CS 318 Principles of Operating Systems

Fall 2017

Lecture 16: File Systems Examples

Ryan Huang

File Systems Examples

BSD Fast File System (FFS)

- What were the problems with the original Unix FS?
- How did FFS solve these problems?

Log-Structured File system (LFS)

- What was the motivation of LFS?
- How did LFS work?

Original Unix FS

- From Bell Labs by Ken Thompson
- Simple and elegant:

Unix disk layout

Components

- Data blocks
- Inodes (directories represented as files)
- Free list
- Superblock. (specifies number of blks in FS, counts of max # of files, pointer to head of free list)

Problem: slow

- Only gets 2% of disk maximum (20Kb/sec) even for sequential disk transfers!

Why So Slow?

Problem 1: blocks too small (512 bytes)

- File index too large
- Require more indirect blocks
- Transfer rate low (get one block at time)

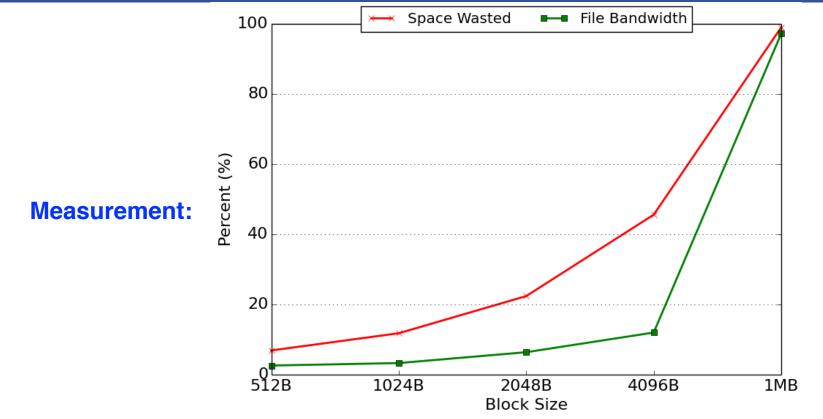
Problem 2: unorganized freelist

- Consecutive file blocks not close together
 - Pay seek cost for even sequential acces
- Aging: becomes fragmented over time

Problem 3: poor locality

- inodes far from data blocks
- inodes for directory not close together
 - poor enumeration performance: e.g., "Is", "grep foo *.c"

FFS: Fast File System


Designed by a Berkeley research group for the BSD UNIX

- A classic file systems paper to read: [McKusic]
- Approach:
 - measure an state of the art systems
 - identify and understand the fundamental problems
 - The original FS treats disks like random-access memory!
 - get an idea and build a better systems

Idea: design FS structures and allocation polices to be "disk aware"

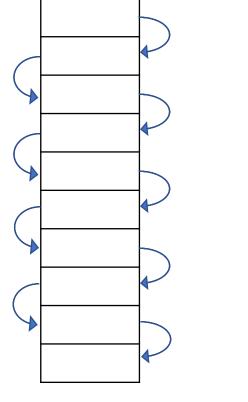
• Next: how FFS fixes the performance problems (to a degree)

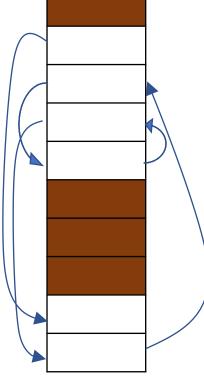
Problem 1: Blocks Too Small

- Bigger block increases bandwidth, but how to deal with wastage ("internal fragmentation")?
 - Use idea from malloc: split unused portion

Solution: Fragments

BSD FFS:


- Has large block size (4096B or 8192B)
- Allow large blocks to be chopped into small ones called "fragments"
 - Fragment size specified at the time that the file system is created
 - Algorithm to ensure fragments only used for little files or ends of files
 - Limit number of fragments per block to 2, 4, or 8
 - Keep track of free fragments


Pros

- High transfer speed for larger files
- Low wasted space for small files or ends of files

Problem 2: Unorganized Freelist

Leads to random allocation of sequential file blocks overtime

Measurement:

