
CS 318 Principles of Operating Systems
Fall 2022

Prof. Ryan Huang

Lecture 2: Architecture Support for OS

Administrivia

Lab 0
- Done individually, due next Thursday (09/08) noon
- Overview session today 7-9 pm Hodson 213

Project groups
- Talk with neighbors in class, search on Campuswire

Lecture questions
- Please feel free to interrupt and ask questions anytime during the lecture

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 2

Why Start With Hardware?

OS functionality fundamentally depends upon the architectural features
- Key goals of an OS are to enforce protection and resource sharing
- If done well, applications can be oblivious to HW details

Architectural support can greatly simplify or complicate OS tasks
- Early DOS, MacOS lacked virtual memory in part because the h/w did not support it
- Early Sun 1 computers used two M68000 CPUs to implement virtual memory

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 3

vim Chrome iTunesGCC

OS

Hardware

Architectural Features for OS
Features that directly support the OS include
- Bootstrapping (Lab 0)
- Protection (kernel/user mode)
- Protected instructions
- Memory protection
- System calls
- Interrupts and exceptions
- Timer
- I/O control and operation
- Synchronization

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 4

Types of Arch Support

I. Manipulating privileged machine state
- Protected instructions
- Manipulate device registers, TLB entries, etc.

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 5

vim Chrome iTunesGCC

OS

Hardware

What Is Inside A Computer?

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 6

Source: Intel® Desktop Board
DH87MC Technical Product
Specification

A Motherboard
(Intel DH87MC)

Thought Experiment: A World of Anarchy
Any program in the system can…
- Directly access I/O devices
- Write anywhere in memory
- Read content from any memory address
- Execute machine halt instruction

Do you trust such system?
- use Facebook app in this system
- use Banking app in this system

Challenge: protection
- How to execute a program with restricted privilege?

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 7

A Solution
How can we implement execution with limited privilege?
- Execute each program instruction through a simulator (OS)
- If the instruction is permitted, do the instruction
- Otherwise, stop the process
- Basic model in Javascript and other interpreted languages

How do we go faster?
- Observation: most instructions are perfectly safe!
- Run the unprivileged code directly on the CPU
- Do the check in h/w

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 8

H/W Support: Dual-Mode Operation in CPU
User mode
- Limited privileges
- Only those granted by the operating system kernel

Kernel mode
- Execution with the full privileges of the hardware
- Read/write to any memory, access I/O device, read/write disk sector, send/read

packet

On the x86, the Current Privilege Level (CPL) in the CS register

On the MIPS, the status register

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 9

A Simple Model of a CPU

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 10

New PC Program
Counter

CPU
Instructions
Fetch and
Execute

opcode

Select PC

Branch Address
load
add
sub
cmp
jne 36
store
mov
jmp 44
call
…

instruction
stream

4
8
12
16
20
24
28
32
36
…

program
counter

Decode
instruction

Execute

Fetch next
instruction

A CPU with Dual-Mode Operation

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 11

New PC
Handler PC

Program
Counter

CPU
Instructions
Fetch and
Execute

opcode

Select PC

New Mode
Mode

Select
Mode

Branch Address

Check if an instruction can
be executed

Change mode upon certain
instructions (e.g., trap)

Protected Instructions
A subset of instructions restricted to use only by the OS
- Known as protected (privileged) instructions

Only the operating system can …
- Directly access I/O devices (disks, printers, etc.)

• Security, fairness (why?)

- Manipulate memory management state
• Page table pointers, page protection, TLB management, etc.

- Manipulate protected control registers
• Kernel mode, interrupt level

- Halt instruction (why?)

