlike NFS, 9P treats files as a sequence of
bytes rather than blocks. Also unlike NFS, 9P is stateful: clients perform remote proce
dure calls to establish pointers to objects in the remote file server. These pointers are
called file identifiers or fids. All operations on files supply a fid to identify an object in
the remote file system.

The 9P protocol defines 17 messages, providing means to authenticate users, navi
gate fids around a file system hierarchy, copy fids, perform I/O, change file attributes,
and create and delete files. Its complete specification is in Section 5 of the
Programmer�s Manual [9man]. Here is the procedure to gain access to the name hierar
chy supplied by a server. A file server connection is established via a pipe or network
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connection. An initial session message performs a bilateral authentication between
client and server. An attach message then connects a fid suggested by the client to
the root of the server file tree. The attach message includes the identity of the user
performing the attach; henceforth all fids derived from the root fid will have permissions
associated with that user. Multiple users may share the connection, but each must per
form an attach to establish his or her identity.

The walk message moves a fid through a single level of the file system hierarchy.
The clone message takes an established fid and produces a copy that points to the
same file as the original. Its purpose is to enable walking to a file in a directory without
losing the fid on the directory. The open message locks a fid to a specific file in the
hierarchy, checks access permissions, and prepares the fid for I/O. The read and
write messages allow I/O at arbitrary offsets in the file; the maximum size transferred
is defined by the protocol. The clunk message indicates the client has no further use
for a fid. The remove message behaves like clunk but causes the file associated with
the fid to be removed and any associated resources on the server to be deallocated.

9P has two forms: RPC messages sent on a pipe or network connection and a pro
cedural interface within the kernel. Since kernel device drivers are directly addressable,
there is no need to pass messages to communicate with them; instead each 9P transac
tion is implemented by a direct procedure call. For each fid, the kernel maintains a local
representation in a data structure called a channel, so all operations on files performed
by the kernel involve a channel connected to that fid. The simplest example is a user
process�s file descriptors, which are indexes into an array of channels. A table in the
kernel provides a list of entry points corresponding one to one with the 9P messages for
each device. A system call such as read from the user translates into one or more pro
cedure calls through that table, indexed by the type character stored in the channel:
procread, eiaread, etc. Each call takes at least one channel as an argument. A
special kernel driver, called the mount driver, translates procedure calls to messages,
that is, it converts local procedure calls to remote ones. In effect, this special driver
becomes a local proxy for the files served by a remote file server. The channel pointer
in the local call is translated to the associated fid in the transmitted message.

The mount driver is the sole RPC mechanism employed by the system. The seman
tics of the supplied files, rather than the operations performed upon them, create a par
ticular service such as the cpu command. The mount driver demultiplexes protocol
messages between clients sharing a communication channel with a file server. For each
outgoing RPC message, the mount driver allocates a buffer labeled by a small unique
integer, called a tag. The reply to the RPC is labeled with the same tag, which is used by
the mount driver to match the reply with the request.

The kernel representation of the name space is called the mount table, which
stores a list of bindings between channels. Each entry in the mount table contains a pair
of channels: a from channel and a to channel. Every time a walk succeeds in moving a
channel to a new location in the name space, the mount table is consulted to see if a
�from� channel matches the new name; if so the �to� channel is cloned and substituted
for the original. Union directories are implemented by converting the �to� channel into a
list of channels: a successful walk to a union directory returns a �to� channel that forms
the head of a list of channels, each representing a component directory of the union. If
a walk fails to find a file in the first directory of the union, the list is followed, the next
component cloned, and walk tried on that directory.

Each file in Plan 9 is uniquely identified by a set of integers: the type of the channel
(used as the index of the function call table), the server or device number distinguishing
the server from others of the same type (decided locally by the driver), and a qid formed
from two 32-bit numbers called path and version. The path is a unique file number
assigned by a device driver or file server when a file is created. The version number is
updated whenever the file is modified; as described in the next section, it can be used
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to maintain cache coherency between clients and servers.

The type and device number are analogous to UNIX major and minor device num
bers; the qid is analogous to the i-number. The device and type connect the channel to
a device driver and the qid identifies the file within that device. If the file recovered from
a walk has the same type, device, and qid path as an entry in the mount table, they are
the same file and the corresponding substitution from the mount table is made. This is
how the name space is implemented.

File Caching

The 9P protocol has no explicit support for caching files on a client. The large
memory of the central file server acts as a shared cache for all its clients, which reduces
the total amount of memory needed across all machines in the network. Nonetheless,
there are sound reasons to cache files on the client, such as a slow connection to the file
server.

