
CS 318 Principles of 
Operating Systems

Fall 2017

Lecture 8: Deadlock
Ryan Huang



Administrivia

• Lab 1 deadline extended
- Friday 09/29 11:59 pm
- Saturday 09/30 11:59 pm [Hard]

• HW2 out
- should try to solve it

• Discussion section
- review lecture material plus some exercises

9/28/17 CS 318 – Lecture 8 – Deadlock 2



Deadlock

9/27/17 CS 318 – Lecture 8 – Deadlock 3

• Synchronization is a live gun – we can easily shoot ourselves in the foot
- Incorrect use of synchronization can block all processes
- You have likely been intuitively avoiding this situation already

• If one process tries to access a resource that a second process holds, and vice-versa, 
they can never make progress

• We call this situation deadlock, and we’ll look at:
- Definition and conditions necessary for deadlock
- Representation of deadlock conditions
- Approaches to dealing with deadlock



• Deadlock is a problem that can arise:
-When processes compete for access to limited resources
-When processes are incorrectly synchronized

• Definition:
- Deadlock exists among a set of processes if every process is waiting for an 

event that can be caused only by another process in the set.

Deadlock Definition

9/27/17 CS 318 – Lecture 8 – Deadlock 4



Deadlock Example

9/27/17 CS 318 – Lecture 8 – Deadlock 5

mutex_t m1, m2;
void p1(void *ignored) {
lock(m1);
lock(m2);
/* critical section */
unlock(m2);
unlock(m1);

}
void p2(void *ignored) {
lock(m2);
lock(m1);
/* critical section */
unlock(m1);
unlock(m2);

}



Deadlock Example

• Can you have deadlock w/o mutexes?

• Same problem with condition variables
- Suppose resource 1 managed by c1, resource 2 by c2
- A has 1, waits on c2, B has 2, waits on c1

• Or have combined mutex/condition variable deadlock:
- lock (a); lock (b); while (!ready) wait (b, c); unlock (b); unlock (a); 
- lock (a); lock (b); ready = true; signal (c); unlock (b); unlock (a);

• One lesson: Dangerous to hold locks when crossing abstraction 
barriers!
- i.e., lock (a) then call function that uses condition variable

9/27/17 CS 318 – Lecture 8 – Deadlock 6



Deadlocks w/o Computers

• Real issue is resources & how required

• E.g., bridge only allows traffic in one direction
- Each section of a bridge can be viewed as a resource.
- If a deadlock occurs, it can be resolved if one car backs up (preempt 

resources and rollback).
- Several cars may have to be backed up if a deadlock occurs. 
- Starvation is possible.

9/27/17 CS 318 – Lecture 8 – Deadlock 7



Conditions for Deadlock
1. Mutual exclusion – At least one resource must be held in a non-sharable mode
2. Hold and wait – There must be one process holding one resource and waiting for 

another resource
3. No preemption – Resources cannot be preempted (critical sections cannot be 

aborted externally)
4. Circular wait – There must exist a set of processes [P1, P2, P3,…,Pn] such that P1 

is waiting for P2, P2 for P3, etc.

• All of 1–4 necessary for deadlock to occur 

• Two approaches to dealing with deadlock:
- Pro-active: prevention
- Reactive: detection + corrective action

9/27/17 CS 318 – Lecture 8 – Deadlock 8



Prevent by Eliminating One Condition

1. Mutual exclusion
- Buy more resources, split into pieces, or virtualize to make "infinite" copies
- Threads: threads have copy of registers = no lock

2. Hold and wait
- Wait on all resources at once (must know in advance)

3. No preemption
- Physical memory: virtualized with VM, can take physical page away and give to 

another process!

4. Circular wait
- Single lock for entire system: (problems?)
- Partial ordering of resources (next)

9/27/17 CS 318 – Lecture 8 – Deadlock 9



Resource Allocation Graph

• View system as graph
- Processes and Resources are nodes
- Resource Requests and Assignments are edges

• Process:

• Resource with 4 instances:

• Pi requesting Rj:

• Pi holding instance of Rj:

9/27/17 CS 318 – Lecture 8 – Deadlock 10



Example Resource Allocation Graph

9/27/17 CS 318 – Lecture 8 – Deadlock 11



Resource Allocation Graph with Deadlock

9/27/17 CS 318 – Lecture 8 – Deadlock 12



Is This Deadlock?