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 12

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 13

Beyond Dual-Mode Operations
(Modern) CPU may provide more than 2 privilege levels
- Called hierarchical protection domains or protection rings
- x86 supports four levels:

• bottom 2 bits (CPL) of the CS register indicate execution privilege
• ring 0 (CPL=00) is kernel mode, ring 3 (CPL=11) is user mode

- Multics provides 8 levels of privilege
- ARMv7 CPUs in modern smartphones have 8 different protection levels

Why?
- Protect the OS from itself (software engineering)
- reserved for vendor, e.g., virtualization

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 14

Memory Protection
Why?
- OS must be able to protect programs from each other
- OS must protect itself from user programs

May or may not protect user programs from OS
- Raises question of whether programs should trust the OS
- Untrusted operating systems? (Intel SGX)

Memory management hardware (MMU) provides the mechanisms
- Base and limit registers
- Page table pointers, page protection, segmentation, TLB
- Manipulating the hardware uses protected (privileged) operations

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 15

Simple Memory Protection
Memory access bounds check

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 16

Bound

Physical
Memory

Base

Base+
Bound

Raise
Exception

Physical
Address

Processor

Base

Simple Memory Protection
Memory access bounds check

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 17

Problems?
- Inflexible

• fixed allocation, difficult to expand
heap and stack

- Inconvenient
• require changes to mem

instructions each time the program
is loaded

- Fragmentation
• Many “holes” of memory that are

free but cannot be used
Bound

Physical
Memory

Base

Base+
Bound

Raise
Exception

Physical
Address

Processor

Base

Idea: Virtual Address
Programs refer to memory by virtual addresses
- start from 0
- illusion of “owning” the entire memory address space

The virtual address is translated to physical address
- upon each memory access
- done in hardware (MMU) using a table
- table setup by the OS

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 18

Types of Arch Support
I. Manipulating privileged machine state
- Protected instructions
- Manipulate device registers, TLB entries, etc.

II. Generating and handling “events”
- Interrupts, exceptions, system calls, etc.
- Respond to external events
- CPU requires software intervention to handle fault or trap

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 19

Events
An event is an “unnatural” change in control flow
- Events immediately stop current execution
- Changes mode, context (machine state), or both

The kernel defines a handler for each event type
- The specific types of events are defined by the architecture

• e.g., timer event, I/O interrupt, system call trap

- In effect, the operating system is one big event handler

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 20

OS Control Flow
After OS booting, all entry to kernel is a result of some event
- event immediately stops current execution
- changes mode to kernel mode
- invoke a piece of code to handle event (event handler)

When the processor receives an event of a given type, it
- transfers control to handler within the OS
- handler saves program state (PC, regs, etc.)
- handler executes core OS functionality, e.g., writing data to disk
- handler restores program state, returns to program

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 21

Illustration of OS Control Flow

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 22

User Process

Save caller state

Kernel
boundar
y

User Mode
Mode bit = 1

Kernel Mode
Mode bit = 0

Trap
Mode bit = 0

Handler Restore caller state

Resume Process

Return
Mode bit = 1

Event: Interrupt vs. Exceptions
Two kinds of events, interrupts and exceptions

Interrupts are caused by an external event (asynchronous)
- Device finishes I/O, timer expires, etc.

Exceptions are caused by executing instructions (synchronous)
- x86 int instruction, page fault, divide by zero, etc.

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 23

Interrupts
Interrupts signal asynchronous events
- Indicates some device needs services
- I/O hardware interrupts
- Software and hardware timers

Why?
- A computer is more than CPU

• keyboard, disk, printer, camera, etc.

- These devices occasionally need attention, but cannot predict when!

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 24

One Solution: Polling
CPU periodically checks if each device needs service

⎻ takes CPU time when there are no events pending
⎻ reduce checking frequency à longer response time
+ can be efficient if events arrive rapidly

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 25

“ Polling is like picking up your phone every
few seconds to see if you have a call…”

Problems?

Idea: Give Each Device a Wire (Interrupt Line)

I/O devices wired with Interrupt Request Lines (IRQs)

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 26

x86
CPU

Keyboard Controller

Real-Time Clock

SCSI Disk

Ethernet

IRQs

Sound Card

…

• CPU might get interrupted non-stop
• Some device may overwhelm CPU
• Critical interrupts delayed
• Interrupts handling inflexible (“hard-coded”)

Problems?

“ Interrupts are like waiting for the phone to ring.”

