
CS 318/418/618, Fall 2022

Homework #3

Ryan Huang huang@cs.jhu.edu

1. Microsoft .NET provides a synchronization primitive called a CountdownEvent.
Programs use CountdownEvent to synchronize on the completion of many
threads (similar to CountDownLatch in Java). A CountdownEvent is
initialized with a count, and a CountdownEvent can be in two states,
nonsignalled and signalled. Threads use a CountdownEvent in the nonsignalled
state to Wait (block) until the internal count reaches zero. When the inter-
nal count of a CountdownEvent reaches zero, the CountdownEvent tran-
sitions to the signalled state and wakes up (unblocks) all waiting threads.
Once a CountdownEvent has transitioned from nonsignalled to signalled,
the CountdownEvent remains in the signalled state. In the nonsignalled
state, at any time a thread may call the Decrement operation to decrease
the count and Increment to increase the count. In the signalled state,
Wait, Decrement, and Increment have no effect and return immediately.

(a) Use pseudo-code to implement a thread-safe CountdownEvent using
locks and condition variables by implementing the following methods:

class CountdownEvent {

...private variables...

CountdownEvent (int count) { ... }

void Increment () { ... }

void Decrement () { ... }

void Wait () { ... }

}

Notes:

• The CountdownEvent constructor takes an integer count as input
and initializes the CountdownEvent counter with count. Positive
values of count cause the CountdownEvent to be constructed in
the nonsignalled state. Other values of count will construct it in
the signalled state.

1



• Increment increments the internal counter.

• Decrement decrements the internal counter. If the counter reaches
zero, the CountdownEvent transitions to the signalled state and
unblocks any waiting threads.

• Wait blocks the calling thread if the CountdownEvent is in the
nonsignalled state, and otherwise returns.

• Each of these methods is relatively short.

(b) Semaphores also increment and decrement. How do the semantics of
a CountdownEvent differ from a Semaphore?

2. A common pattern in parallel scientific programs is to have a set of threads
do a computation in a sequence of phases. In each phase i, all threads
must finish phase i before any thread starts computing phase i + 1. One
way to accomplish this is with barrier synchronization. At the end of each
phase, each thread executes Barrier::Done(n), where n is the number
of threads in the computation. A call to Barrier::Done blocks until all
of the n threads have called Barrier::Done. Then, all threads proceed.
You may assume that the process allocates a new Barrier for each iteration,
and that all threads of the program will call Done with the same value.

(a) Implement a Barrier using a CountdownEvent in the previous exer-
cise.

(b) Write a monitor that implements Barrier using Mesa semantics.

monitor Barrier {

...

}

(c) Implement Barrier using an explicit lock and condition variable.

class Barrier {

...private variables...

void Done (int n) {

...

}

...

}

3. Consider a problem in which there is a producer p and two consumers c1
and c2. The producer produces pairs of values < a, b >. The producer

2



does not have to wait in Put for a consumer, and the monitor will have to
accumulate the values in auxiliary data structures to ensure nothing gets
lost (you can assume the use of lists or arrays). Assume that Put can
accumulate at most k pairs of values. Consumer c1 consumes the a values
of these pairs and c2 consumes the b values of these pairs. A consumer
consumes only one value per call.

Hint: This problem is very similar to the producer/consumer
problem-it just so happens that objects are produced in pairs,
and each part of a pair is consumed individually.

Write a Mesa-style monitor for this problem. It should have three entry
methods: void Put(int a, b) that p would use to produce values, int
GetA(void) that c1 would use to consume a values, and int GetB(void)

that c2 would use to consume b values. For synchronization, you should
only use condition variables.

An example sequence of calls could be:

Put(10,20)

GetA() -> returns 10

Put(300,400)

GetA() -> returns 300

GetB() -> returns 20

GetA() blocks the caller

4. Demonstrate that monitors and semaphores are equivalent so they can be
used to implement the same types of synchronization problems.

