
CS 318 Principles of
Operating Systems

Fall 2017

Lecture 14: I/O & Disks
Ryan Huang

Midterm Results

• Mean: 56.5, Max: 72.5, STD Dev 8.7
- 318 Section: Mean 58.5 (amazing!), Max 70, STD Dev 9.2

10/24/17 CS 318 – Lecture 14 – I/O & Disks 2

0

5

10

15

20

25

40 45 50 55 60 65 70 80

Pe
rc

en
t

Score Range

Midterm Results

10/24/17 CS 318 – Lecture 14 – I/O & Disks 3

Midterm Results

• Tend to overthink a problem
- The synchronization and dining graduate problem are directly adapted from

homework and textbook
- A variety of overly complex (incorrect) answers

• Some serious misconception
- E.g., syscall makes user-level threads faster (Q4 also from homework)

• Don’t panic if you didn’t do well on midterm
- Still a lot of chance to make up, e.g., do Lab 3 well
- But do make sure you understand all the questions and answers now

10/24/17 CS 318 – Lecture 14 – I/O & Disks 4

Administrivia
• Midterm solution will not be directly posted online
- The Rubric items are published in gradescope
- Can request to see the copy of sample solution in my office hour or the CAs’

• If there is issue with grading, email the staff list or request
through gradescope
• If you want to talk about midterm, don’t hesitate to contact me
• Lab 3 is out, please start early
- workload increasing
- absolute late penalty increasing
- suggest checking design with the staff first

10/24/17 CS 318 – Lecture 14 – I/O & Disks 5

I/O Devices

• I/O is critical to computer system to interact with systems.

• Issue:
- How should I/O be integrated into systems?
-What are the general mechanisms?
- How can we make the efficiently?

10/24/17 CS 318 – Lecture 14 – I/O & Disks 6

Structure of Input/Output (I/O) Device

CPU Memory

Graphics

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

10/24/17 CS 318 – Lecture 14 – I/O & Disks 7

Buses

• Buses
- Data paths that provided to enable information between CPU(s), RAM, and

I/O devices.

• I/O bus
- Data path that connects a CPU to an I/O device.
- I/O bus is connected to I/O device by three hardware components: I/O ports,

interfaces and device controllers.

10/24/17 CS 318 – Lecture 14 – I/O & Disks 8

What Is I/O Bus? E.g., PCI

10/24/17 CS 318 – Lecture 14 – I/O & Disks 9

Canonical Device

Command Data

Canonical Device

Device Registers: Status interface

10/24/17 CS 318 – Lecture 14 – I/O & Disks 10

OS reads/writes to these

Canonical Device

Command Data

Canonical Device

Device Registers:

???

Status interface

internals

10/24/17 CS 318 – Lecture 14 – I/O & Disks 11

OS reads/writes to these

Canonical Device

Command Data

Canonical Device

Device Registers:

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status interface

internals

10/24/17 CS 318 – Lecture 14 – I/O & Disks 12

OS reads/writes to these

Hardware Interface Of Canonical Device

• status register
- See the current status of the device

• command register
- Tell the device to perform a certain task

• data register
- Pass data to the device, or get data from the device

• By reading or writing the above three registers, the OS controls
device behavior.

10/24/17 CS 318 – Lecture 14 – I/O & Disks 13

Hardware Interface Of Canonical Device

• Typical interaction example

while (STATUS == BUSY)

; //wait until device is not busy

write data to data register

write command to command register

Doing so starts the device and executes the command

while (STATUS == BUSY)

; //wait until device is done with your request

10/24/17 CS 318 – Lecture 14 – I/O & Disks 14

Polling

• OS waits until the device is ready by repeatedly reading the
status register
- Positive aspect is simple and working.
- However, it wastes CPU time just waiting for the device.

• Switching to another ready process is better utilizing the CPU.

.1 1 1 1 1 p p p p p 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by polling

1 1 1 1 1

: task 11 : pollingP
“waiting IO”

10/24/17 CS 318 – Lecture 14 – I/O & Disks 15

Interrupts

• Put the I/O request process to sleep and context switch to
another

• When the device is finished, wake the process waiting for the
I/O by interrupt
- Positive aspect is allow to CPU and the disk are properly utilized.

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by interrupt

1 1 1 1 1

: task 11 : task 22

10/24/17 CS 318 – Lecture 14 – I/O & Disks 16

Polling vs Interrupts
• However, “interrupts is not always the best solution”
- If, device performs very quickly, interrupt will “slow down” the system.