Improvement: Interrupt Controller

I/O devices have (unique or shared) Interrupt Request Lines (IRQs)

IRQs are mapped by special hardware to interrupt vectors, and passed to the CPU

This hardware is called a Programmable Interrupt Controller (PIC)
9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 27

x86
CPU

Master
PIC

(8259)

Slave
PIC

(8259) INTR

Programmable Interval-TimerKeyboard Controller

Real-Time Clock

Legacy PC Design
(for single-proc

systems)

SCSI Disk

Ethernet

IRQs

slide source: Erich Nahum

The “Interrupt Controller”
PIC: Programmable Interrupt Controller (8259A)
- Responsible for telling the CPU when and which device wishes to ‘interrupt’
- Has 16 wires to devices (IRQ0 – IRQ15)

PIC translates IRQs to CPU interrupt vector number
- Vector number is signaled over INTR line
- In Pintos: IRQ0...15 delivered to vector 32...47 (src/threads/interrupt.c)

Interrupts can have varying priorities
- PIC also needs to prioritize multiple requests

Possible to “mask” (disable) interrupts at PIC or CPU

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 28
slide source: Erich Nahum

https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html

Software Interface: Interrupt Vector Table

A data structure to associate interrupt requests with handlers
- each entry is called an interrupt vector (specifies the address of the handler)
- architecture-specific implementation

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 29

Interrupt
Vector

Processor
Register

h a n d l e T i m e r I n t e r r u p t () {
 . . .
}

h a n d l e D i v i d e B y Z e r o () {
 . . .
}

h a n d l e S y s t e m C a l l () {
 . . .
}

Software Interface: Interrupt Vector Table

A data structure to associate interrupt requests with handlers
- each entry is called an interrupt vector (specifies the address of the handler)
- architecture-specific implementation

In x86 called Interrupt Descriptor Table (IDT)
- supports 256 interrupts, so the IDT contains 256 entries
- each entry specifies the address of the handler plus some flags
- programmed by the OS

• In Pintos: make_intr_gate (src/threads/interrupt.c)

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 30

https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html

Interrupt Usage Scenario : Timer
Timer is critical for an operating system

It is the fallback mechanism for OS to reclaim control over the machine
- Timer is set to generate an interrupt after a period of time
- Setting timer is a privileged instruction
- When timer expires, generates an interrupt
- Handled by kernel, which controls resumption context

• Basis for OS scheduler (more later…)

Prevents infinite loops
- OS can always regain control from erroneous or malicious programs that try to hog

CPU

Also used for time-based functions (e.g., sleep())

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 31

Timer in Pintos
Needed in Pintos Lab1’s Alarm Clock exercise

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 32

/* Sets up the timer to interrupt TIMER_FREQ times per second,
and registers the corresponding interrupt. */

void
timer_init (void)
{
pit_configure_channel (0, 2, TIMER_FREQ);
intr_register_ext (0x20, timer_interrupt, "8254 Timer");

}

/* Timer interrupt handler. */
static void timer_interrupt (struct intr_frame *args UNUSED)
{
ticks++;
thread_tick ();

}

/* Called by the timer interrupt
handler at each timer tick. */
void thread_tick (void)
{
struct thread *t = thread_current ();
/* Update statistics. */
if (t == idle_thread)
idle_ticks++;

else
kernel_ticks++;

/* Enforce preemption. */
if (++thread_ticks >= TIME_SLICE)
intr_yield_on_return ();

}

https://www.cs.jhu.edu/~huang/cs318/fall20/project/project1.html

Interrupt Usage Scenario 2: I/O Control
I/O issues
- Initiating an I/O
- Completing an I/O

Interrupts are the basis for asynchronous I/O
- OS initiates I/O
- Device operates independently of rest of machine
- Device sends an interrupt signal to CPU when done
- OS maintains an interrupt vector table (IVT)
- CPU looks up IVT by interrupt number, context switches to routine

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 33

Event: Interrupt vs. Exceptions
Two kinds of events, interrupts and exceptions

Interrupts are caused by an external event (asynchronous)
- Device finishes I/O, timer expires, etc.

