
CS 318 Principles of
Operating Systems

Fall 2017

Lecture 6: Synchronization
Ryan Huang

Administrivia

• Lab 0 grading is out

• Start working on Lab 1!

9/21/17 CS 318 – Lecture 6 – Synchronization 2

Before we start…: Too Much Milk

Alice Bob

12:30 Look in fridge. Out of milk.

12:35 Leave for store.

12:40 Arrive at store. Look in fridge. Out of milk.

12:45 Buy milk. Leave for store.

12:50 Arrive home, put milk away. Arrive at store.

12:55 Buy milk.

1:00 Arrive home, put milk away.
Oh no!

9/21/17 CS 318 – Lecture 6 – Synchronization 3

Before we start…: exercise #1

• After thread 1 and thread 2 finishes, what is the value of x?
- could be 0, 1, -1
-Why?

void foo()
{

x++;
}

void bar()
{

x--;
}

Thread 1 Thread 2

x is a global variable initialized to 0

9/21/17 CS 318 – Lecture 6 – Synchronization 4

Before we start…: exercise #2

• What value of p is passed to use?
- could be 0, 1000
-Why?

• What if p holds an address?

p = 1000;
ready = 1;

while (!ready);
use(p);

Processor #1 Processor #2

int p = 0, ready = 0;

9/21/17 CS 318 – Lecture 6 – Synchronization 5

Synchronization Motivation

• Threads cooperate in multithreaded programs
- To share resources, access shared data structures
- To coordinate their execution

• For correctness, we need to control this cooperation
- Thread schedule is non-deterministic

• Scheduling is not under program control
• Threads interleave executions arbitrarily and at different rates
• Behavior changes when re-run program

- Multi-word operations are not atomic
- Compiler/hardware instruction reordering

9/21/17 CS 318 – Lecture 6 – Synchronization 6

Shared Resources

We initially focus on coordinating access to shared resources

• Basic problem
- If two concurrent threads (processes) are accessing a shared variable, and

that variable is read/modified/written by those threads, then access to the
variable must be controlled to avoid erroneous behavior

• Over the next couple of lectures, we will look at
- Mechanisms to control access to shared resources

• Locks, mutexes, semaphores, monitors, condition variables, etc.
- Patterns for coordinating accesses to shared resources

• Bounded buffer, producer-consumer, etc.

9/21/17 CS 318 – Lecture 6 – Synchronization 7

Classic Example: Bank Account Balance

• TODO: implement a function to handle withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

• Suppose that you and your significant other share a bank account with a
balance of $1000

• Then you each go to separate ATM machines and simultaneously withdraw
$100 from the account

9/21/17 CS 318 – Lecture 6 – Synchronization 8

Example Continued
• We’ll represent the situation by creating a separate thread for each person to do the withdrawals

• These threads run on the same bank server:

• What’s the problem with this implementation?
- Think about potential schedules of these two threads

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

9/21/17 CS 318 – Lecture 6 – Synchronization 9

Interleaved Schedules
• The problem is that the execution of the two threads can be interleaved:

• What is the balance of the account now?

• Is the bank happy with our implementation?

balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Execution
sequence

seen by CPU Context switch

9/21/17 CS 318 – Lecture 6 – Synchronization 10

How contorted can the interleavings be?
• We'll assume that the only atomic operations are instructions
- e.g., reads and writes of words
- the hardware may not even give you that!

• We'll assume that a context
switch can occur at any time

• We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever

How Interleaved Can It Get?

............. get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance =

9/21/17 CS 318 – Lecture 6 – Synchronization 11

Shared Resources

• Problem: concurrent threads accessed a shared resource
without any synchronization
- Known as a race condition

• We need mechanisms to control access to these shared
resources in the face of concurrency
- So we can reason about how the program will operate

• Our example was updating a shared bank account

• Also apply to any shared data structure
- Buffers, queues, lists, hash tables, etc.

9/21/17 CS 318 – Lecture 6 – Synchronization 12

When Are Resources Shared?

