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Midterm Results

• Mean: 56.5, Max: 72.5, STD Dev 8.7
- 318 Section: Mean 58.5 (amazing!), Max 70, STD Dev 9.2
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Midterm Results
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Midterm Results

• Tend to overthink a problem
- The synchronization and dining graduate problem are directly adapted from 

homework and textbook
- A variety of overly complex (incorrect) answers

• Some serious misconception
- E.g., syscall makes user-level threads faster (Q4 also from homework) 

• Don’t panic if you didn’t do well on midterm
- Still a lot of chance to make up, e.g., do Lab 3 well
- But do make sure you understand all the questions and answers now
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Administrivia
• Midterm solution will not be directly posted online
- The Rubric items are published in gradescope
- Can request to see the copy of sample solution in my office hour or the CAs’

• If there is issue with grading, email the staff list or request 
through gradescope
• If you want to talk about midterm, don’t hesitate to contact me
• Lab 3 is out, please start early
- workload increasing
- absolute late penalty increasing
- suggest checking design with the staff first
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I/O Devices 

• I/O is critical to computer system to interact with systems.

• Issue:
- How should I/O be integrated into systems? 
-What are the general mechanisms? 
- How can we make the efficiently?
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Structure of Input/Output (I/O) Device

CPU Memory

Graphics

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)
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Buses

• Buses
- Data paths that provided to enable information between CPU(s), RAM, and 

I/O devices.

• I/O bus
- Data path that connects a CPU to an I/O device.
- I/O bus is connected to I/O device by three hardware components: I/O ports, 

interfaces and device controllers.
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What Is I/O Bus? E.g., PCI
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Canonical Device 

Command Data

Canonical Device 

Device Registers: Status interface
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Canonical Device 

Command Data

Canonical Device 

Device Registers: 

???

Status interface

internals
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Canonical Device 

Command Data

Canonical Device 

Device Registers: 

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status interface

internals
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Hardware Interface Of Canonical Device 

• status register
- See the current status of the device

• command register
- Tell the device to perform a certain task

• data register
- Pass data to the device, or get data from the device

• By reading or writing the above three registers,  the OS controls 
device behavior.
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Hardware Interface Of Canonical Device 

• Typical interaction example

while ( STATUS == BUSY)

; //wait until device is not busy

write data to data register

write command to command register

Doing so starts the device and executes the command 

while ( STATUS == BUSY)

; //wait until device is done with your request 
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Polling

• OS waits until the device is ready by repeatedly reading the 
status register
- Positive aspect is simple and working. 
- However, it wastes CPU time just waiting for the device.

• Switching to another ready process is better utilizing the CPU.

.1 1 1 1 1 p p p p p 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by polling

1 1 1 1 1

: task 11 : pollingP
“waiting IO” 
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Interrupts

• Put the I/O request process to sleep and context switch to 
another

• When the device is finished, wake the process waiting for the 
I/O by interrupt
- Positive aspect is allow to CPU and the disk are properly utilized.

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by interrupt 

1 1 1 1 1

: task 11 : task 22
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Polling vs Interrupts 
• However, “interrupts is not always the best solution”
- If, device performs very quickly, interrupt will “slow down” the system. 

• E.g., high network packet arrival rate
- Packets can arrive faster than OS can process them
- Interrupts are very expensive (context switch)
- Interrupt handlers have high priority
- In worst case, can spend 100% of time in interrupt handler and never make any progress –

receive livelock
- Best: Adaptive switching between interrupts and polling

If a device is fast à poll is best.
If it is slow à interrupts is better.

10/24/17 CS 318 – Lecture 14 – I/O & Disks 17



One More Problem: Data Copying
• CPU wastes a lot of time in copying a large chunk of data from 

memory to the device.

1 1 1 1 C C C 2 2 2 2 2 1 1 1CPU

Disk

Diagram of CPU utilization

1 1 1 1 1

“over-burdened” : task 11 : task 22

C : copy data from memory
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DMA (Direct Memory Access)

• Idea: only use CPU to transfer control requests, not data

• Include list of buffer locations in main memory
- Device reads list and accesses buffers through DMA
- Descriptions sometimes allow for scatter/gather I/O

Buffer descriptor list
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DMA (Direct Memory Access) Cont.

• When completed, DMA raises an interrupt, I/O begins on Disk.

1 1 1 1 2 2 2 2 2 2 2 2 1 1 1CPU

DMA

Diagram of CPU utilization by DMA

1 1 1 1 1

C C C

Disk

: task 11 : task 22

C : copy data from memory
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Example: Network Interface Card

• Link interface talks to wire/fiber/antenna
- Typically does framing, link-layer CRC

• FIFOs on card provide small amount of buffering

• Bus interface logic uses DMA to move packets to and from buffers in main 
memory
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Device Interaction

• How the OS communicates with the device?