Exceptions are caused by executing instructions (synchronous)
- x86 int instruction, page fault, divide by zero, etc.
- a deliberate exception is a “trap”, unexpected exception is a “fault”
- CPU requires software intervention to handle a fault or trap

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 34

Deliberate Exception: Trap
A trap is an intentional software-generated exception
- the main mechanism for programs to interact with the OS
- On x86, programs use the int instruction to cause a trap
- On ARM, SVC instruction

Handler for trap is defined in interrupt vector table
- Kernel chooses one vector for representing system call trap
- e.g., int $0x80 is used to in Linux to make system calls
- Pintos uses int $0x30 for system call trap

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 35

System Call Trap
For a user program to “call” OS service
- Known as crossing the protection boundary, or protected control transfer

The system call instruction
- Causes an exception, which vectors to a kernel handler
- Passes a parameter determining the system routine to call

- Saves caller state (PC, regs, mode) so it can be restored
- Returning from system call restores this state

Requires architectural support to:
- Restore saved state, reset mode, resume execution

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 36

movl $20, %eax # Get PID of current process
int $0x80 # Invoke system call!
Now %eax holds the PID of the current process

System Call

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 37

Kernel mode

Firefox: read()

User mode

read() kernel routine

Trap to
kernel mode,

save state

Trap handler

Find read
handler in

vector table

Restore state,
return to user
level, resume

execution

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 38

System Call Questions
What would happen if the kernel did not save state?

What if the kernel executes a system call?

How to reference kernel objects as arguments or results to/from
syscalls?
- A naming issue
- Use integer object handles or descriptors

• E.g., Unix file descriptors, Windows HANDLEs
• Only meaningful as parameters to other system calls

- Also called capabilities (more later when we cover protection)
- Why not use kernel addresses to name kernel objects?

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 39

Unexpected Exception: Faults
Hardware detects and reports “exceptional” conditions
- Page fault, unaligned access, divide by zero

Upon exception, hardware “faults” (verb)
- Must save state (PC, regs, mode, etc.) so that the faulting process can be restarted

Faults are not necessarily “bad”
- Modern OSes use virtual memory faults for many functions

• debugging, end-of-stack, garbage collection, copy-on-write

Fault exceptions are essentially a performance optimization
- Could detect faults by inserting extra instructions into code (at a significant

performance penalty)

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 40

Handling Faults
Some faults are handled by “fixing”…
- “Fix” the exceptional condition and return to the faulting context
- Page faults cause the OS to place the missing page into memory
- Fault handler resets pc to re-execute instruction that caused the page fault

Some faults are handled by notifying the process
- Fault handler changes the saved context to transfer control to a user-mode

handler
- Handler must be registered with OS
- Unix signals or Win user-mode Async Procedure Calls (APCs)

• SIGALRM, SIGHUP, SIGTERM, SIGSEGV, etc.

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 41

Handling Faults (2)
Kernel may handle unrecoverable faults by killing the process
- Program fault with no registered handler
- Halt process, write process state to file, destroy process
- In Unix, the default action for many signals (e.g., SIGSEGV)

What about faults in the kernel?
- Dereference NULL, divide by zero, undefined instruction
- These faults considered fatal, operating system crashes
- Unix panic, Windows “Blue screen of death”

• Kernel is halted, state dumped to a core file, machine locked up

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 42

Types of Arch Support
I. Manipulating privileged machine state
- Protected instructions
- Manipulate device registers, TLB entries, etc.

II. Generating and handling “events”
- Interrupts, exceptions, system calls, etc.
- Respond to external events
- CPU requires software intervention to handle fault or trap

III. Mechanisms to support synchronization
- Interrupt disabling/enabling, atomic instructions

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 43

Synchronization

Interrupts cause difficult problems
- An interrupt can occur at any time
- A handler can execute that interferes with code that was interrupted

OS must be able to synchronize concurrent execution

Need to guarantee that short instruction sequences execute atomically
- Disable interrupts – turn off interrupts before sequence, execute sequence, turn

interrupts back on
- Special atomic instructions – read/modify/write a memory address, test and

conditionally set a bit based upon previous value
• xchg instruction on x86

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 44

Summary
Protection
- User/kernel modes
- Protected instructions

Interrupts
- Timer, I/O

System calls
- Used by user-level processes to access OS functions
- Access what is “in” the OS

Exceptions
- Unexpected event during execution (e.g., divide by zero)

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 45

Unexpected Deliberate
Exceptions (sync) fault syscall trap
Interrupts (async) interrupt software interrupt

Next Time…
Read Chapters 4-6 (Processes)

Lab 0

9/1/22 CS 318 – Lecture 2 – Architecture Support for OS 46