5. [Anderson] You have been hired by a company to do climate modelling of
oceans. The inner loop of the program matches atoms of different types
as they form molecules. In an excessive reliance on threads, each atom is
represented by a thread.

(a) Your task is to write code to form water out of two hydrogen threads
and one oxygen thread (H2O). You are to write the two procedures:
HArrives() and OArrives(). A water molecule forms when two H

threads are present and one O thread; otherwise, the atoms must wait.
Once all three are present, one of the threads calls MakeWater(), and
only then, all three depart.

3



(b) The company wants to extend its work to handle cloud modelling.
Your task is to write code to form ozone out of three oxygen threads.
Each of the threads calls OArrives(), and when three are present,
one calls MakeOzone(), and only then, all three depart.

(c) Extending the product line into beer production, your task is to write
code to form alcohol (C2H6O) out of two carbon atoms, six hydro-
gens, and one oxygen. You must use locks and Mesa-style condition
variables to implement your solutions. Obviously, an atom that ar-
rives after the molecule is made must wait for a different group of
atoms to be present. There should be no busy-waiting and you should
correctly handle spurious wakeups. There must also be no useless
waiting: atoms should not wait if there is a sufficient number of each
type.

6. [Silberschatz] Windows Vista provides a new lightweight synchronization
tool called a slim reader–writer (SRW) lock. Whereas most implemen-
tations of reader–writer locks favor either readers or writers, or perhaps
order waiting threads using a FIFO policy, slim reader–writer locks favor
neither readers nor writers and do not order waiting threads in a FIFO
queue. Explain the benefits of providing such a synchronization tool.

7. [Silberschatz] Consider the traffic deadlock depicted in the following figure.

a) Show that the four necessary conditions for deadlock indeed hold in this
example.

4



b) State a simple rule that will avoid deadlocks in this system

8. [Silberschatz] A single-lane bridge connects the two Vermont villages of
North Tunbridge and South Tunbridge. Farmers in the two villages use
this bridge to deliver their produce to the neighboring town. The bridge
can become deadlocked if a northbound and a southbound farmer get on
the bridge at the same time. (Vermont farmers are stubborn and are unable
to back up.) Using semaphores and/or mutex locks, design an algorithm
in pseudocode that prevents deadlock.

(a) Using exactly one semaphore, design an algorithm that prevents dead-
lock. Initially, do not be concerned about starvation (the situation
in which northbound farmers prevent southbound farmers from using
the bridge, or vice versa).

(b) Modify your solution so that it is starvation-free.

9. [Silberschatz] Consider the variation of the Dining Philosophers problem
(See Section 31.6 of the OSTEP textbook for a description of the prob-
lem), where all unused forks are placed in the center of the table and any
philosopher can eat with any two forks. Assume that requests for forks
are made one at a time. Describe a simple rule for determining whether
a particular request can be satisfied without causing deadlock given the
current allocation of forks to philosophers.

10. Annabelle, Bertrand, Chloe and Dag are working on their term papers
in CS 318, which is a 10,000 word essay on My All-Time Favorite Race
Conditions. To help them work on their papers, they have one dictionary,
two copies of Roget’s Thesaurus, and two coffee cups.

Annabelle needs to use the dictionary and a thesaurus to write her paper;

• Bertrand needs a thesaurus and a coffee cup to write his paper;

• Chloe needs a dictionary and a thesaurus to write her paper;

• Dag needs two coffee cups to write his paper (he likes to have a cup
of regular and a cup of decaf at the same time to keep himself in
balance).

Consider the following state:

• Annabelle has a thesaurus and need the dictionary.

5



• Bertrand has a thesaurus and a coffee cup.

• Chloe has the dictionary and needs a thesaurus.

• Dag has a coffee cup and needs another coffee cup.

– Is the system deadlocked in this state? Explain using a resource
allocation graph.

– Is this state reachable if the four people allocated and released
their resources using the Banker’s algorithm? Explain.

6