9/27/17 CS 318 – Lecture 8 – Deadlock 13



Cycles and Deadlock

• If graph has no cycles ⇒ no deadlock

• If graph contains a cycle
- Definitely deadlock if only one instance per resource (waits-for graph (WFG))
- Otherwise, maybe deadlock, maybe not

• Prevent deadlock with partial order on resources 
- e.g., always acquire mutex m1 before m2
- Usually design locking discipline for application this way

9/27/17 CS 318 – Lecture 8 – Deadlock 14



Dealing With Deadlock

• There are four approaches for dealing with deadlock:
- Ignore it – how lucky do you feel?
- Prevention – make it impossible for deadlock to happen
- Avoidance – control allocation of resources
- Detection and Recovery – look for a cycle in dependencies

9/27/17 CS 318 – Lecture 8 – Deadlock 15



Deadlock Avoidance

9/27/17 CS 318 – Lecture 8 – Deadlock 16

• Avoidance
- Provide information in advance about what resources will be needed by 

processes to guarantee that deadlock will not happen
- System only grants resource requests if it knows that the process can obtain 

all resources it needs in future requests
- Avoids circularities (wait dependencies)

• Tough
- Hard to determine all resources needed in advance
- Good theoretical problem, not as practical to use



Banker’s Algorithm
• The Banker’s Algorithm is the classic approach to deadlock 

avoidance for resources with multiple units
1. Assign a credit limit to each customer (process)
- Maximum credit claim must be stated in advance

2. Reject any request that leads to a dangerous state
- A dangerous state is one where a sudden request by any customer for the full credit 

limit could lead to deadlock
- A recursive reduction procedure recognizes dangerous states

3. In practice, the system must keep resource usage well below 
capacity to maintain a resource surplus
- Rarely used in practice due to low resource utilization

9/27/17 CS 318 – Lecture 8 – Deadlock 17



Detection and Recovery

• Detection and recovery
- If we don’t have deadlock prevention or avoidance, then deadlock may occur
- In this case, we need to detect deadlock and recover from it

• To do this, we need two algorithms
- One to determine whether a deadlock has occurred
- Another to recover from the deadlock

• Possible, but expensive (time consuming)
- Implemented in VMS
- Run detection algorithm when resource request times out

9/27/17 CS 318 – Lecture 8 – Deadlock 18



Deadlock Detection

• Detection
- Traverse the resource graph looking for cycles
- If a cycle is found, preempt resource (force a process to release)

• Expensive
- Many processes and resources to traverse

• Only invoke detection algorithm depending on
- How often or likely deadlock is
- How many processes are likely to be affected when it occurs

9/27/17 CS 318 – Lecture 8 – Deadlock 19



Deadlock Recovery

Once a deadlock is detected, we have two options…

1. Abort processes
- Abort all deadlocked processes

• Processes need to start over again
- Abort one process at a time until cycle is eliminated

• System needs to rerun detection after each abort

2. Preempt resources (force their release)
- Need to select process and resource to preempt
- Need to rollback process to previous state
- Need to prevent starvation

9/27/17 CS 318 – Lecture 8 – Deadlock 20



Deadlock Summary

• Deadlock occurs when processes are waiting on each other and 
cannot make progress
- Cycles in Resource Allocation Graph (RAG)

• Deadlock requires four conditions
- Mutual exclusion, hold and wait, no resource preemption, circular wait

• Four approaches to dealing with deadlock:
- Ignore it – Living life on the edge
- Prevention – Make one of the four conditions impossible
- Avoidance – Banker’s Algorithm (control allocation)
- Detection and Recovery – Look for a cycle, preempt or abort

9/27/17 CS 318 – Lecture 8 – Deadlock 21



Next time…

• Read Chapter 15, 16, 18

9/27/17 CS 318 – Lecture 8 – Deadlock 22