- New FS: **17.5%** of disk bandwidth
- Few weeks old: **3%** of disk bandwidth

Initial performance good

Get worse over time

Fixing the Unorganized Freelist

Periodical compact/defragment disk

- Cons: locks up disk bandwidth during operation

Keep adjacent free blocks together on freelist

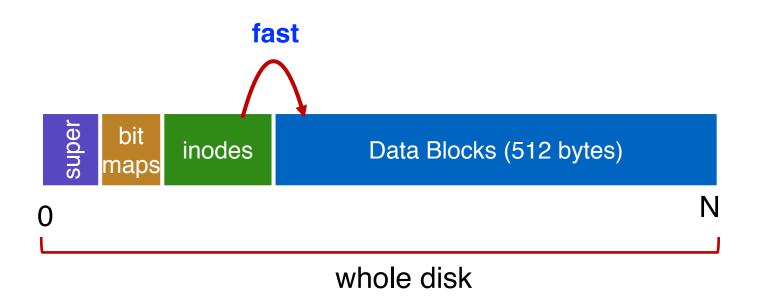
- Cons: costly to maintain

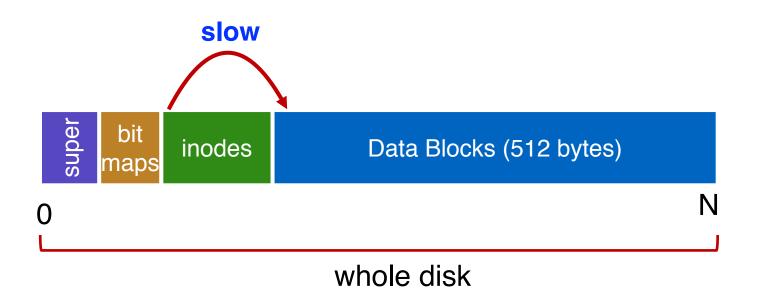
FFS: bitmap of free blocks

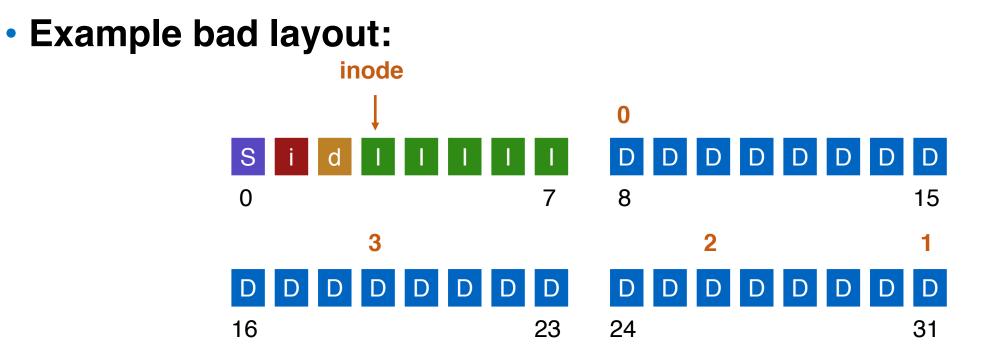
- Each bit indicates whether block is free
 - E.g., 1010101111111000001111111000101100
- Easier to find contiguous blocks
- Small, so usually keep entire thing in memory
- Time to find free blocks increases if fewer free blocks

