
CS 318 Principles of
Operating Systems

Fall 2017

Lecture 20: Distributed Systems
Ryan Huang

Preview

• Next three lectures are advanced topics on systems in general
- Each topic has enough depth to be covered in an entire course by itself
-We will only cover the high-level basics
- Focus on abstractions and generic systems techniques

• Today: distributed systems
-What is a distributed system?
-What are the basic concepts essential to build a distributed system?
- Examine an important abstraction: Remote Procedure Call (RPC)

11/28/17 CS 318 – Lecture 20 – Distributed Systems 2

Societal Scale Information Systems
• The world is a large distributed system
- Microprocessors in everything
- Vast infrastructure behind them

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

Clusters

Gigabit Ethernet
Clusters

Massive Cluster

Gigabit Ethernet

11/28/17 CS 318 – Lecture 20 – Distributed Systems 3

11/28/17 CS 318 – Lecture 20 – Distributed Systems 4

Today

11/28/17 CS 318 – Lecture 20 – Distributed Systems 5

Microsoft Azure regions

What is a Distributed System?

• Cooperating processes in a computer network

• Degree of integration
- Loose: Internet applications, email, web browsing
- Medium: remote execution, remote file systems
- Tight: distributed file systems

• Popular distributed systems today
- Google file systems, BigTable, MapReduce, Hadoop, ZooKeeper, etc.

11/28/17 CS 318 – Lecture 20 – Distributed Systems 6

Centralized vs Distributed Systems

• Centralized System: System in which major functions are
performed by a single physical computer
- Originally, everything on single computer
- Later: client/server model

Server

Client/Server Model

Peer-to-Peer Model

11/28/17 CS 318 – Lecture 20 – Distributed Systems 7

Centralized vs Distributed Systems

Server

Client/Server Model

Peer-to-Peer Model

• Distributed System: physically separate computers working
together on some task
- Early model: multiple servers working together

• Probably in the same room or building
• Often called a “cluster”

- Later models: peer-to-peer/wide-spread collaboration
11/28/17 CS 318 – Lecture 20 – Distributed Systems 8

Distributed Systems: Motivation

• Why do we want distributed systems?
- Performance: parallelism across multiple nodes
- Scalability: by adding more nodes
- Reliability: leverage redundancy to provide fault tolerance
- Cost: cheaper and easier to build lots of simple computers
- Control: users can have complete control over some components
- Collaboration: much easier for users to collaborate through network resources

• The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure

11/28/17 CS 318 – Lecture 20 – Distributed Systems 9

Distributed Systems: Reality

• Reality has been disappointing
-Worse availability: depend on every machine being up
• Lamport: “a distributed system is one where I can’t do work because

some machine I’ve never heard of isn’t working!”
-Worse reliability: can lose data if any machine crashes
-Worse security: anyone in world can break into system

• Coordination is more difficult
- Must coordinate multiple copies of shared state information (using only a

network)
-What would be easy in a centralized system becomes a lot more difficult

11/28/17 CS 318 – Lecture 20 – Distributed Systems 10

Distributed Systems: Goals/Requirements

• Transparency:
- the ability of the system to mask its complexity behind a simple interface

• Possible transparencies:
- Location: Can’t tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can’t tell how many copies of resource exist
- Concurrency: Can’t tell how many users there are
- Parallelism: May speed up large jobs by splitting them into smaller pieces
- Fault Tolerance: System may hide various things that go wrong

• Transparency and collaboration require some way for different
processors to communicate with one another

11/28/17 CS 318 – Lecture 20 – Distributed Systems 11

Clients and Servers
• The prevalent model for structuring distributed computation is the

client/server paradigm

• A server is a program (or collection of programs) that provide a service
(file server, name service, etc.)
- The server may exist on one or more nodes
- Often the node is called the server, too, which is confusing

• A client is a program that uses the service
- A client first binds to the server (locates it and establishes a connection to it)
- A client then sends requests, with data, to perform actions, and the servers sends

responses, also with data

11/28/17 CS 318 – Lecture 20 – Distributed Systems 12

Naming
• Name systems in network
- often hierarchical name. cs.jhu.edu is domain

• Network Address (Internet IP address)
- 192.17.4.131 -- 192.17.4.**
- 128.174.240.**

• Physical Network Address
- Ethernet address or Token Ring Address

• Address processes/ports within system (host, id) pair

• Domain name service (DNS) specifies naming structure of hosts and
provides resolution of names to network address

11/28/17 CS 318 – Lecture 20 – Distributed Systems 13

Communication

• Socket (TCP/IP)

• Remote Procedure Call (RPC) /Remote Method Invocation(RMI)

11/28/17 CS 318 – Lecture 20 – Distributed Systems 14

TCP/IP (Socket)

• Transport Protocols
- User Datagram Protocol (UDP)

• UDP/IP is an unreliable, connectionless transport protocol, which uses IP to transport IP
datagrams but adds error correction and a protocol port address to specify the process
on the remote system for which the packet is destined.