The version field of the qid is changed whenever the file is modified, which makes
it possible to do some weakly coherent forms of caching. The most important is client
caching of text and data segments of executable files. When a process execs a pro
gram, the file is re-opened and the qid�s version is compared with that in the cache; if
they match, the local copy is used. The same method can be used to build a local cach
ing file server. This user-level server interposes on the 9P connection to the remote
server and monitors the traffic, copying data to a local disk. When it sees a read of
known data, it answers directly, while writes are passed on immediately�the cache is
write-through�to keep the central copy up to date. This is transparent to processes on
the terminal and requires no change to 9P; it works well on home machines connected
over serial lines. A similar method can be applied to build a general client cache in
unused local memory, but this has not been done in Plan 9.

Networks and Communication Devices

Network interfaces are kernel-resident file systems, analogous to the EIA device
described earlier. Call setup and shutdown are achieved by writing text strings to the
control file associated with the device; information is sent and received by reading and
writing the data file. The structure and semantics of the devices is common to all net
works so, other than a file name substitution, the same procedure makes a call using
TCP over Ethernet as URP over Datakit [Fra80].

This example illustrates the structure of the TCP device:

% ls -lp /net/tcp
d-r-xr-xr-x I 0 bootes bootes 0 Feb 23 20:20 0
d-r-xr-xr-x I 0 bootes bootes 0 Feb 23 20:20 1
--rw-rw-rw- I 0 bootes bootes 0 Feb 23 20:20 clone
% ls -lp /net/tcp/0
--rw-rw---- I 0 rob bootes 0 Feb 23 20:20 ctl
--rw-rw---- I 0 rob bootes 0 Feb 23 20:20 data
--rw-rw---- I 0 rob bootes 0 Feb 23 20:20 listen
--r--r--r-- I 0 bootes bootes 0 Feb 23 20:20 local
--r--r--r-- I 0 bootes bootes 0 Feb 23 20:20 remote
--r--r--r-- I 0 bootes bootes 0 Feb 23 20:20 status
%

The top directory, /net/tcp, contains a clone file and a directory for each connec
tion, numbered 0 to n. Each connection directory corresponds to an TCP/IP connection.
Opening clone reserves an unused connection and returns its control file. Reading the
control file returns the textual connection number, so the user process can construct the
full name of the newly allocated connection directory. The local, remote, and
status files are diagnostic; for example, remote contains the address (for TCP, the
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IP address and port number) of the remote side.

A call is initiated by writing a connect message with a network-specific address as
its argument; for example, to open a Telnet session (port 23) to a remote machine with
IP address 135.104.9.52, the string is:

connect 135.104.9.52!23

The write to the control file blocks until the connection is established; if the destination
is unreachable, the write returns an error. Once the connection is established, the
telnet application reads and writes the data file to talk to the remote Telnet dae
mon. On the other end, the Telnet daemon would start by writing

announce 23

to its control file to indicate its willingness to receive calls to this port. Such a daemon
is called a listener in Plan 9.

A uniform structure for network devices cannot hide all the details of addressing
and communication for dissimilar networks. For example, Datakit uses textual, hierar
chical addresses unlike IP�s 32-bit addresses, so an application given a control file must
still know what network it represents. Rather than make every application know the
addressing of every network, Plan 9 hides these details in a connection server, called
cs. Cs is a file system mounted in a known place. It supplies a single control file that
an application uses to discover how to connect to a host. The application writes the
symbolic address and service name for the connection it wishes to make, and reads
back the name of the clone file to open and the address to present to it. If there are
multiple networks between the machines, cs presents a list of possible networks and
addresses to be tried in sequence; it uses heuristics to decide the order. For instance, it
presents the highest-bandwidth choice first.

A single library function called dial talks to cs to establish the connection. An
application that uses dial needs no changes, not even recompilation, to adapt to new
networks; the interface to cs hides the details.

The uniform structure for networks in Plan 9 makes the import command all that
is needed to construct gateways.

Kernel structure for networks

The kernel plumbing used to build Plan 9 communications channels is called
streams [Rit84][Presotto]. A stream is a bidirectional channel connecting a physical or
pseudo-device to a user process. The user process inserts and removes data at one end
of the stream; a kernel process acting on behalf of a device operates at the other end. A
stream comprises a linear list of processing modules. Each module has both an
upstream (toward the process) and downstream (toward the device) put routine. Calling
the put routine of the module on either end of the stream inserts data into the stream.
Each module calls the succeeding one to send data up or down the stream. Like UNIX
streams [Rit84], Plan 9 streams can be dynamically configured.

