CS 318 Principles of Operating Systems

Fall 2022

Lecture 14: 1/0 & Disks

Prof. Ryan Huang
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Overview

We've covered OS abstractions for CPU and memory so far

/Virtualization \ /Concu rrency \ 4 Persistence N

Processes Threads /0O

Scheduling Synchronization Disks

Virtual Memory Semaphores and Monitors File Systems
\ / " AN /

I/O management is another major component of OS

- Important aspect of computer operation
- I/O devices vary greatly: various methods to control them
- New types of devices

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

/O Devices

& .
@ (.“ !1.k e |
" = V-NANDSSD T
L)
<4 r 970
- ~ | 00
" 00

NVMeM2
CTRONICS C0, LTD.

Issues to address:

- How should I/O be integrated into systems?
- What are the general mechanisms?
- How can we manage them efficiently?

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

Structure of Input/Output (I/O) Device

Memory Bus
(proprietary)

> General 1/0O Bus
Graphios 9P

» Peripheral I/0O Bus
(e.g., SCSI, SATA, USB)

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

Structure of Input/Output (I/O) Device

IPPPS

monitor processor
cache
ggﬁgg:fesr brii%i/trrgclalrenrory memory SCSI controller
| PCI bus)
IDE disk controller expansion bus keyboard
interface

@ @ { expansion bus)
@ @ parallel serial
port port

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

Device Interaction

How does the OS communicate with an I/O device?

11/1/22

OS reads/writes to these

Canonical I/0 Device

CS 318 — Lecture 14 — 1/0O & Disks

interface

internals

Hardware Interface Of Canonical Device

status register

- See the current status of the device

command register

- Tell the device to perform a certain task

data register

- Pass data to the device, or get data from the device

By reading or writing the three registers, OS controls device
behavior

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

Hardware Interface Of Canonical Device

Typical interaction example

while (STATUS == BUSY)
; //wait until device is not busy
write data to data register
write command to command register
Doing so starts the device and executes the command

while (STATUS == BUSY)

; //wait until device is done with your request

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

Programming a device

One approach: I/O instructions

- in and out instructions on x86

- Devices usually have registers
« places commands, addresses, and data there to read/write registers

- How to identify (address) a device?
« With a port location (I/O address range)

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

10

11/1/22

Typical Device I/0O Port

Locations

|/O address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

CS 318 — Lecture 14 — I/0O & Disks

11

11/1/22

x86 1/0 instructions

static inline uint8 t inb (uintl6é t port)

{
uint8 t data;
asm volatile ("inb %wl, %b0" : "=a" (data) : "Nd" (port));
return data;

static inline void outb (uintl6é t port, uint8 t data)

{
asm volatile ("outb %b0, %swl" : : "a" (data), "Nd" (port));

static inline void insw (uintl6é t port, void *addr, size t cnt)
{
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
: "d" (port) : "memory");

Pintos threads/io.h

CS 318 — Lecture 14 — I/0O & Disks

12

IDE Disk Driver

void IDE_ReadSector(int disk, int off, void IDEWait ()
void *buf) {
{ // Discard status 4 times
// Select Drive inb(0x1F7); inb(0x1F7);
outb(0x1F6, disk == 0 ? OxEO : OxFO); inb(0x1F7); inb(0x1lF7);
IDEWait(); // Wait for status BUSY flag to clear
// Read length (1 sector = 512 B) while ((inb(0x1F7) & 0x80) != 0);
outb(0x1F2, 1); }

outb(0x1F3, off); // LBA low

outb(0x1F4, off >> 8); // LBA mid
outb(0x1F5, off >> 16); // LBA high
outb(0x1F7, 0x20); // Read command
insw(0x1F0, buf, 256); // Read 256 words

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

Memory-mapped IO

in/out instructions slow and clunky

- Instruction format restricts what registers you can use
- Only allows 2 different port numbers

Another approach: Memory-mapped I/O

- Device registers available as if they were memory locations. 1oad (to read) or
store (to write) goes to the device instead of main memory.

volatile int32 t *device control

= (int32 t *) (0xc0100 + PHYS BASE);
*device control = 0x80;
int32 t status = *device control;

- OS must map physical to virtual addresses, ensure non-cachable

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

14

Polling

OS waits until the device is ready by repeatedly reading the status
register
- Positive aspect is simple and working.

- However, it wastes CPU time just waiting for the device
 Switching to another ready process is better utilizing the CPU.

