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Lecture 2: Architecture Support for OS



Administrivia

Lab 0
- Done individually, due next Thursday (09/08) noon 
- Overview session today 7-9 pm Hodson 213

Project groups
- Talk with neighbors in class, search on Campuswire

Lecture questions
- Please feel free to interrupt and ask questions anytime during the lecture
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Why Start With Hardware?

OS functionality fundamentally depends upon the architectural features
- Key goals of an OS are to enforce protection and resource sharing
- If done well, applications can be oblivious to HW details

Architectural support can greatly simplify or complicate OS tasks
- Early DOS, MacOS lacked virtual memory in part because the h/w did not support it
- Early Sun 1 computers used two M68000 CPUs to implement virtual memory
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Architectural Features for OS
Features that directly support the OS include
- Bootstrapping (Lab 0)
- Protection (kernel/user mode)
- Protected instructions
- Memory protection
- System calls
- Interrupts and exceptions
- Timer
- I/O control and operation
- Synchronization
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Types of Arch Support

I. Manipulating privileged machine state
- Protected instructions
- Manipulate device registers, TLB entries, etc.
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What Is Inside A Computer?
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Thought Experiment: A World of Anarchy
Any program in the system can…
- Directly access I/O devices
- Write anywhere in memory
- Read content from any memory address
- Execute machine halt instruction

Do you trust such system?
- use Facebook app in this system
- use Banking app in this system

Challenge: protection
- How to execute a program with restricted privilege?
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A Solution
How can we implement execution with limited privilege?
- Execute each program instruction through a simulator (OS)
- If the instruction is permitted, do the instruction
- Otherwise, stop the process
- Basic model in Javascript and other interpreted languages

How do we go faster?
- Observation: most instructions are perfectly safe!
- Run the unprivileged code directly on the CPU
- Do the check in h/w
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H/W Support: Dual-Mode Operation in CPU
User mode
- Limited privileges
- Only those granted by the operating system kernel

Kernel mode
- Execution with the full privileges of the hardware
- Read/write to any memory, access I/O device, read/write disk sector, send/read 

packet

On the x86, the Current Privilege Level (CPL) in the CS register

On the MIPS, the status register
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A Simple Model of a CPU
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A CPU with Dual-Mode Operation
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Protected Instructions
A subset of instructions restricted to use only by the OS
- Known as protected (privileged) instructions

Only the operating system can …
- Directly access I/O devices (disks, printers, etc.)

• Security, fairness (why?)

- Manipulate memory management state
• Page table pointers, page protection, TLB management, etc.

- Manipulate protected control registers 
• Kernel mode, interrupt level

- Halt instruction (why?)
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Beyond Dual-Mode Operations
(Modern) CPU may provide more than 2 privilege levels
- Called hierarchical protection domains or protection rings
- x86 supports four levels: 

• bottom 2 bits (CPL) of the CS register indicate execution privilege
• ring 0 (CPL=00) is kernel mode, ring 3 (CPL=11) is user mode

- Multics provides 8 levels of privilege
- ARMv7 CPUs in modern smartphones have 8 different protection levels

Why?
- Protect the OS from itself (software engineering)
- reserved for vendor, e.g., virtualization
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Memory Protection
Why?
- OS must be able to protect programs from each other
- OS must protect itself from user programs

May or may not protect user programs from OS
- Raises question of whether programs should trust the OS
- Untrusted operating systems? (Intel SGX)

Memory management hardware (MMU) provides the mechanisms
- Base and limit registers
- Page table pointers, page protection, segmentation, TLB
- Manipulating the hardware uses protected (privileged) operations
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Simple Memory Protection
Memory access bounds check
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Simple Memory Protection
Memory access bounds check
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Idea: Virtual Address
Programs refer to memory by virtual addresses
- start from 0
- illusion of “owning” the entire memory address space

The virtual address is translated to physical address
- upon each memory access
- done in hardware (MMU) using a table
- table setup by the OS
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Types of Arch Support
I. Manipulating privileged machine state
- Protected instructions
- Manipulate device registers, TLB entries, etc.