The IL Protocol

The 9P protocol must run above a reliable transport protocol with delimited mes
sages. 9P has no mechanism to recover from transmission errors and the system
assumes that each read from a communication channel will return a single 9P message;
it does not parse the data stream to discover message boundaries. Pipes and some net
work protocols already have these properties but the standard IP protocols do not. TCP
does not delimit messages, while UDP [RFC768] does not provide reliable in-order deliv
ery.

We designed a new protocol, called IL (Internet Link), to transmit 9P messages over
IP. It is a connection-based protocol that provides reliable transmission of sequenced
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messages between machines. Since a process can have only a single outstanding 9P
request, there is no need for flow control in IL. Like TCP, IL has adaptive timeouts: it
scales acknowledge and retransmission times to match the network speed. This allows
the protocol to perform well on both the Internet and on local Ethernets. Also, IL does
no blind retransmission, to avoid adding to the congestion of busy networks. Full
details are in another paper [PrWi95].

In Plan 9, the implementation of IL is smaller and faster than TCP. IL is our main
Internet transport protocol.

Χverview of authentication

Authentication establishes the identity of a user accessing a resource. The user
requesting the resource is called the client and the user granting access to the resource
is called the server. This is usually done under the auspices of a 9P attach message. A
user may be a client in one authentication exchange and a server in another. Servers
always act on behalf of some user, either a normal client or some administrative entity,
so authentication is defined to be between users, not machines.

Each Plan 9 user has an associated DES [NBS77] authentication key; the user�s iden
tity is verified by the ability to encrypt and decrypt special messages called challenges.
Since knowledge of a user�s key gives access to that user�s resources, the Plan 9 authen
tication protocols never transmit a message containing a cleartext key.

Authentication is bilateral: at the end of the authentication exchange, each side is
convinced of the other�s identity. Every machine begins the exchange with a DES key in
memory. In the case of CPU and file servers, the key, user name, and domain name for
the server are read from permanent storage, usually non-volatile RAM. In the case of
terminals, the key is derived from a password typed by the user at boot time. A special
machine, known as the authentication server, maintains a database of keys for all users
in its administrative domain and participates in the authentication protocols.

The authentication protocol is as follows: after exchanging challenges, one party
contacts the authentication server to create permission-granting tickets encrypted with
each party�s secret key and containing a new conversation key. Each party decrypts its
own ticket and uses the conversation key to encrypt the other party�s challenge.

This structure is somewhat like Kerberos [MBSS87], but avoids its reliance on syn
chronized clocks. Also unlike Kerberos, Plan 9 authentication supports a �speaks for�
relation [LABW91] that enables one user to have the authority of another; this is how a
CPU server runs processes on behalf of its clients.

Plan 9�s authentication structure builds secure services rather than depending on
firewalls. Whereas firewalls require special code for every service penetrating the wall,
the Plan 9 approach permits authentication to be done in a single place�9P�for all ser
vices. For example, the cpu command works securely across the Internet.

Authenticating external connections

The regular Plan 9 authentication protocol is not suitable for text-based services
such as Telnet or FTP. In such cases, Plan 9 users authenticate with hand-held DES cal
culators called authenticators. The authenticator holds a key for the user, distinct from
the user�s normal authentication key. The user �logs on� to the authenticator using a 4-
digit PIN. A correct PIN enables the authenticator for a challenge/response exchange
with the server. Since a correct challenge/response exchange is valid only once and
keys are never sent over the network, this procedure is not susceptible to replay attacks,
yet is compatible with protocols like Telnet and FTP.
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Special users

Plan 9 has no super-user. Each server is responsible for maintaining its own secu
rity, usually permitting access only from the console, which is protected by a password.
For example, file servers have a unique administrative user called adm, with special priv
ileges that apply only to commands typed at the server�s physical console. These privi
leges concern the day-to-day maintenance of the server, such as adding new users and
configuring disks and networks. The privileges do not include the ability to modify,
examine, or change the permissions of any files. If a file is read-protected by a user,
only that user may grant access to others.

CPU servers have an equivalent user name that allows administrative access to
resources on that server such as the control files of user processes. Such permission is
necessary, for example, to kill rogue processes, but does not extend beyond that server.
On the other hand, by means of a key held in protected non-volatile RAM, the identity of
the administrative user is proven to the authentication server. This allows the CPU
server to authenticate remote users, both for access to the server itself and when the
CPU server is acting as a proxy on their behalf.