< watting 10 > T | :task 1 | P | : polling

CPU T T {1111 |plPplPlPlP| 1|11]1]1

Disk 111111111

Diagram of CPU utilization by polling

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

Interrupts

Put the I/O request process to sleep and context switch to another

When the device is finished, wake the process by interrupt
- CPU and the disk are properly utilized

1 | :task 1 2 | :task 2

CPU 1111112222211 |1]1]1

Disk 11111111

Diagram of CPU utilization by interrupt

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

Polling vs Interrupts

However, "interrupts is not always the best solution”

- If, device performs very quickly, interrupt will “slow down"” the system.

If a device is fast = poll is best
If it is slow = interrupt is better

E.g., high network packet arrival rate

- Packets can arrive faster than OS can process them

- Interrupts are very expensive (context switch)

- Interrupt handlers have high priority

- In worst case, can spend 100% of time in interrupt handler and never make any progress

Adaptive switching between interrupts and polling

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

17

One More Problem: Data Copying

CPU wastes a lot of time in copying large data from memory to a
device register one byte a time (termed programmed I/0O, PIO)

“over-burdened” 1 | :task 1 2 | :task 2

C | : copy data from memory

CPU 1111]1|C|C|C|2|2|2|2|2|1]|1]1

Disk 111111111

Diagram of CPU utilization

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

DMA (Direct Memory Access)

y 4 Memory buffers

100 V—

4

1400 —mm

4

1500 —

4

1500 ——

Buffer descriptor list ="

Idea: only use CPU to transfer control requests, not data

Include list of buffer locations in main memory

- Device reads list and accesses buffers through DMA

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

19

DMA (Direct Memory Access) Cont.

When completed, DMA raises an interrupt, I/O begins on Disk.

1 | :task 1 2 | :task 2

C | : copy data from memory

CPU 1111122222222 |1]1]1

DMA C|C|C

Disk 11111 (1]1

Diagram of CPU utilization by DMA

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

Direct Memory Access

Avoid programmed I/O for large data movement

Requires DMA controller

Bypasses CPU to transfer data directly between I/O device and memory

OS writes DMA command block into memory

- Source and destination addresses
- Read or write mode
- Count of bytes

- Writes location of command block to DMA controller

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

21

Device Protocol Variants

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Canonical I/0 Device

Status checks: polling vs. interrupts
Command: special instructions vs. memory-mapped I/0O

Data: programmed I/O (P1O) vs. direct memory access (DMA)

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

11/1/22

Hard Disks

CS 318 — Lecture 14 — I/0O & Disks

25

11/1/22

Hard Disks

CS 318 — Lecture 14 — I/0O & Disks

26

11/1/22

Hard Disks

CS 318 — Lecture 14 — I/0O & Disks

27

Basic Interface

Disk interface presents linear array of sectors

- Historically 512 Bytes
- Written atomically (even if there is a power failure)
- 4 KiB in “advanced format” disks

 Torn write: If an untimely power loss occurs, only a portion of a larger write may complete

Disk maps logical sector #s to physical sectors

OS doesn’t know logical to physical sector mapping

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

28

Basic Geometry

Platter (Aluminum coated with a thin magnetic layer)

- A circular hard surface
- Data is stored persistently by inducing magnetic changes to it
- Each platter has 2 sides, each of which is called a surface

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

29

Basic Geometry (Cont.)

Spindle
- Spindle is connected to a motor that spins the platters around
- The rate of rotations is measured in (Rotations Per Minute)

 Typical modern values : 7,200 RPM to 15,000 RPM.

Track

- Concentric circles of sectors
- Data is encoded on each surface in a track
- A single surface contains many thousands and thousands of tracks

Cylinder

- A stack of tracks of fixed radius
- Heads record and sense data along cylinders
- Generally only one head active at a time

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

30

11/1/22

Cylinders, Tracks, & Sectors

track t <«— spindle
F >
A <S>
| L= «<— arm assembly
sector s | |
I
I 7 g
I
| |
I I
I I .
cylinder ¢ —» | read-write
| | head
I
C I
platter
D

rotation
CS 318 — Lecture 14 — I/0O & Disks 31

A Simple Disk Drive

R:tates this way

A Single Track Plus A Head

Disk head (one head per surface of the drive)

- The process of reading and writing is accomplished by the disk head
- Attached to a single disk arm, which moves across the surface

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

32

11/1/22

Single-track Latency

R:tates this way

A Single Track Plus A Head

Time for the desired sector to rotate

- Ex) Full rotational delay is R and we start at sector 6

: R
* Read sector O: Rotational delay = >

* Read sector 5: Rotational delay = R-1 (worst case.)

CS 318 — Lecture 14 — I/0O & Disks

33

Let's Read 12!

