
CS 318 Principles of Operating Systems
Fall 2022

Prof. Ryan Huang

Lecture 8: Synchronization Exercises

Using Semaphores

We’ve looked at a simple example for using synchronization
- Mutual exclusion while accessing a bank account

Now let’s use semaphores to look at more interesting examples
- Readers/Writers
- Bounded Buffers

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 2

Readers/Writers Problem
Readers/Writers Problem:
- An object is shared among several threads
- Some threads only read the object, others only write it
- We can allow multiple readers but only one writer

• Let #𝑟 be the number of readers, #𝑤 be the number of writers
• Safety:

How can we use semaphores to implement this protocol?

Start with…
- Semaphore w_or_r – exclusive writing or reading

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 3

∧ ((#𝑟 > 0) ⇒ (#𝑤 = 0))(#𝑟 ≥ 0) ∧ (0 ≤ #𝑤 ≤ 1)

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

Readers/Writers

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 4

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

Is this correct? Are we done?

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

Readers/Writers

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 5

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

Readers/Writers Notes
w_or_r provides mutex between readers and writers
- writer wait/signal, reader wait/signal when readcount goes from 0 to 1 or from 1 to 0.

If a writer is writing, where will readers be waiting?

Once a writer exits, all readers can fall through
- Which reader gets to go first?
- Is it guaranteed that all readers will fall through?

If readers and writers are waiting, and a writer exits, who goes first?

Why do readers use mutex?

Why don't writers use mutex?

What if the signal is above “if (readcount == 1)”?

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 6

Bounded Buffer
Problem: a set of buffers shared by producer and consumer threads
- Producer inserts resources into the buffer set

• Output, disk blocks, memory pages, processes, etc.
- Consumer removes resources from the buffer set
- Whatever is generated by the producer

Producer and consumer execute at different rates
- No serialization of one behind the other
- Tasks are independent (easier to think about)
- The buffer set allows each to run without explicit handoff

Safety:
- Sequence of consumed values is prefix of sequence of produced values
- If 𝑛𝑐 is number consumed, 𝑛𝑝 number produced, and 𝑁 the size of the buffer, then
0 £ 𝑛𝑝 - 𝑛𝑐 £ 𝑁

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 8

Bounded Buffer (2)

0 £ 𝑛𝑝 - 𝑛𝑐 £𝑁 ⟺ 0 £ (𝑛𝑐 - 𝑛𝑝) +𝑁 £𝑁

Use three semaphores:
- empty – number of empty buffers

• Counting semaphore
• empty = (nc - np) + N

- full – number of full buffers
• Counting semaphore
• full = np - nc

- mutex – mutual exclusion to shared set of buffers
• Binary semaphore

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 9

producer() {
while (1) {

Produce new resource;
wait(&empty); // wait for empty buffer
wait(&mutex); // lock buffer list
Add resource to an empty buffer;
signal(&mutex); // unlock buffer list
signal(&full); // note a full buffer

}
}

Bounded Buffer (3)

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 10

consumer() {
while (1) {

wait(&full); // wait for a full buffer
wait(&mutex); // lock buffer list
Remove resource from a full buffer;
signal(&mutex); // unlock buffer list
signal(&empty); // note an empty buffer
Consume resource;

}
}

Semaphore mutex(1); // mutual exclusion to shared set of buffers
Semaphore empty(N); // count of empty buffers (all empty to start)
Semaphore full(0); // count of full buffers (none full to start)

Bounded Buffer (4)
Why need the mutex at all?

Where are the critical sections?

What has to hold for deadlock to occur?
- 𝑒𝑚𝑝𝑡𝑦 = 0 and 𝑓𝑢𝑙𝑙 = 0
- (𝑛𝑐 - 𝑛𝑝) + 𝑁 = 0 and 𝑛𝑝 − 𝑛𝑐 = 0
- 𝑁 = 0

What happens if operations on mutex and full/empty are switched around?
- The pattern of signal/wait on full/empty is a common construct often called an interlock

Readers/Writers and Bounded Buffer are classic sync. problems

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 11

Monitor Readers and Writers

Using Mesa monitor semantics.

Will have four methods: StartRead, StartWrite, EndRead and EndWrite

Monitored data: nr (# of readers) and nw (# of writers) with monitor invariant
(𝑛𝑟 ≥ 0) ∧ (0 ≤ 𝑛𝑤 ≤ 1) ∧ ((𝑛𝑟 > 0) ⇒ (𝑛𝑤 = 0))

Two conditions:
- canRead: 𝑛𝑤 = 0
- canWrite: (𝑛𝑟 = 0) ∧ (𝑛𝑤 = 0)

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 12

Monitor Readers and Writers

Try #1
- Will be safe, maybe not live – why?

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 13

Monitor RW {
int nr = 0, nw = 0;
Condition canRead, canWrite;

void StartRead () {
while (nw != 0) wait(canRead);
nr++;

}

void EndRead () {
nr--;

}

void StartWrite {
while (nr != 0 || nw != 0) wait(canWrite);
nw++;

}

void EndWrite () {
nw--;

}
} // end monitor

Monitor Readers and Writers

Need to add signal() and broadcast()

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 14

Monitor RW {
int nr = 0, nw = 0;
Condition canRead, canWrite;

void StartRead () {
while (nw != 0) wait(canRead);
nr++;

}

void EndRead () {
nr--;
if (nr == 0) signal(canWrite);

}

void StartWrite () {
while (nr != 0 || nw != 0) wait(canWrite);
nw++;

}

void EndWrite () {
nw--;
broadcast(canRead);
signal(canWrite);

}
} // end monitor

can we put a signal here?

can we put a signal here?

Monitor Readers and Writers

Is there any priority between readers and writers?

What if you wanted to ensure that a waiting writer would have
priority over new readers?

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 15

Monitor Bounded Buffer

- What happens if no threads are waiting when signal is called?

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 16

Monitor bounded_buffer {
Resource buffer[N];
// Variables for indexing buffer
// monitor invariant involves these vars
Condition not_full; // space in buffer
Condition not_empty; // value in buffer

void put_resource (Resource R) {
while (buffer array is full)

wait(not_full);
Add R to buffer array;
signal(not_empty);

}

Resource get_resource() {
while (buffer array is empty)

wait(not_empty);
Get resource R from buffer array;
signal(not_full);
return R;

}
} // end monitor

Monitor Queues

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 17

Monitor bounded_buffer {

Condition not_full;
…other variables…
Condition not_empty;

void put_resource() {
…wait(not_full)…
…signal(not_empty)…

}
Resource get_resource() {
…

}
}

Waiting to enter

Waiting on condition variables

Executing inside the monitor

Questions?

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 18

Next Time…
Read Chapter 32

9/22/22 CS 318 – Lecture 8 – Synchronization Exercises 19