• Local variables are not shared (private)
- Refer to data on the stack
- Each thread has its own stack
- Never pass/share/store a pointer to a local variable on the

stack for thread T1 to another thread T2

• Global variables and static objects are shared
- Stored in the static data segment, accessible by any thread

• Dynamic objects and other heap objects are shared
- Allocated from heap with malloc/free or new/delete

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)
Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Thread 1

9/21/17 CS 318 – Lecture 6 – Synchronization 13

Mutual Exclusion
• We want to use mutual exclusion to synchronize access to

shared resources
- This allows us to have larger atomic blocks

• Code that uses mutual exclusion to synchronize its execution is
called a critical section
- Only one thread at a time can execute in the critical section
- All other threads are forced to wait on entry
-When a thread leaves a critical section, another can enter
- Example: sharing your bathroom with housemates

• What requirements would you place on a critical section?

9/21/17 CS 318 – Lecture 6 – Synchronization 14

Critical Section Requirements

1) Mutual exclusion (mutex)
- If one thread is in the critical section, then no other is

2) Progress
- If some thread T is not in the critical section, then T cannot prevent some other thread S from

entering the critical section
- A thread in the critical section will eventually leave it

3) Bounded waiting (no starvation)
- If some thread T is waiting on the critical section, then T will eventually enter the critical

section

4) Performance
- The overhead of entering and exiting the critical section is small with respect to the work

being done within it

9/21/17 CS 318 – Lecture 6 – Synchronization 15

About Requirements

There are three kinds of requirements that we'll use

• Safety property: nothing bad happens
- Mutex

• Liveness property: something good happens
- Progress, Bounded Waiting

• Performance requirement
- Performance

• Properties hold for each run, while performance depends on all the runs
- Rule of thumb: When designing a concurrent algorithm, worry about safety first (but don't

forget liveness!)

9/21/17 CS 318 – Lecture 6 – Synchronization 16

Too Much Milk, Try #1

• Try #1: leave a note

if (milk == 0) { // if no milk
if (note == 0) { // if no note

note = 1; // leave note
milk++; // buy milk
note = 0; // remove note

}
}

What can go wrong?

9/21/17 CS 318 – Lecture 6 – Synchronization 17

Too Much Milk, Try #2

• Try #1: leave a note

if (milk == 0) {

if (note == 0) {
note = 1;
milk++;
note = 0;

}
}

if (milk == 0) {
if (note == 0) {

note = 1;
milk++;
note = 0;

}
}

Alice Bob

9/21/17 CS 318 – Lecture 6 – Synchronization 18

Too Much Milk, Try #2

• Try #2: leave two notes

noteA = 1;
if (noteB == 0) {

if (milk == 0) {
milk++;

}
}
noteA = 0;

noteB = 1;
if (noteA == 0) {

if (milk == 0) {
milk++;

}
}
noteB = 0;

Alice Bob

Is this safe?
Does it ensure liveness?

9/21/17 CS 318 – Lecture 6 – Synchronization 19

Too Much Milk, Try #3

• Try #3: monitoring note

noteA = 1;
while (noteB == 1);
if (milk == 0) {

milk++;
}
noteA = 0;

noteB = 1;
if (noteA == 0) {

if (milk == 0) {
milk++;

}
}
noteB = 0;

Alice Bob

9/21/17 CS 318 – Lecture 6 – Synchronization 20

Mechanisms For Building Critical Sections
• Atomic read/write
- Can it be done?

• Locks
- Primitive, minimal semantics, used to build others

• Semaphores
- Basic, easy to get the hang of, but hard to program with

• Monitors
- High-level, requires language support, operations implicit

• Messages
- Simple model of communication and synchronization based on atomic transfer of

data across a channel
- Direct application to distributed systems
- Messages for synchronization are straightforward (once we see how the others

work)

9/21/17 CS 318 – Lecture 6 – Synchronization 21

Mutex with Atomic R/W: Try #1

This is called alternation

• Does it satisfy the safety requirement?
- Yes

• Does it satisfy the liveness requirement?
- No, T1 can go into infinite loop outside of the critical section preventing T2 from entering

while (true) {
while (turn != 1);
critical section
turn = 2;
outside of critical section

}

while (true) {
while (turn != 2);
critical section
turn = 1;
outside of critical section

}

int turn = 1;

T1 T2

9/21/17 CS 318 – Lecture 6 – Synchronization 22

Mutex with Atomic R/W: Peterson's Algorithm

• Does it satisfy the safety requirement?