- Transmission Control Protocol (TCP)
• TCP/IP is a reliable stream protocol for communicating information between two

processes

11/28/17 CS 318 – Lecture 20 – Distributed Systems 15

TCP/IP Protocol Layers

END USER APPLICATION

IEEE802.X/X.25

IP

TCP UDP

FTP, TELNET, SMTP, NSP, SNMP

LAN/WAN

Layers 5-7

Layers 1-3

Layers 4

https://en.wikipedia.org/wiki/OSI_model

11/28/17 CS 318 – Lecture 20 – Distributed Systems 16

TCP Sockets

• Communication endpoint
- (IP address, Port number)

• Client-server
- server listens to a port

• Telnet port 23, ftp port 21, web server port 80

11/28/17 CS 318 – Lecture 20 – Distributed Systems 17

TCP/IP Ports

• Ports < 1024, standard

• Ports > 1024, user created

• All connections unique
- 161.25.19.8:20
- IP Address: 161.25.19.8
- TCP/IP Port: 20 (ftpdata)
- http://www.iana.org/assignments/port-numbers

11/28/17 CS 318 – Lecture 20 – Distributed Systems 18

TCP Socket Communication

Client socket
(146.86.5.2/1625)

Web server socket
(161.25.19.9/80)

11/28/17 CS 318 – Lecture 20 – Distributed Systems 19

Raw Messaging
• Initially network programming = raw messaging
- Programmers hand-coded messages to send requests and responses

• Problem: too low-level and tiresome
- Need to worry about message formats
- Must wrap up information into message at source
- Must decide what to do with message at destination
- Have to pack and unpack data from messages
- May need to sit and wait for multiple messages to arrive

• Messages are not a very natural programming model
- Could encapsulate messaging into a library
- Just invoke library routines to send a message
- Which leads us to RPC…

11/28/17 CS 318 – Lecture 20 – Distributed Systems 20

Procedure Calls

• Procedure calls are a more natural way to communicate
- Every language supports them
- Semantics are well-defined and understood
- Natural for programmers to use

• Idea: let servers export procedures that can be called by client
programs
- Similar to module interfaces, class definitions, etc.
- Clients just do a procedure call as it they were directly linked with the server
- Under the covers, the procedure call is converted into a message exchange

with the server

11/28/17 CS 318 – Lecture 20 – Distributed Systems 21

Remote Procedure Calls

• So, we would like to use procedure call as a model for
distributed (remote) communication

• Lots of issues
- How do we make this invisible to the programmer?
-What are the semantics of parameter passing?
- How do we bind (locate, connect to) servers?
- How do we support heterogeneity (OS, arch, language)?
- How do we make it perform well?

11/28/17 CS 318 – Lecture 20 – Distributed Systems 22

Why is RPC Interesting?
• Remote Procedure Call (RPC) is the most common means for remote

communication

• It is used both by operating systems and applications
- NFS is implemented as a set of RPCs
- DCOM, CORBA, Java RMI, etc., are all basically just RPC

• Someday (soon?) you will most likely have to write an application that
uses remote communication (or you already have)
- You will most likely use some form of RPC for that remote communication
- So it’s good to know how all this RPC stuff works

• More “debunking the magic”

11/28/17 CS 318 – Lecture 20 – Distributed Systems 23

RPC Model
• A server defines the server’s interface using an interface definition

language (IDL)
- The IDL specifies the names, parameters, and types for all client-callable server procedures

• A stub compiler reads the IDL and produces two stub procedures for each
server procedure (client and server)
- Server programmer implements the server procedures and links them with server-side stubs
- Client programmer implements the client program and links it with client-side stubs
- The stubs are the “glues” responsible for managing all details of the remote communication

between client and server

11/28/17 CS 318 – Lecture 20 – Distributed Systems 24

RPC Stubs
• A client-side stub is a procedure that looks to the client as if it were a

callable server procedure
- Task: pack message, send it off, wait for result, unpack result and return to caller

• A server-side stub looks to the server as if a client called it
- Task: unpack message, call procedure, pack results, send them off

• The client program thinks it is calling the server
- In fact, it’s calling the client stub

• The server program thinks it is called by the client
- In fact, it’s called by the server stub