II. Generating and handling “events”
- Interrupts, exceptions, system calls, etc.
- Respond to external events
- CPU requires software intervention to handle fault or trap
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Events
An event is an “unnatural” change in control flow
- Events immediately stop current execution
- Changes mode, context (machine state), or both

The kernel defines a handler for each event type
- The specific types of events are defined by the architecture

• e.g., timer event, I/O interrupt, system call trap 

- In effect, the operating system is one big event handler
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OS Control Flow
After OS booting, all entry to kernel is a result of some event
- event immediately stops current execution
- changes mode to kernel mode
- invoke a piece of code to handle event (event handler)

When the processor receives an event of a given type, it
- transfers control to handler within the OS
- handler saves program state (PC, regs, etc.)
- handler executes core OS functionality, e.g., writing data to disk
- handler restores program state, returns to program 
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Illustration of OS Control Flow
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Event: Interrupt vs. Exceptions
Two kinds of events, interrupts and exceptions

Interrupts are caused by an external event (asynchronous)
- Device finishes I/O, timer expires, etc.

Exceptions are caused by executing instructions (synchronous)
- x86 int instruction, page fault, divide by zero, etc.
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Interrupts
Interrupts signal asynchronous events
- Indicates some device needs services
- I/O hardware interrupts
- Software and hardware timers

Why?
- A computer is more than CPU

• keyboard, disk, printer, camera, etc.

- These devices occasionally need attention, but cannot predict when!
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One Solution: Polling
CPU periodically checks if each device needs service

⎻ takes CPU time when there are no events pending
⎻ reduce checking frequency à longer response time
+ can be efficient if events arrive rapidly
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“ Polling is like picking up your phone every 
few seconds to see if you have a call…”

Problems?



Idea: Give Each Device a Wire (Interrupt Line)

I/O devices wired with Interrupt Request Lines (IRQs)
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Improvement: Interrupt Controller

I/O devices have (unique or shared) Interrupt Request Lines (IRQs)

IRQs are mapped by special hardware to interrupt vectors, and passed to the CPU

This hardware is called a Programmable Interrupt Controller (PIC)
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The “Interrupt Controller”
PIC: Programmable Interrupt Controller (8259A)
- Responsible for telling the CPU when and which device wishes to ‘interrupt’
- Has 16 wires to devices (IRQ0 – IRQ15)

PIC translates IRQs to CPU interrupt vector number
- Vector number is signaled over INTR line
- In Pintos: IRQ0...15 delivered to vector 32...47 (src/threads/interrupt.c)

Interrupts can have varying priorities
- PIC also needs to prioritize multiple requests

Possible to “mask” (disable) interrupts at PIC or CPU
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Software Interface: Interrupt Vector Table

A data structure to associate interrupt requests with handlers
- each entry is called an interrupt vector (specifies the address of the handler)
- architecture-specific implementation
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Software Interface: Interrupt Vector Table

A data structure to associate interrupt requests with handlers
- each entry is called an interrupt vector (specifies the address of the handler)
- architecture-specific implementation

In x86 called Interrupt Descriptor Table (IDT)
- supports 256 interrupts, so the IDT contains 256 entries
- each entry specifies the address of the handler plus some flags
- programmed by the OS

• In Pintos:  make_intr_gate (src/threads/interrupt.c)
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Interrupt Usage Scenario : Timer
Timer is critical for an operating system

It is the fallback mechanism for OS to reclaim control over the machine
- Timer is set to generate an interrupt after a period of time
- Setting timer is a privileged instruction
- When timer expires, generates an interrupt
- Handled by kernel, which controls resumption context

• Basis for OS scheduler (more later…)

Prevents infinite loops
- OS can always regain control from erroneous or malicious programs that try to hog 

CPU

Also used for time-based functions (e.g., sleep())
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Timer in Pintos
Needed in Pintos Lab1’s Alarm Clock exercise
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/* Sets up the timer to interrupt TIMER_FREQ times per second,
and registers the corresponding interrupt. */

void
timer_init (void)
{
pit_configure_channel (0, 2, TIMER_FREQ);
intr_register_ext (0x20, timer_interrupt, "8254 Timer");

}

/* Timer interrupt handler. */
static void timer_interrupt (struct intr_frame *args UNUSED)
{
ticks++;
thread_tick ();

}

/* Called by the timer interrupt 
handler at each timer tick. */
void thread_tick (void)
{
struct thread *t = thread_current ();
/* Update statistics. */
if (t == idle_thread)
idle_ticks++;

else
kernel_ticks++;

/* Enforce preemption. */
if (++thread_ticks >= TIME_SLICE)
intr_yield_on_return ();

}

https://www.cs.jhu.edu/~huang/cs318/fall20/project/project1.html


Interrupt Usage Scenario 2: I/O Control
I/O issues
- Initiating an I/O
- Completing an I/O

Interrupts are the basis for asynchronous I/O
- OS initiates I/O
- Device operates independently of rest of machine
- Device sends an interrupt signal to CPU when done
- OS maintains an interrupt vector table (IVT)
- CPU looks up IVT by interrupt number, context switches to routine
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Event: Interrupt vs. Exceptions
Two kinds of events, interrupts and exceptions

Interrupts are caused by an external event (asynchronous)
- Device finishes I/O, timer expires, etc.