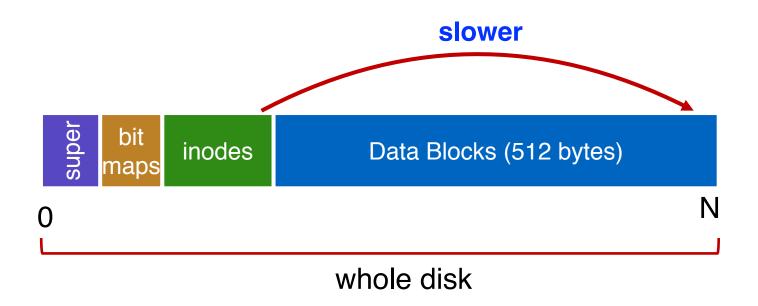
Using a Bitmap

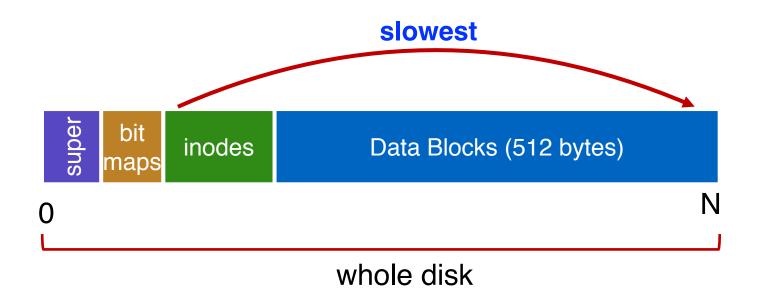
Usually keep entire bitmap in memory:

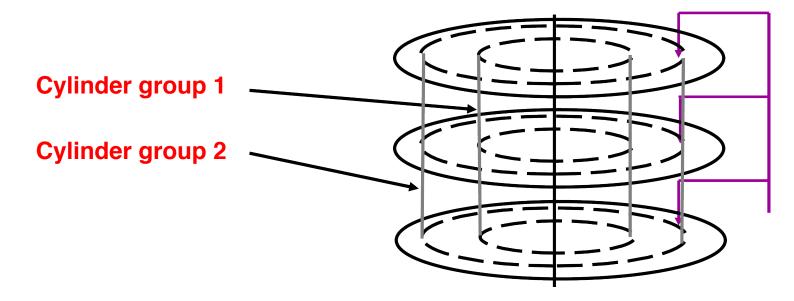

- 4G disk / 4K byte blocks. How big is map?


Allocate block close to block x?


- Check for blocks near bmap[x/32]
- If disk almost empty, will likely find one near
- As disk becomes full, search becomes more expensive and less effective

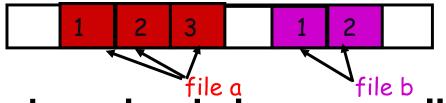

• Trade space for time (search time, file access time)





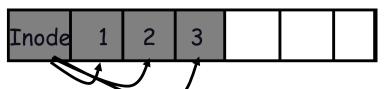
FFS Solution: Cylinder Group

Group sets of consecutive cylinders into "cylinder groups"

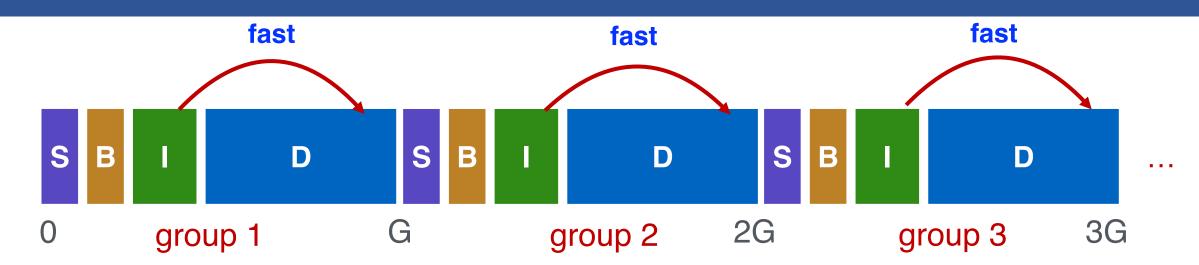


- Key: can access any block in a cylinder without performing a seek. Next fastest place is adjacent cylinder.
- Tries to put everything related in same cylinder group
- Tries to put everything not related in different group

Clustering in FFS


Tries to put sequential blocks in adjacent sectors

- (Access one block, probably access next)


Tries to keep inode in same cylinder as file data:

- (If you look at inode, most likely will look at data too)

- Tries to keep all inodes in a dir in same cylinder group
 - Access one name, frequently access many, e.g., "Is -I"

What Does Disk Layout Look Like Now?

How to keep inode close to data block?