• Solutions
- I/O instructions: a way for the OS to send data to specific device registers.

• Ex) in and out instructions on x86
- memory-mapped I/O 

• Device registers available as if they were memory locations.
• The OS load (to read) or store (to write) to the device instead of main memory.
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x86 I/O instructions
static inline uint8_t inb (uint16_t port)
{
uint8_t data;
asm volatile ("inb %w1, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void outb (uint16_t port, uint8_t data)
{
asm volatile ("outb %b0, %w1" : : "a" (data), "Nd" (port));

}

static inline void insw (uint16_t port, void *addr, size_t cnt) 
{ 
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt) 

: "d" (port) : "memory");
}

Pintos threads/io.h10/24/17 CS 318 – Lecture 14 – I/O & Disks 23



IDE Disk Driver
void IDE_ReadSector(int disk, int off, 

void *buf)
{
// Select Drive
outb(0x1F6, disk == 0 ? 0xE0 : 0xF0);
IDEWait();
// Read length (1 sector = 512 B)
outb(0x1F2, 1);
outb(0x1F3, off); // LBA low
outb(0x1F4, off >> 8); // LBA mid
outb(0x1F5, off >> 16); // LBA high
outb(0x1F7, 0x20); // Read command
insw(0x1F0, buf, 256); // Read 256 words

}

void IDEWait()
{
// Discard status 4 times
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7);
// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) != 0);

}
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Memory-mapped IO
• in/out instructions slow and clunky
- Instruction format restricts what registers you can use
- Only allows 216 different port numbers
- Per-port access control turns out not to be useful (any port access allows you 

to disable all interrupts)

• Devices can achieve same effect with physical addresses, e.g.:

- OS must map physical to virtual addresses, ensure non-cachable

volatile int32_t *device_control
= (int32_t *) (0xc0100 + PHYS_BASE); 

*device_control = 0x80;
int32_t status = *device_control;

10/24/17 CS 318 – Lecture 14 – I/O & Disks 25



Protocol Variants

• Status checks: polling vs. interrupts

• Data: PIO vs. DMA

• Control: special instructions vs. memory-mapped I/O
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Command DataDevice Registers: 

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status



Variety Is a Challenge

• Problem:
- many, many devices
- each has its own protocol

• How can we avoid writing a slightly different OS for each H/W 
combination?

10/24/17 CS 318 – Lecture 14 – I/O & Disks 27



Variety Is a Challenge

• Problem:
- many, many devices
- each has its own protocol

• How can we avoid writing a slightly different OS for each H/W 
combination?

• Solution: Abstraction!
- Build a common interface
-Write device driver for each device
- Drivers are 70% of Linux source code
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File System Abstraction

• File system specifics of which disk class it is using.
- Ex) It issues block read and write request to the generic block layer.

The File System Stack

kernel

Application

File System

Generic Block Layer

Device Driver [SCSI, ATA, etc] 

Specific Block Interface [protocol-specific read/write]

Generic Block Interface [block read/write]

user

POSIX API [open, read, write, close, etc]
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Hard Disks

10/24/17 CS 318 – Lecture 14 – I/O & Disks 30



Hard Disks
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Hard Disks
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Basic Interface

• Disk interface presents linear array of sectors
- Historically 512 Bytes
-Written atomically (even if there is a power failure)
- 4 KiB in “advanced format” disks

• Torn write: If an untimely power loss occurs, only a portion of a larger write may 
complete

• Disk maps logical sector #s to physical sectors

• OS doesn’t know logical to physical sector mapping
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Basic Geometry

• Platter (Aluminum coated with a thin magnetic layer)
- A circular hard surface
- Data is stored persistently by inducing magnetic changes to it.
- Each platter has 2 sides, each of which is called a surface.
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Basic Geometry (Cont.)
• Spindle
- Spindle is connected to a motor that spins the platters around.
- The rate of rotations is measured in RPM (Rotations Per Minute).

• Typical modern values : 7,200 RPM to 15,000 RPM.

• Track
- Concentric circles of sectors
- Data is encoded on each surface in a track.
- A single surface contains many thousands and thousands of tracks.

• Cylinder
- A stack of tracks of fixed radius
- Heads record and sense data along cylinders
- Generally only one head active at a time
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Cylinders, Tracks, & Sectors
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A Simple Disk Drive

• Disk head (One head per surface of the drive)
- The process of reading and writing is accomplished by the disk head.
- Attached to a single disk arm, which moves across the surface.

A Single Track Plus A Head

1
23
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7
8 9

10

11

0

spindle

Rotates this way
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• Rotational delay: Time for the desired sector to rotate
- Ex) Full rotational delay is R and we start at sector 6

• Read sector 0: Rotational delay = !
"

• Read sector 5: Rotational delay = R-1 (worst case.)