Exceptions are caused by executing instructions (synchronous)
- x86 int instruction, page fault, divide by zero, etc.
- a deliberate exception is a “trap”, unexpected exception is a “fault”
- CPU requires software intervention to handle a fault or trap

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 34



Deliberate Exception: Trap
A trap is an intentional software-generated exception
- the main mechanism for programs to interact with the OS
- On x86, programs use the int instruction to cause a trap
- On ARM, SVC instruction

Handler for trap is defined in interrupt vector table
- Kernel chooses one vector for representing system call trap
- e.g., int $0x80 is used to in Linux to make system calls
- Pintos uses int $0x30 for system call trap
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System Call Trap
For a user program to “call” OS service 
- Known as crossing the protection boundary, or protected control transfer

The system call instruction
- Causes an exception, which vectors to a kernel handler
- Passes a parameter determining the system routine to call

- Saves caller state (PC, regs, mode) so it can be restored
- Returning from system call restores this state

Requires architectural support to:
- Restore saved state, reset mode, resume execution
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movl $20, %eax # Get PID of current process 
int $0x80 # Invoke system call! 
# Now %eax holds the PID of the current process



System Call
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System Call Questions
What would happen if the kernel did not save state?

What if the kernel executes a system call? 

How to reference kernel objects as arguments or results to/from 
syscalls?
- A naming issue
- Use integer object handles or descriptors

• E.g., Unix file descriptors, Windows HANDLEs
• Only meaningful as parameters to other system calls

- Also called capabilities (more later when we cover protection)
- Why not use kernel addresses to name kernel objects?
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Unexpected Exception: Faults
Hardware detects and reports “exceptional” conditions
- Page fault, unaligned access, divide by zero

Upon exception, hardware “faults” (verb)
- Must save state (PC, regs, mode, etc.) so that the faulting process can be restarted

Faults are not necessarily “bad”
- Modern OSes use virtual memory faults for many functions

• debugging, end-of-stack, garbage collection, copy-on-write

Fault exceptions are essentially a performance optimization
- Could detect faults by inserting extra instructions into code (at a significant 

performance penalty)
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Handling Faults
Some faults are handled by “fixing”…
- “Fix” the exceptional condition and return to the faulting context
- Page faults cause the OS to place the missing page into memory
- Fault handler resets pc to re-execute instruction that caused the page fault

Some faults are handled by notifying the process
- Fault handler changes the saved context to transfer control to a user-mode 

handler
- Handler must be registered with OS
- Unix signals or Win user-mode Async Procedure Calls (APCs)

• SIGALRM, SIGHUP, SIGTERM, SIGSEGV, etc.
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Handling Faults (2)
Kernel may handle unrecoverable faults by killing the process
- Program fault with no registered handler
- Halt process, write process state to file, destroy process
- In Unix, the default action for many signals (e.g., SIGSEGV)

What about faults in the kernel?
- Dereference NULL, divide by zero, undefined instruction
- These faults considered fatal, operating system crashes
- Unix panic, Windows “Blue screen of death”

• Kernel is halted, state dumped to a core file, machine locked up
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Types of Arch Support
I. Manipulating privileged machine state
- Protected instructions
- Manipulate device registers, TLB entries, etc.

II. Generating and handling “events”
- Interrupts, exceptions, system calls, etc.
- Respond to external events
- CPU requires software intervention to handle fault or trap

III. Mechanisms to support synchronization
- Interrupt disabling/enabling, atomic instructions
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Synchronization

Interrupts cause difficult problems
- An interrupt can occur at any time
- A handler can execute that interferes with code that was interrupted 

OS must be able to synchronize concurrent execution

Need to guarantee that short instruction sequences execute atomically
- Disable interrupts – turn off interrupts before sequence, execute sequence, turn 

interrupts back on
- Special atomic instructions – read/modify/write a memory address, test and 

conditionally set a bit based upon previous value
• xchg instruction on x86
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Summary
Protection
- User/kernel modes
- Protected instructions

Interrupts
- Timer, I/O

System calls
- Used by user-level processes to access OS functions
- Access what is “in” the OS

Exceptions
- Unexpected event during execution (e.g., divide by zero)
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Next Time…
Read Chapters 4-6 (Processes)

Lab 0
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