- Answer: Use groups across disks
- Strategy: allocate inodes and data blocks in same group
- Each cylinder group basically a mini-Unix file system

• Is it useful to have multiple super blocks?

- Yes, if some (but not all) fail

FFS Results

Performance improvements:

- Able to get 20-40% of disk bandwidth for large files
- 10-20x original Unix file system!
- Stable over FS lifetime
- Better small file performance (why?)

Other enhancements

- Long file names
- Parameterization
- Free space reserve (10%) that only admin can allocate blocks from

LFS: Log-structured File System

Motivation

- Faster CPUs: I/O becomes more and more of a bottleneck
- More memory: file cache is effective for reads
- Implication: writes compose most of disk traffic

Problems with previous FS

- Perform many small writes
 - Good performance on large, sequential writes, but many writes are still small, random
- Synchronous operation to avoid data loss
- Depends upon knowledge of disk geometry

An influential work designed by Mendel Rosenblum (VMWare co-founder) and John Ousterhout

Insight: treat disk like a tape-drive

- Best performance from disk for sequential access

• File system buffers writes in main memory until "enough" data

- How much is enough?
- Enough to get good sequential bandwidth from disk (MB)
- Unit called a "segment"

Write buffered data to new segment on disk in a sequential log

- Transfer all updates into a series of sequential writes
- Do not overwrite old data on disk: old copies left behind
- Write both data and metadata in one operation

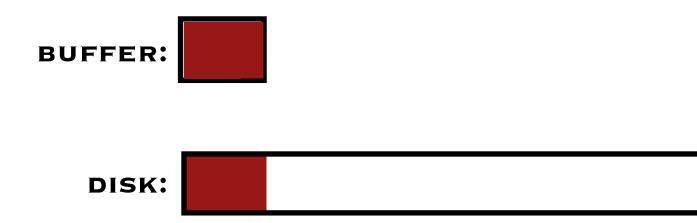
Pros And Cons

Pros

- Always large sequential writes \rightarrow good performance
- No knowledge of disk geometry
 - Assume sequential better than random

Potential problems

- How do you find data to read?
- What happens to metadata during write?
- What happens when you fill up the disk?


Read in LFS

Same basic structures as Unix

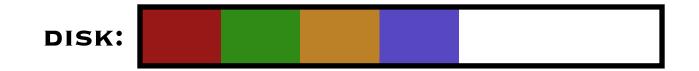
- Directories, inodes, indirect blocks, data blocks
- Reading data block implies finding the file's inode
 - Unix FS: inodes kept in array
 - LFS: inodes spread around on disk

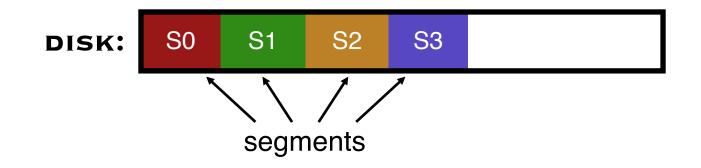
Solution: inode map indicates where each inode is stored

- Can keep cached copy in memory
- inode map written to log with everything else
- Periodically written to known checkpoint location on disk for crash recovery

• Why do we buffer the write?

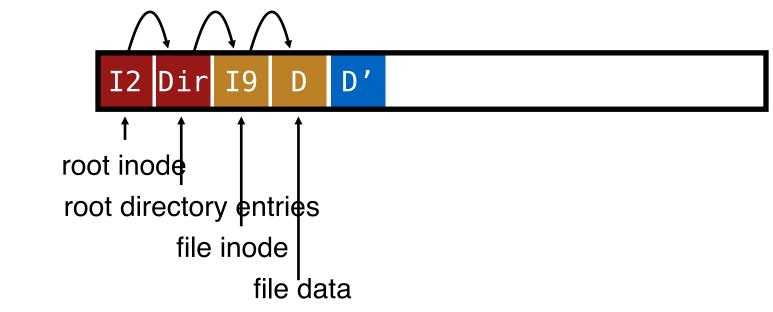
- Sequential write alone is not enough
- Disk is constantly rotating!
- Must issue a large number of contiguous writes





Data Structures for LFS (attempt 1)

What data structures from FFS can LFS remove?