• E.g., high network packet arrival rate
- Packets can arrive faster than OS can process them
- Interrupts are very expensive (context switch)
- Interrupt handlers have high priority
- In worst case, can spend 100% of time in interrupt handler and never make any progress –

receive livelock
- Best: Adaptive switching between interrupts and polling

If a device is fast à poll is best.
If it is slow à interrupts is better.

10/24/17 CS 318 – Lecture 14 – I/O & Disks 17

One More Problem: Data Copying
• CPU wastes a lot of time in copying a large chunk of data from

memory to the device.

1 1 1 1 C C C 2 2 2 2 2 1 1 1CPU

Disk

Diagram of CPU utilization

1 1 1 1 1

“over-burdened” : task 11 : task 22

C : copy data from memory

10/24/17 CS 318 – Lecture 14 – I/O & Disks 18

DMA (Direct Memory Access)

• Idea: only use CPU to transfer control requests, not data

• Include list of buffer locations in main memory
- Device reads list and accesses buffers through DMA
- Descriptions sometimes allow for scatter/gather I/O

Buffer descriptor list

10/24/17 CS 318 – Lecture 14 – I/O & Disks 19

DMA (Direct Memory Access) Cont.

• When completed, DMA raises an interrupt, I/O begins on Disk.

1 1 1 1 2 2 2 2 2 2 2 2 1 1 1CPU

DMA

Diagram of CPU utilization by DMA

1 1 1 1 1

C C C

Disk

: task 11 : task 22

C : copy data from memory

10/24/17 CS 318 – Lecture 14 – I/O & Disks 20

Example: Network Interface Card

• Link interface talks to wire/fiber/antenna
- Typically does framing, link-layer CRC

• FIFOs on card provide small amount of buffering

• Bus interface logic uses DMA to move packets to and from buffers in main
memory

10/24/17 CS 318 – Lecture 14 – I/O & Disks 21

Device Interaction

• How the OS communicates with the device?

• Solutions
- I/O instructions: a way for the OS to send data to specific device registers.

• Ex) in and out instructions on x86
- memory-mapped I/O

• Device registers available as if they were memory locations.
• The OS load (to read) or store (to write) to the device instead of main memory.

10/24/17 CS 318 – Lecture 14 – I/O & Disks 22

x86 I/O instructions
static inline uint8_t inb (uint16_t port)
{
uint8_t data;
asm volatile ("inb %w1, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void outb (uint16_t port, uint8_t data)
{
asm volatile ("outb %b0, %w1" : : "a" (data), "Nd" (port));

}

static inline void insw (uint16_t port, void *addr, size_t cnt)
{
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)

: "d" (port) : "memory");
}

Pintos threads/io.h10/24/17 CS 318 – Lecture 14 – I/O & Disks 23

IDE Disk Driver
void IDE_ReadSector(int disk, int off,

void *buf)
{
// Select Drive
outb(0x1F6, disk == 0 ? 0xE0 : 0xF0);
IDEWait();
// Read length (1 sector = 512 B)
outb(0x1F2, 1);
outb(0x1F3, off); // LBA low
outb(0x1F4, off >> 8); // LBA mid
outb(0x1F5, off >> 16); // LBA high
outb(0x1F7, 0x20); // Read command
insw(0x1F0, buf, 256); // Read 256 words

}

void IDEWait()
{
// Discard status 4 times
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7);
// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) != 0);

}

10/24/17 CS 318 – Lecture 14 – I/O & Disks 24

Memory-mapped IO
• in/out instructions slow and clunky
- Instruction format restricts what registers you can use
- Only allows 216 different port numbers
- Per-port access control turns out not to be useful (any port access allows you

to disable all interrupts)

• Devices can achieve same effect with physical addresses, e.g.:

- OS must map physical to virtual addresses, ensure non-cachable

volatile int32_t *device_control
= (int32_t *) (0xc0100 + PHYS_BASE);

*device_control = 0x80;
int32_t status = *device_control;

10/24/17 CS 318 – Lecture 14 – I/O & Disks 25

Protocol Variants

• Status checks: polling vs. interrupts

• Data: PIO vs. DMA

• Control: special instructions vs. memory-mapped I/O

10/24/17 CS 318 – Lecture 14 – I/O & Disks 26

Command DataDevice Registers:

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status

Variety Is a Challenge

• Problem:
- many, many devices
- each has its own protocol

• How can we avoid writing a slightly different OS for each H/W
combination?

10/24/17 CS 318 – Lecture 14 – I/O & Disks 27

Variety Is a Challenge

• Problem:
- many, many devices
- each has its own protocol

• How can we avoid writing a slightly different OS for each H/W
combination?