Finally, a special user called none has no password and is always allowed to con
nect; anyone may claim to be none. None has restricted permissions; for example, it
is not allowed to examine dump files and can read only world-readable files.

The idea behind none is analogous to the anonymous user in FTP services. On
Plan 9, guest FTP servers are further confined within a special restricted name space. It
disconnects guest users from system programs, such as the contents of /bin, but
makes it possible to make local files available to guests by binding them explicitly into
the space. A restricted name space is more secure than the usual technique of export
ing an ad hoc directory tree; the result is a kind of cage around untrusted users.

The cpu command and proxied authentication

When a call is made to a CPU server for a user, say Peter, the intent is that Peter
wishes to run processes with his own authority. To implement this property, the CPU
server does the following when the call is received. First, the listener forks off a process
to handle the call. This process changes to the user none to avoid giving away permis
sions if it is compromised. It then performs the authentication protocol to verify that
the calling user really is Peter, and to prove to Peter that the machine is itself trustwor
thy. Finally, it reattaches to all relevant file servers using the authentication protocol to
identify itself as Peter. In this case, the CPU server is a client of the file server and per
forms the client portion of the authentication exchange on behalf of Peter. The authen
tication server will give the process tickets to accomplish this only if the CPU server�s
administrative user name is allowed to speak for Peter.

The speaks for relation [LABW91] is kept in a table on the authentication server. To
simplify the management of users computing in different authentication domains, it also
contains mappings between user names in different domains, for example saying that
user rtm in one domain is the same person as user rtmorris in another.

File Permissions

One of the advantages of constructing services as file systems is that the solutions
to ownership and permission problems fall out naturally. As in UNIX, each file or direc
tory has separate read, write, and execute/search permissions for the file�s owner, the
file�s group, and anyone else. The idea of group is unusual: any user name is potentially
a group name. A group is just a user with a list of other users in the group. Conven
tions make the distinction: most people have user names without group members, while
groups have long lists of attached names. For example, the sys group traditionally has
all the system programmers, and system files are accessible by group sys. Consider
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the following two lines of a user database stored on a server:

pjw:pjw:
sys::pjw,ken,philw,presotto

The first establishes user pjw as a regular user. The second establishes user sys as a
group and lists four users who are members of that group. The empty colon-separated
field is space for a user to be named as the group leader. If a group has a leader, that
user has special permissions for the group, such as freedom to change the group per
missions of files in that group. If no leader is specified, each member of the group is
considered equal, as if each were the leader. In our example, only pjw can add mem
bers to his group, but all of sys�s members are equal partners in that group.

Regular files are owned by the user that creates them. The group name is inherited
from the directory holding the new file. Device files are treated specially: the kernel
may arrange the ownership and permissions of a file appropriate to the user accessing
the file.

A good example of the generality this offers is process files, which are owned and
read-protected by the owner of the process. If the owner wants to let someone else
access the memory of a process, for example to let the author of a program debug a
broken image, the standard chmod command applied to the process files does the job.

Another unusual application of file permissions is the dump file system, which is
not only served by the same file server as the original data, but represented by the same
user database. Files in the dump are therefore given identical protection as files in the
regular file system; if a file is owned by pjw and read-protected, once it is in the dump
file system it is still owned by pjw and read-protected. Also, since the dump file sys
tem is immutable, the file cannot be changed; it is read-protected forever. Drawbacks
are that if the file is readable but should have been read-protected, it is readable for
ever, and that user names are hard to re-use.

Performance

As a simple measure of the performance of the Plan 9 kernel, we compared the
time to do some simple operations on Plan 9 and on SGI�s IRIX Release 5.3 running on
an SGI Challenge M with a 100MHz MIPS R4400 and a 1-megabyte secondary cache.
The test program was written in Alef, compiled with the same compiler, and run on iden
tical hardware, so the only variables are the operating system and libraries.

The program tests the time to do a context switch (rendezvous on Plan 9,
blockproc on IRIX); a trivial system call (rfork(0) and nap(0)); and lightweight
fork (rfork(RFPRΧC) and sproc(PR_SFDS|PR_SADDR)). It also measures the
time to send a byte on a pipe from one process to another and the throughput on a pipe
between two processes. The results appear in Table 1.

______________________________________________
Test Plan 9 IRIX______________________________________________

Context switch 39 µs 150 µs
System call 6 µs 36 µs
Light fork 1300 µs 2200 µs
Pipe latency 110 µs 200 µs
Pipe bandwidth 11678 KB/s 14545 KB/s______________________________________________
















Table 1. Performance comparison.