- allocation structs: data + inode bitmaps

What type of name is much more complicated?

- Inodes are no longer at fixed offset
- Use current offset on disk instead of table index for name
- Note: when update inode, inode number changes!!

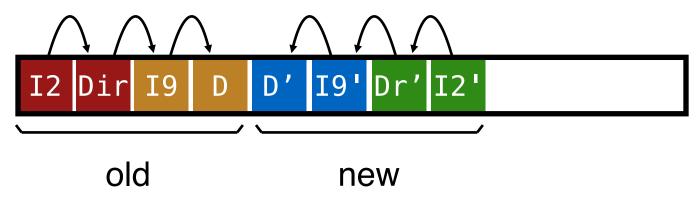
Overwrite Data in LFS – Attempt 1

• Overwrite data in /file.txt

How to update Inode 9 to point to new D' ???

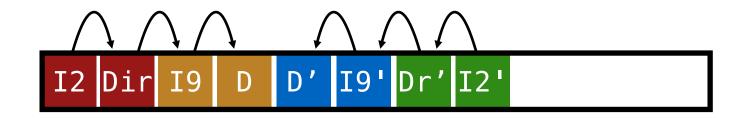
Overwrite Data in LFS – Attempt 1

• Overwrite data in /file.txt



Can LFS update Inode 9 to point to new D'?

- NO! This would be a random write


Overwrite Data in LFS – Attempt 1

• Overwrite data in /file.txt

Must update all structures in sequential order to log

Attempt 1: Problem w/ Inode Numbers

• Problem:

- For every data update, must propagate updates all the way up directory tree to root

• Why?

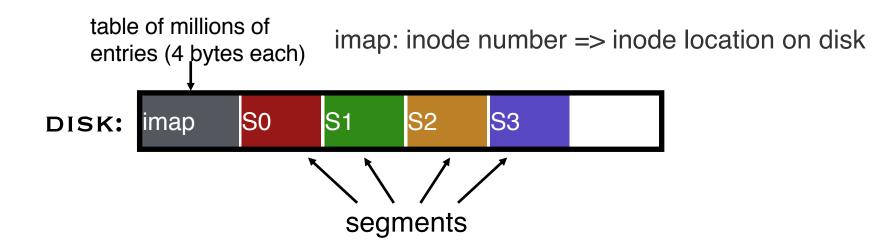
- When inode copied, its location (inode number) changes

Solution:

- Keep inode numbers constant; don't base name on offset

• FFS found inodes with math. How now?

Data Structures for LFS (attempt 2)

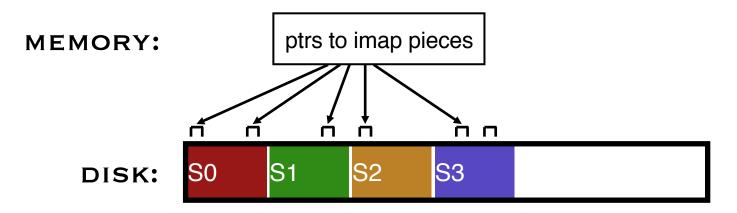

What data structures from FFS can LFS remove?

- allocation structs: data + inode bitmaps

What type of name is much more complicated?

- Inodes are no longer at fixed offset
- Use imap structure to map:
 - inode number => most recent inode location on disk

Where to keep Imap?


• Where can imap be stored? Dilemma:

- 1. imap too large to keep in memory
- 2. don't want to perform random writes for imap

Solution: Write imap in segments

- Keep pointers to pieces of imap in memory

Solution: Imap in Segments

Solution:

- Write imap in segments
- Keep pointers to pieces of imap in memory
- Keep recent accesses to imap cached in memory

Disk Cleaning

• When disk runs low on free space

- Run a disk cleaning process
- Compacts live information to contiguous blocks of disk

Problem: long-lived data repeatedly copied over time

- Solution: partition disk in to segments
- Group older files into same segment
 - Do not clean segments with old files

Try to run cleaner when disk is not being used

• Read Chapter 42