• The stubs send messages to each other to make RPC happen transparently

11/28/17 CS 318 – Lecture 20 – Distributed Systems 25

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etw

orkN
et

w
or

k

Client
Stub

marshal
args

marshal
ret vals

unmarshal
ret vals

Server
Stub

unmarshal
args

Machine A

Machine B

mbox1

mbox2

11/28/17 CS 318 – Lecture 20 – Distributed Systems 26

RPC Example

• If the server were just a library, then Add would just be a
procedure call

11/28/17 CS 318 – Lecture 20 – Distributed Systems 27

int Add(int x, int y);

…

sum = server->Add(3,4);

… int Add(int x, int y) {
return x + y;

}

Client Program:

Server Interface:

Server Program:

RPC Example: Call

sum = server->Add(3,4); int Add(int x, int y){
return x + y;
}

int Add(int x, int y) {
Alloc message buffer;
Mark as “Add” call;
Store x, y into buffer;
Create, send message;

}

Send message to server;

Add_Stub(Message) {
Remove x, y from buffer
r = Add(x, y);

}

Receive message;
Dispatch, call Add_Stub;

11/28/17 CS 318 – Lecture 20 – Distributed Systems 28

Client Program:

Client Stub:

RPC Runtime:

Server Program:

Server Stub:

RPC Runtime:

RPC Example: Return

sum = server->Add(3,4); int Add(int x, int y){
return x + y;
}

int Add(int x, int y) {
Alloc message buffer;
Mark as “Add” call;
Store x, y into buffer;
Create, send message;
Remove r from reply;
return r;

}

Add_Stub(Message) {
Remove x, y from buffer
r = Add(x, y);
Store r in buffer;

}

11/28/17 CS 318 – Lecture 20 – Distributed Systems 29

Client Program:

Client Stub:

Return reply to stub; Send reply to client;

RPC Runtime:

Server Program:

Server Stub:

RPC Runtime:

RPC Marshalling
• Marshalling is the packing of procedure parameters into a message packet

• The RPC stubs call type-specific procedures to marshal (or unmarshal) the
parameters to a call
- The client stub marshals the parameters into a message
- The server stub unmarshals parameters from the message and uses them to call the server

procedure

• On return
- The server stub marshals the return parameters
- The client stub unmarshals return parameters and returns them to the client program

11/28/17 CS 318 – Lecture 20 – Distributed Systems 30

RPC Implementation Details
• Cross-platform issues:
- What if client/server machines are different architectures/ languages?

• Convert everything to/from some canonical form
• Tag every item with an indication of how it is encoded (avoids unnecessary

conversions)

• How does client know which server to send to?
- Need to translate name of remote service into network endpoint (Remote machine,

port, possibly other info)
- Binding: the process of converting a user-visible name into a network endpoint

• This is another word for “naming” at network level
• Static: fixed at compile time
• Dynamic: performed at runtime

11/28/17 CS 318 – Lecture 20 – Distributed Systems 31

RPC Binding (1)
• Binding is the process of connecting the client to the server

• The server, when it starts up, exports its interface
- Identifies itself to a network name server
- Tells RPC runtime it’s alive and ready to accept calls

• The client, before issuing any calls, imports the server
- RPC runtime uses the name server to find the location of a server and establish a

connection

• The import and export operations are explicit in the server and client
programs
- Breakdown of transparency

11/28/17 CS 318 – Lecture 20 – Distributed Systems 32

RPC Example in Go Including Binding

11/28/17 CS 318 – Lecture 20 – Distributed Systems 33

func (t *Arith) Multiply(args *Args,
reply *int) error {

*reply = args.A * args.B
return nil

}
func main() {

arith := new(Arith)
rpc.RegisterName("Arithmetic", arith)
rpc.HandleHTTP()
l, e := net.Listen("tcp", ":1234")
if e != nil {

log.Fatal("listen error:", e)
}
http.Serve(l, nil)

}

type Args struct {
A, B int

}
type Arith int

client, err := rpc.DialHTTP("tcp",
serverAddress + ":1234")

if err != nil {
log.Fatal("dialing:", err)

}
// Synchronous call
args := &server.Args{7,8}
var reply int
err = client.Call("Arith.Multiply", args, &reply)
if err != nil {

log.Fatal("arith error:", err)
}
fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply)

Client Program: Server Program:

RPC Binding (2)
• Dynamic Binding
- Most RPC systems use dynamic binding via name service

• Name service provides dynamic translation of service ® mbox
- Why dynamic binding?