Although the Plan 9 times are not spectacular, they show that the kernel is competitive
with commercial systems.
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Discussion

Plan 9 has a relatively conventional kernel; the system�s novelty lies in the pieces
outside the kernel and the way they interact. When building Plan 9, we considered all
aspects of the system together, solving problems where the solution fit best. Some
times the solution spanned many components. An example is the problem of heteroge
neous instruction architectures, which is addressed by the compilers (different code
characters, portable object code), the environment ($cputype and $objtype), the
name space (binding in /bin), and other components. Sometimes many issues could
be solved in a single place. The best example is 9P, which centralizes naming, access,
and authentication. 9P is really the core of the system; it is fair to say that the Plan 9
kernel is primarily a 9P multiplexer.

Plan 9�s focus on files and naming is central to its expressiveness. Particularly in
distributed computing, the way things are named has profound influence on the system
[Nee89]. The combination of local name spaces and global conventions to interconnect
networked resources avoids the difficulty of maintaining a global uniform name space,
while naming everything like a file makes the system easy to understand, even for nov
ices. Consider the dump file system, which is trivial to use for anyone familiar with hier
archical file systems. At a deeper level, building all the resources above a single uni
form interface makes interoperability easy. Once a resource exports a 9P interface, it
can combine transparently with any other part of the system to build unusual applica
tions; the details are hidden. This may sound object-oriented, but there are distinc
tions. First, 9P defines a fixed set of �methods�; it is not an extensible protocol. More
important, files are well-defined and well-understood and come prepackaged with
familiar methods of access, protection, naming, and networking. Objects, despite their
generality, do not come with these attributes defined. By reducing �object� to �file�, Plan
9 gets some technology for free.

Nonetheless, it is possible to push the idea of file-based computing too far. Con
verting every resource in the system into a file system is a kind of metaphor, and meta
phors can be abused. A good example of restraint is /proc, which is only a view of a
process, not a representation. To run processes, the usual fork and exec calls are
still necessary, rather than doing something like

cp /bin/date /proc/clone/mem

The problem with such examples is that they require the server to do things not under
its control. The ability to assign meaning to a command like this does not imply the
meaning will fall naturally out of the structure of answering the 9P requests it generates.
As a related example, Plan 9 does not put machine�s network names in the file name
space. The network interfaces provide a very different model of naming, because using
open, create, read, and write on such files would not offer a suitable place to
encode all the details of call setup for an arbitrary network. This does not mean that the
network interface cannot be file-like, just that it must have a more tightly defined struc
ture.

What would we do differently next time? Some elements of the implementation are
unsatisfactory. Using streams to implement network interfaces in the kernel allows pro
tocols to be connected together dynamically, such as to attach the same TTY driver to
TCP, URP, and IL connections, but Plan 9 makes no use of this configurability. (It was
exploited, however, in the research UNIX system for which streams were invented.)
Replacing streams by static I/O queues would simplify the code and make it faster.

Although the main Plan 9 kernel is portable across many machines, the file server
is implemented separately. This has caused several problems: drivers that must be writ
ten twice, bugs that must be fixed twice, and weaker portability of the file system code.
The solution is easy: the file server kernel should be maintained as a variant of the regu
lar operating system, with no user processes and special compiled-in kernel processes
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to implement file service. Another improvement to the file system would be a change of
internal structure. The WORM jukebox is the least reliable piece of the hardware, but
because it holds the metadata of the file system, it must be present in order to serve
files. The system could be restructured so the WORM is a backup device only, with the
file system proper residing on magnetic disks. This would require no change to the
external interface.

Although Plan 9 has per-process name spaces, it has no mechanism to give the
description of a process�s name space to another process except by direct inheritance.
The cpu command, for example, cannot in general reproduce the terminal�s name
space; it can only re-interpret the user�s login profile and make substitutions for things
like the name of the binary directory to load. This misses any local modifications made
before running cpu. It should instead be possible to capture the terminal�s name space
and transmit its description to a remote process.

Despite these problems, Plan 9 works well. It has matured into the system that
supports our research, rather than being the subject of the research itself. Experimental
new work includes developing interfaces to faster networks, file caching in the client
kernel, encapsulating and exporting name spaces, and the ability to re-establish the
client state after a server crash. Attention is now focusing on using the system to build
distributed applications.

One reason for Plan 9�s success is that we use it for our daily work, not just as a
research tool. Active use forces us to address shortcomings as they arise and to adapt
the system to solve our problems. Through this process, Plan 9 has become a comfort
able, productive programming environment, as well as a vehicle for further systems
research.
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