• Solution: Abstraction!
- Build a common interface
-Write device driver for each device
- Drivers are 70% of Linux source code

10/24/17 CS 318 – Lecture 14 – I/O & Disks 28

File System Abstraction

• File system specifics of which disk class it is using.
- Ex) It issues block read and write request to the generic block layer.

The File System Stack

kernel

Application

File System

Generic Block Layer

Device Driver [SCSI, ATA, etc]

Specific Block Interface [protocol-specific read/write]

Generic Block Interface [block read/write]

user

POSIX API [open, read, write, close, etc]

10/24/17 CS 318 – Lecture 14 – I/O & Disks 29

Hard Drive

Hard Disks

10/24/17 CS 318 – Lecture 14 – I/O & Disks 30

Hard Disks

10/24/17 CS 318 – Lecture 14 – I/O & Disks 31

Hard Disks

10/24/17 CS 318 – Lecture 14 – I/O & Disks 32

Basic Interface

• Disk interface presents linear array of sectors
- Historically 512 Bytes
-Written atomically (even if there is a power failure)
- 4 KiB in “advanced format” disks

• Torn write: If an untimely power loss occurs, only a portion of a larger write may
complete

• Disk maps logical sector #s to physical sectors

• OS doesn’t know logical to physical sector mapping

10/24/17 CS 318 – Lecture 14 – I/O & Disks 33

Basic Geometry

• Platter (Aluminum coated with a thin magnetic layer)
- A circular hard surface
- Data is stored persistently by inducing magnetic changes to it.
- Each platter has 2 sides, each of which is called a surface.

10/24/17 CS 318 – Lecture 14 – I/O & Disks 34

Basic Geometry (Cont.)
• Spindle
- Spindle is connected to a motor that spins the platters around.
- The rate of rotations is measured in RPM (Rotations Per Minute).

• Typical modern values : 7,200 RPM to 15,000 RPM.

• Track
- Concentric circles of sectors
- Data is encoded on each surface in a track.
- A single surface contains many thousands and thousands of tracks.

• Cylinder
- A stack of tracks of fixed radius
- Heads record and sense data along cylinders
- Generally only one head active at a time

10/24/17 CS 318 – Lecture 14 – I/O & Disks 35

Cylinders, Tracks, & Sectors

10/24/17 CS 318 – Lecture 14 – I/O & Disks 36

A Simple Disk Drive

• Disk head (One head per surface of the drive)
- The process of reading and writing is accomplished by the disk head.
- Attached to a single disk arm, which moves across the surface.

A Single Track Plus A Head

1
23

4

5

6

7
8 9

10

11

0

spindle

Rotates this way

10/24/17 CS 318 – Lecture 14 – I/O & Disks 37

• Rotational delay: Time for the desired sector to rotate
- Ex) Full rotational delay is R and we start at sector 6

• Read sector 0: Rotational delay = !
"

• Read sector 5: Rotational delay = R-1 (worst case.)

Single-track Latency: The Rotational Delay

10/24/17 CS 318 – Lecture 14 – I/O & Disks 38

A Single Track Plus A Head

1
23

4

5

6

7
8 9

10

11

0

spindle

Rotates this way

Multiple Tracks

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 39

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Multiple Tracks: Seek To Right Track

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 40

Multiple Tracks: Seek To Right Track

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 41

Multiple Tracks: Seek To Right Track

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 42

Multiple Tracks: Wait for Rotation

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 43

Multiple Tracks: Wait for Rotation

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 44

Multiple Tracks: Wait for Rotation

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 45

Multiple Tracks: Wait for Rotation

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 46

Multiple Tracks: Wait for Rotation

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 47

Multiple Tracks: Wait for Rotation

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 48

Multiple Tracks: Transfer Data

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 49

Multiple Tracks: Transfer Data

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 50

Multiple Tracks: Transfer Data

• Let’s Read 12!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 51

Yay!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 52

Multiple Tracks: Seek Time

• Seek: Move the disk arm to the correct track
- Seek time: Time to move head to the track contain the desired sector.
- One of the most costly disk operations.

10/24/17 CS 318 – Lecture 14 – I/O & Disks 53

1

2

3

4

5
6

7

8

9

10

11
0

13

14

15

16

17
18

19

20

21

22

23
12

25

26

27

28

2930
31

32

33

34

35 24

1

2
3

4

5

6

7

8
9

10

11

0

13

1415
16

17

18

19

20 21
22

23

12

25
2627

28

29

30

31
32 33

34

35

24
spindle spindle

Rotates this way Rotates this way

Seek, Rotate, Transfer

• Acceleration à Coasting à Deceleration à Settling
- Acceleration: The disk arm gets moving.
- Coasting: The arm is moving at full speed.
- Deceleration: The arm slows down.
- Settling: The head is carefully positioned over the correct track.