• Does it satisfy the liveness requirement?

while (true) {
try1 = true;
turn = 2;
while (try2 && turn != 1) ;
critical section
try1 = false;
outside of critical section

}

while (true) {
try2 = true;
turn = 1;
while (try1 && turn != 2) ;
critical section
try2 = false;
outside of critical section

}

int turn = 1;
bool try1 = false, try2 = false;

9/21/17 CS 318 – Lecture 6 – Synchronization 23

Mutex with Atomic R/W: Peterson's Algorithm

(green at 4) ∧ try1 ∧ (turn == 1 ∨ ¬ try2 ∨ (try2∧ (yellow at 6 or at 7)))
∧ (yellow at 8) ∧ try2 ∧ (turn == 2 ∨ ¬ try1 ∨ (try1∧ (green at 2 or at 3)))

... ⇒ (turn == 1 ∧ turn == 2)

while (true) {
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }
1 try1 = true;
{ try1 ∧ (turn == 1 ∨ turn == 2) }
2 turn = 2;
{ try1 ∧ (turn == 1 ∨ turn == 2) }
3 while (try2 && turn != 1);
{ try1 ∧ (turn == 1 ∨ ¬ try2 ∨

(try2∧ (yellow at 6 or at 7))) }
critical section

4 try1 = false;
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

outside of critical section
}

while (true) {
{¬ try2 ∧ (turn == 1 ∨ turn == 2) }
5 try2 = true;
{ try2 ∧ (turn == 1 ∨ turn == 2) }
6 turn = 1;
{ try2 ∧ (turn == 1 ∨ turn == 2) }
7 while (try1 && turn != 2);
{ try2 ∧ (turn == 2 ∨ ¬ try1 ∨

(try1∧ (green at 2 or at 3))) }
critical section

8 try2 = false;
{¬ try2 ∧ (turn == 1 ∨ turn == 2) }

outside of critical section
}

int turn = 1;
bool try1 = false, try2 = false;

9/21/17 CS 318 – Lecture 6 – Synchronization 24

Locks

• A lock is an object in memory providing two operations
- acquire(): wait until lock is free, then take it to enter a C.S
- release(): release lock to leave a C.S, waking up anyone waiting for it

• Threads pair calls to acquire and release
- Between acquire/release, the thread holds the lock
- acquire does not return until any previous holder releases
-What can happen if the calls are not paired?

• Locks can spin (a spinlock) or block (a mutex)
- Can break apart Peterson's to implement a spinlock

9/21/17 CS 318 – Lecture 6 – Synchronization 25

Too Much Milk, Try #4

• Try #4: lock

lock.acquire();
milk++;
lock.release();

lock.acquire();
milk++;
lock.release();

Alice Bob

9/21/17 CS 318 – Lecture 6 – Synchronization 26

Using Locks

- What happens when green tries to acquire the lock?
- Why is the “return” outside the critical section? Is this ok?
- What happens when a third thread calls acquire?

withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);
return balance;

}

acquire(lock);
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);

acquire(lock);

put_balance(account, balance);
release(lock);

Critical
Section

9/21/17 CS 318 – Lecture 6 – Synchronization 27

Implementing Locks (1)
• How do we implement locks? Here is one attempt:

• This is called a spinlock because a thread spins waiting for the lock
to be released

• Does this work?

struct lock {
int held = 0;

}
void acquire (lock) {

while (lockàheld);
lockàheld = 1;

}
void release (lock) {

lockàheld = 0;
}

busy-wait (spin-wait)
for lock to be released

9/21/17 CS 318 – Lecture 6 – Synchronization 28

Implementing Locks (2)

• No. Two independent threads may both notice that a lock has
been released and thereby acquire it.

struct lock {
int held = 0;

}
void acquire(lock) {

while (lockàheld);
lockàheld = 1;

}
void release(lock) {

lockàheld = 0;
}

A context switch can occur
here, causing a race condition

9/21/17 CS 318 – Lecture 6 – Synchronization 29

Implementing Locks (3)

• The problem is that the implementation of locks has critical sections, too

• How do we stop the recursion?

• The implementation of acquire/release must be atomic
- An atomic operation is one which executes as though it could not be interrupted
- Code that executes “all or nothing”

• How do we make them atomic?

• Need help from hardware
- Atomic instructions (e.g., test-and-set)
- Disable/enable interrupts (prevents context switches)

9/21/17 CS 318 – Lecture 6 – Synchronization 30

Atomic Instructions: Test-And-Set
• The semantics of test-and-set are:
- Record the old value
- Set the value to indicate available
- Return the old value

• Hardware executes it atomically!
• When executing test-and-set on “flag”
-What is value of flag afterwards if it was initially False? True?
-What is the return result if flag was initially False? True?