• Access control: check who is permitted to access service
• Fail-over: If server fails, use a different one

• What if there are multiple servers?
- Could give flexibility at binding time

• Choose unloaded server for each new client
- Could provide same mbox (router level redirect)

• Choose unloaded server for each new request
• Only works if no state carried from one call to next

• What if multiple clients?
- Pass pointer to client-specific return mbox in request

11/28/17 CS 318 – Lecture 20 – Distributed Systems 34

RPC Transparency

• One goal of RPC is to be as transparent as possible
- Make remote procedure calls look like local procedure calls

• We have seen that binding breaks transparency

• What else?
- Failures – remote nodes/networks can fail in more ways than with local

procedure calls
• Need extra support to handle failures well

- Performance – remote communication is inherently slower than local
communication
• If program is performance-sensitive, could be a problem

11/28/17 CS 318 – Lecture 20 – Distributed Systems 35

Problems with RPC: Non-Atomic Failures
• Different failure modes in dist. system than on a single machine
• Consider many different types of failures
- User-level bug causes address space to crash
- Machine failure, kernel bug causes all processes on same machine to fail
- Some machine is compromised by malicious party

• Before RPC: whole system would crash/die
• After RPC: One machine crashes/compromised while others keep working
• Can easily result in inconsistent view of the world
- Did my cached data get written back or not?
- Did server do what I requested or not?

• Answer? Distributed transactions/Byzantine Commit

11/28/17 CS 318 – Lecture 20 – Distributed Systems 36

Problems with RPC: Performance
• Cost of Procedure call ≪ same-machine RPC ≪network RPC

• Means programmers must be aware that RPC is not free
- Caching can help, but may make failure handling complex

11/28/17 CS 318 – Lecture 20 – Distributed Systems 37

RPC Failure Semantic (1)
• What does a failure look like to the client RPC library?
- Client never sees a response from the server
- Client does not know if the server saw the request

• Maybe server/net failed just before sending reply

• Simplest scheme: at-least-once behavior
- RPC library waits for response for time T, if none arrives, re-send the request
- Repeat this a few times
- Still no response à return an error to the application

• Problem with at-least-once behavior?
- E.g., request is “deduct $100 from bank account”
-What about this sequence?: v = get(key); put(key, v - 100); put(key, v);

11/28/17 CS 318 – Lecture 20 – Distributed Systems 38

client server

request

reply

https://pdos.csail.mit.edu/6.824/notes/l-rpc.txt

RPC Failure Semantic (2)
• When is at-least-once behavior OK?
- If it’s ok to repeat an operation, e.g., get(key);
- If the application has its own way of dealing with duplicates

• Another (better) RPC behavior: at most once
- Idea: server RPC code detects duplicate requests returns previous reply

instead of re-running handler
- How to detect a duplicate request?

• client includes unique ID (XID) with each request, and uses the same XID for re-send
• server checks an incoming XID in a table, if an entry is found, directly returns the reply

11/28/17 CS 318 – Lecture 20 – Distributed Systems 39
https://pdos.csail.mit.edu/6.824/notes/l-rpc.txt

RPC Failure Semantic (3)
• Some complexities about implementing at-most-once
- How to ensure XID is unique?
- Server must eventually discard info about old RPCs, when is it safe to discard?
- How to handle duplicate request while original is still executing?

• What if an at-most-once server crashes and re-starts?
- If duplicate info is in memory, server will forget and accept duplicate requests after re-start
- It could write the duplicate info to disk
- Replica server could also replicate duplicate info

• What about "exactly once"?
- at-most-once plus unbounded retries plus fault-tolerant service

• RPC semantics beyond two entities
- Master sends RPC to a worker, worker doesn't respond, master re-send to another worker

• original worker may have not failed, and is working on it too

11/28/17 CS 318 – Lecture 20 – Distributed Systems 40
https://pdos.csail.mit.edu/6.824/notes/l-rpc.txt

RPC Summary
• RPC is the most common model for communication in distributed

applications
- “Cloaked” as DCOM, CORBA, Java RMI, etc.
- Some popular libraries: gRPC, Golang RPC
- Also used on same node between applications (e.g., gRPC)

• RPC is essentially language support for distributed programming
• RPC relies upon a stub compiler to automatically generate client/server

stubs from the IDL server descriptions
- These stubs do the marshalling/unmarshalling, message sending/receiving/replying

• At-least-once, at-most-once, exactly-once RPC failure semantic
• NFS uses RPC to implement remote file systems

11/28/17 CS 318 – Lecture 20 – Distributed Systems 41

Next Time…

• Mobile Systems

11/28/17 CS 318 – Lecture 20 – Distributed Systems 42