• Seeks often take several milliseconds!
- settling alone can take 0.5 to 2ms.
- entire seek often takes 4 - 10 ms.

10/24/17 CS 318 – Lecture 14 – I/O & Disks 54

Seek, Rotate, Transfer

• Depends on rotations per minute (RPM)
- 7200 RPM is common, 1500 RPM is high end.

• With 7200 RPM, how long to rotate around?
- 1 / 7200 RPM = 1 minute / 7200 rotations = 1 second / 120 rotations = 8.3

ms / rotation

• Average rotation?
- 8.3 ms / 2 = 4.15 ms

10/24/17 CS 318 – Lecture 14 – I/O & Disks 55

Seek, Rotate, Transfer

• The final phase of I/O
- Data is either read from or written to the surface.

• Pretty fast — depends on RPM and ector density

• 100+ MB/s is typical for maximum transfer rate

• How long to transfer 512-bytes?
- 512 bytes * (1s / 100 MB) = 5 𝜇𝑠

10/24/17 CS 318 – Lecture 14 – I/O & Disks 56

Workload

• So…
- seeks are slow
- rotations are slow
- transfers are fast

• What kind of workload is fastest for disks?
- Sequential: access sectors in order (transfer dominated)
- Random: access sectors arbitrarily (seek+rotation dominated)

10/24/17 CS 318 – Lecture 14 – I/O & Disks 57

Track Skew

• Make sure that sequential reads can be properly serviced even when
crossing track boundaries
- Without track skew, the head would be moved to the next track but the desired next

block would have already rotated under the head.

Three Tracks: Track Skew Of 2

9

19

29

35

13

3

32 22 06 16 26

10

11
20

2130

31

33
34 23

12
1

2

24
25

14

15

4

5

27

28
17

18
7

8

Spindle

Rotates this way

10/24/17 CS 318 – Lecture 14 – I/O & Disks 58

Disk Scheduling

• Disk Scheduler decides which I/O request to schedule next

10/24/17 CS 318 – Lecture 14 – I/O & Disks 59

9

21

33

27

15

3

24 12 06 18 30

10

11
22

2334

35

25
26 13

14
1

2

28
29

16

17

4

5

31

32
19

20
7

8

Spindle

Rotates this way

Disk Scheduling: FCFS

• “First Come First Served”
- Process disk requests in the order they are received

• Advantages
- Easy to implement
- Good fairness

• Disadvantages
- Cannot exploit request locality
- Increases average latency, decreasing throughput

10/24/17 CS 318 – Lecture 14 – I/O & Disks 60

FCFS Example

10/24/17 CS 318 – Lecture 14 – I/O & Disks 61

SSTF (Shortest Seek Time First)

• Order the queue of I/O request by track

• Pick requests on the nearest track to complete first
- Also called shortest positioning time first (SPTF)

• Advantages
- Exploits locality of disk requests
- Higher throughput

• Disadvantages
- Starvation
- Don’t always know what request will be fastest

10/24/17 CS 318 – Lecture 14 – I/O & Disks 62

SSTF Example

10/24/17 CS 318 – Lecture 14 – I/O & Disks 63

“Elevator” Scheduling (SCAN)
• Sweep across disk, servicing all requests passed
- Like SSTF, but next seek must be in same direction
- Switch directions only if no further requests

• Advantages
- Takes advantage of locality
- Bounded waiting

• Disadvantages
- Cylinders in the middle get better service
- Might miss locality SSTF could exploit

• CSCAN: Only sweep in one direction
- Very commonly used algorithm in Unix

10/24/17 CS 318 – Lecture 14 – I/O & Disks 64

CSCAN example

10/24/17 CS 318 – Lecture 14 – I/O & Disks 65

Flash Memory
• Today, people increasingly using flash memory
• Completely solid state (no moving parts)
- Remembers data by storing charge
- Lower power consumption and heat
- No mechanical seek times to worry about

• Limited # overwrites possible
- Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases
- Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to logical

block don’t wear out physical block
- FTL can seriously impact performance

• Limited durability
- Charge wears out over time
- Turn off device for a year, you can potentially lose data!

10/24/17 CS 318 – Lecture 14 – I/O & Disks 66

Next Time…

• Read Chapter 39, 40

10/24/17 CS 318 – Lecture 14 – I/O & Disks 67