• Other similar flavor atomic instructions: xchg, CAS

bool test_and_set(bool *flag) {
bool old = *flag;
*flag = True;
return old;

}

9/21/17 CS 318 – Lecture 6 – Synchronization 31

Using Test-And-Set
• Here is our lock implementation with test-and-set:

• When will the while return? What is the value of held?

• What about multiprocessors?

• Implement it with xchg, Compare-And-Swap

struct lock {
int held = 0;

}
void acquire(lock) {

while (test-and-set(&lockàheld));
}
void release(lock) {

lockàheld = 0;
}

9/21/17 CS 318 – Lecture 6 – Synchronization 32

Problems with Spinlocks

• The problem with spinlocks is that they are wasteful
- If a thread is spinning on a lock, then the thread holding the lock cannot

make progress (on a uniprocessor)

• How did the lock holder give up the CPU in the first place?
- Lock holder calls yield or sleep
- Involuntary context switch

• Only want to use spinlocks as primitives to build higher-level
synchronization constructs

9/21/17 CS 318 – Lecture 6 – Synchronization 33

Disabling Interrupts
• Another implementation of acquire/release is to disable interrupts:

• Note that there is no state associated with the lock

• Can two threads disable interrupts simultaneously?

struct lock {
}
void acquire(lock) {

disable interrupts;
}
void release(lock) {

enable interrupts;
}

9/21/17 CS 318 – Lecture 6 – Synchronization 34

On Disabling Interrupts

• Disabling interrupts blocks notification of external events that could
trigger a context switch (e.g., timer)
- This is what Pintos uses as its primitive

• In a “real” system, this is only available to the kernel
- Why?

• Disabling interrupts is insufficient on a multiprocessor
- Interrupts are only disabled on a per-core basis
- Back to atomic instructions

• Like spinlocks, only want to disable interrupts to implement higher-level
synchronization primitives
- Don’t want interrupts disabled between acquire and release

9/21/17 CS 318 – Lecture 6 – Synchronization 35

Summarize Where We Are

• Goal: Use mutual exclusion to protect critical sections of code

that access shared resources

• Method: Use locks (spinlocks or disable interrupts)

• Problem: Critical sections (CS) can be long

acquire(lock)
…
Critical section
…
release(lock)

Disabling Interrupts:
● Should not disable interrupts
for long periods of time
● Can miss or delay important
events (e.g., timer, I/O)

Spinlocks:
● Threads waiting to acquire
lock spin in test-and-set loop
● Wastes CPU cycles
● Longer the CS, the longer
the spin
● Greater the chance for lock
holder to be interrupted

9/21/17 CS 318 – Lecture 6 – Synchronization 36

Higher-Level Synchronization

• Spinlocks and disabling interrupts are useful only for very short and
simple critical sections
- Wasteful otherwise
- These primitives are “primitive” – don’t do anything besides mutual exclusion

• Need higher-level synchronization primitives that:
- Block waiters
- Leave interrupts enabled within the critical section

• All synchronization requires atomicity

• So we’ll use our “atomic” locks as primitives to implement them

9/21/17 CS 318 – Lecture 6 – Synchronization 37

Implementing Locks (4)

• Block waiters, interrupts enabled in critical sections
struct lock {

int held = 0;
queue Q;

}
void acquire(lock) {

Disable interrupts;
while (lockàheld) {

put current thread on lock Q;
block current thread;

}
lockàheld = 1;
Enable interrupts;

}

void release(lock) {
Disable interrupts;
if (Q) remove waiting thread;
unblock waiting thread;
lockàheld = 0;
Enable interrupts;

}

acquire(lock)
…
Critical section
…
release(lock)

Interrupts Enabled

Interrupts Disabled

Interrupts Disabled

See Pintos threads/synch.c: sema_down/up
9/21/17 CS 318 – Lecture 6 – Synchronization 38

Summary

• Why we need synchronizations

• Critical sections

• Simple algorithms to implement critical sections

• Locks

• Lock implementations

9/21/17 CS 318 – Lecture 6 – Synchronization 39

Next Time…

• Read Chapters 30, 31

9/21/17 CS 318 – Lecture 6 – Synchronization 40