Single-track Latency: The Rotational Delay
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Multiple Tracks

• Let’s Read 12!
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Multiple Tracks: Seek To Right Track

• Let’s Read 12!
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Multiple Tracks: Seek To Right Track

• Let’s Read 12!
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Multiple Tracks: Seek To Right Track

• Let’s Read 12!
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Multiple Tracks: Wait for Rotation

• Let’s Read 12!
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Multiple Tracks: Wait for Rotation

• Let’s Read 12!
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Multiple Tracks: Wait for Rotation

• Let’s Read 12!
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Multiple Tracks: Wait for Rotation

• Let’s Read 12!
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Multiple Tracks: Wait for Rotation

• Let’s Read 12!
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Multiple Tracks: Wait for Rotation

• Let’s Read 12!
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Multiple Tracks: Transfer Data

• Let’s Read 12!
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Multiple Tracks: Transfer Data

• Let’s Read 12!
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Multiple Tracks: Transfer Data

• Let’s Read 12!
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Yay!
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Multiple Tracks: Seek Time

• Seek: Move the disk arm to the correct track
- Seek time: Time to move head to the track contain the desired sector.
- One of the most costly disk operations.
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Seek, Rotate, Transfer

• Acceleration à Coasting à Deceleration à Settling
- Acceleration: The disk arm gets moving.
- Coasting: The arm is moving at full speed.
- Deceleration: The arm slows down.
- Settling: The head is carefully positioned over the correct track.

• Seeks often take several milliseconds!
- settling alone can take 0.5 to 2ms.
- entire seek often takes 4 - 10 ms.
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Seek, Rotate, Transfer

• Depends on rotations per minute (RPM)
- 7200 RPM is common, 1500 RPM is high end.

• With 7200 RPM, how long to rotate around?
- 1 / 7200 RPM = 1 minute / 7200 rotations = 1 second / 120 rotations = 8.3 

ms / rotation

• Average rotation?
- 8.3 ms / 2 = 4.15 ms
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Seek, Rotate, Transfer

• The final phase of I/O
- Data is either read from or written to the surface.

• Pretty fast — depends on RPM and ector density

• 100+ MB/s is typical for maximum transfer rate

• How long to transfer 512-bytes?
- 512 bytes * (1s / 100 MB) = 5 𝜇𝑠
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Workload

• So…
- seeks are slow
- rotations are slow
- transfers are fast

• What kind of workload is fastest for disks?
- Sequential: access sectors in order (transfer dominated)
- Random: access sectors arbitrarily (seek+rotation dominated)
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Track Skew

• Make sure that sequential reads can be properly serviced even when 
crossing track boundaries
- Without track skew, the head would be moved to the next track but the desired next 

block would have already rotated under the head.

Three Tracks: Track Skew Of 2
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Disk Scheduling

• Disk Scheduler decides which I/O request to schedule next

10/24/17 CS 318 – Lecture 14 – I/O & Disks 59

9

21

33

27

15

3

24 12 06 18 30

10

11
22

2334

35

25
26 13

14
1

2

28
29

16

17

4

5

31

32
19

20
7

8

Spindle

Rotates this way



Disk Scheduling: FCFS

• “First Come First Served”
- Process disk requests in the order they are received

• Advantages
- Easy to implement
- Good fairness

• Disadvantages
- Cannot exploit request locality
- Increases average latency, decreasing throughput

10/24/17 CS 318 – Lecture 14 – I/O & Disks 60



FCFS Example
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SSTF (Shortest Seek Time First)

• Order the queue of I/O request by track

• Pick requests on the nearest track to complete first
- Also called shortest positioning time first (SPTF)

• Advantages
- Exploits locality of disk requests
- Higher throughput

• Disadvantages
- Starvation
- Don’t always know what request will be fastest
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SSTF Example
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“Elevator” Scheduling (SCAN)
• Sweep across disk, servicing all requests passed
- Like SSTF, but next seek must be in same direction
- Switch directions only if no further requests

• Advantages
- Takes advantage of locality
- Bounded waiting

• Disadvantages
- Cylinders in the middle get better service
- Might miss locality SSTF could exploit

• CSCAN: Only sweep in one direction
- Very commonly used algorithm in Unix
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CSCAN example
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Flash Memory
• Today, people increasingly using flash memory
• Completely solid state (no moving parts)
- Remembers data by storing charge
- Lower power consumption and heat
- No mechanical seek times to worry about

• Limited # overwrites possible
- Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases 
- Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to logical 

block don’t wear out physical block
- FTL can seriously impact performance

• Limited durability
- Charge wears out over time
- Turn off device for a year, you can potentially lose data!
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Next Time…

• Read Chapter 39, 40
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