11/1/22

Multiple Tracks

CS 318 — Lecture 14 — 1/0O & Disks

34

Multiple Tracks: Seek To Right Track

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

35

Multiple Tracks: Seek To Right Track

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

36

Multiple Tracks: Seek To Right Track

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

37

Multiple Tracks: Wait for Rotation

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

38

Multiple Tracks: Wait for Rotation

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

39

Multiple Tracks: Wait for Rotation

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

40

Multiple Tracks: Wait for Rotation

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

41

Multiple Tracks: Wait for Rotation

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

42

Multiple Tracks: Wait for Rotation

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

43

Multiple Tracks: Transfer Data

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

44

Multiple Tracks: Transfer Data

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

45

Multiple Tracks: Transfer Data

Let's Read 12!

11/1/22 CS 318 — Lecture 14 — 1/0O & Disks

46

11/1/22

Yay!

CS 318 — Lecture 14 — 1/0O & Disks

47

Multiple Tracks: Seek Time

Rc(;tates this way thates this way

Seek: Move the disk arm to the correct track

- Seek time: Time to move head to the track contain the desired sector.
- One of the most costly disk operations.

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

48

Seek, Rotate, Transfer

Acceleration > Coasting > Deceleration - Settling

- Acceleration: The disk arm gets moving.

- Coasting: The arm is moving at full speed.

- Deceleration: The arm slows down.

- Settling: The head is carefully positioned over the correct track.

Seeks often take several milliseconds!

- settling alone can take 0.5 to 2m:s.
- entire seek often takes 4 - 10 ms.

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

49

Seek, Rotate, Transfer

Depends on rotations per minute (RPM)
- 7200 RPM is common, 15000 RPM is high-end.

With 7200 RPM, how long to rotate around?

-1/7200 RPM = 1 minute / 7200 rotations = 1 second / 120 rotations = 8.3 ms
/ rotation

Average rotation?
-8.3ms/2=4.15ms

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

50

Seek, Rotate, Transfer

The final phase of I/0

- Data is either read from or written to the surface.

Pretty fast — depends on RPM and sector density
100+ MB/s is typical for maximum transfer rate

How long to transfer 512-bytes?
- 512 bytes * (1s / 100 MB) = 5 us

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

51

Workload

So...

- seeks are slow
- rotations are slow
- transfers are fast

What kind of workload is fastest for disks?

- Sequential: access sectors in order (transfer dominated)
- Random: access sectors arbitrarily (seek+rotation dominated)

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

52

Disk Scheduling

thates this way

Disk Scheduler decides which I/O request to schedule next

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

53

Disk Scheduling: FCFS

"First Come First Served”

- Process disk requests in the order they are received

Advantages

- Easy to implement
- Good fairness

Disadvantages

- Cannot exploit request locality
- Increases average latency, decreasing throughput

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

54

11/1/22

14
I

FCFS Example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124
| L1l | I

183199
L |

0
|
|

CS 318 — Lecture 14 — I/0O & Disks

55

SSTF (Shortest Seek Time First)

Order the queue of I/O request by track

Pick requests on the nearest track to complete first
- Also called shortest positioning time first (SPTF)

Advantages

- Exploits locality of disk requests
- Higher throughput

Disadvantages

- Starvation
- Dont always know what request will be fastest

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

56

11/1/22

14

SSTF Example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124
| |1l | 1

183199
|

— O

CS 318 — Lecture 14 — I/0O & Disks

57

“Elevator” Scheduling (SCAN)

Sweep across disk, servicing all requests passed

- Like SSTF, but next seek must be in same direction
- Switch directions only if no further requests

Advantages

- Takes advantage of locality
- Bounded waiting

Disadvantages

- Cylinders in the middle get better service
- Might miss locality SSTF could exploit

CSCAN: Only sweep in one direction

- Very commonly used algorithm in Unix

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

58

11/1/22

— O

CSCAN example

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

14 37 536567 98 122124
| |1l | I

183199
L

.

CS 318 — Lecture 14 — I/0O & Disks

59

Flash Memory

Today, people increasingly using flash memory

Completely solid state (no moving parts)

- Remembers data by storing charge
- Lower power consumption and heat
- No mechanical seek times to worry about

Limited # overwrites possible

- Blocks wear out after 10,000 (MLC) — 100,000 (SLC) erases

- Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to logical block
don't wear out physical block

- FTL can seriously impact performance

Limited durability

- Charge wears out over time
- Turn off device for a year, you can potentially lose datal!

11/1/22 CS 318 — Lecture 14 — I/0O & Disks

60

Read Chapter 39, 40

11/1/22

Next Time...

CS 318 — Lecture 14 — I/0O & Disks

61

