Computer Vision Projective Geometry and Calibration

Professor Hager

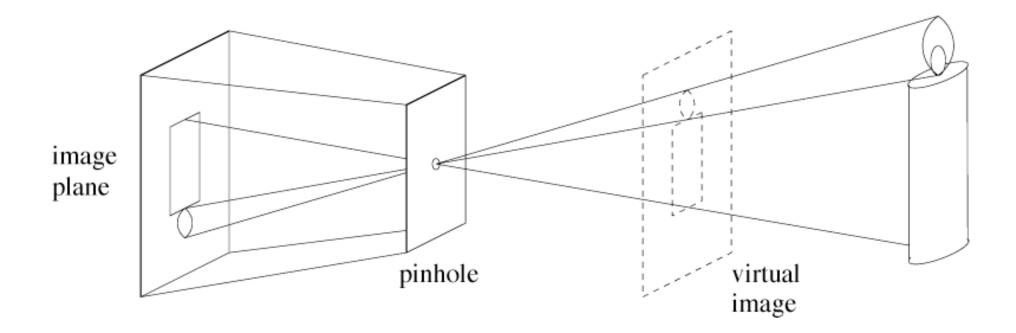
http://www.cs.jhu.edu/~hager

Jason Corso

http://www.cs.jhu.edu/~jcorso

Pinhole cameras

- Abstract camera model box with a small hole in it
- Pinhole cameras work in practice



Real Pinhole Cameras

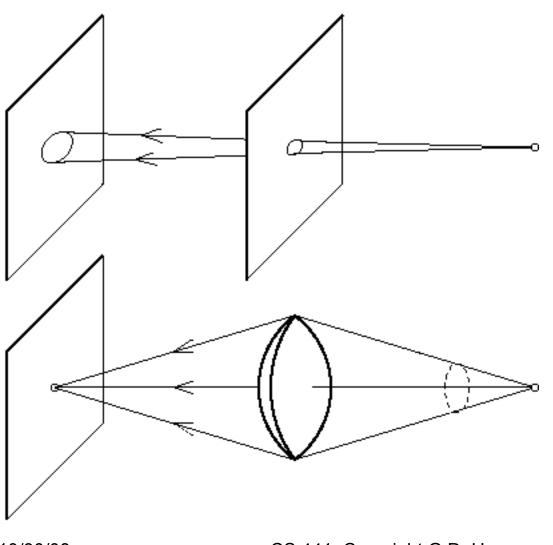
Pinhole too big many directions are averaged, blurring the image

Pinhole too smalldiffraction effects blur the image

Generally, pinhole cameras are *dark*, because a very small set of rays from a particular point hits the screen.

CS 441, Copyright G.D. Hager

The reason for lenses

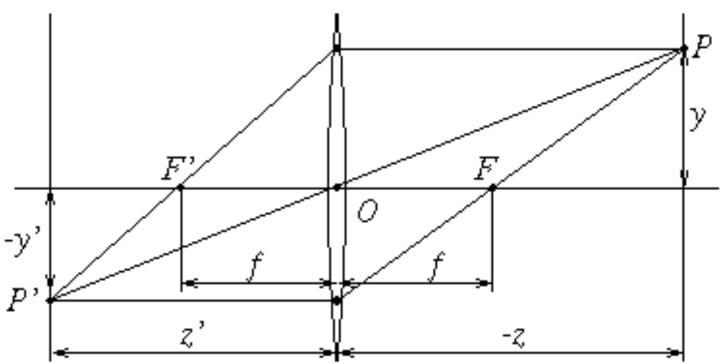


Lenses gather and focus light, allowing for brighter images.

10/30/08

CS 441, Copyright G.D. Hager

The thin lens

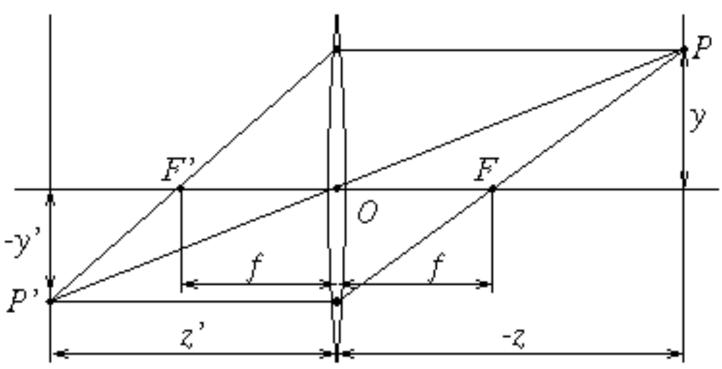


Thin Lens Properties:

- 1. A ray entering parallel to optical axis goes through the focal point.
- 2. A ray emerging from focal point is parallel to optical axis
- 3. A ray through the optical center is unaltered

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

The thin lens



$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

Note that, if the image plane is very small and/or z >> z', then z' is approximately equal to f

Field of View

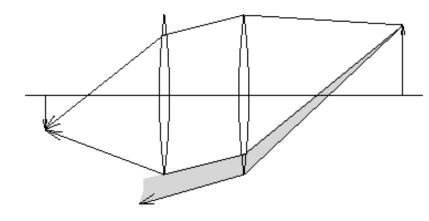
- The effective diameter of a lens (d) is the portion of a lens actually reachable by light rays.
- The effective diameter and the focal length determine the field of view:

$$\tan w = d/(2f)$$

- w is the half the total angular "view" of a lens system.
- Another fact is that in practice points at different distances are imaged, leading to so-called "circles of confusion" of size d/z | z'-z| where z is the nominal image plane and z' is the focusing distance given by the thin lens equation.
- The "depth of field" is the range of distances that produce acceptably focused images. Depth of field varies inversely with focal length and lens diameter.

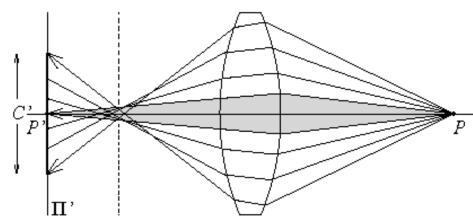
Lens Realities

Real lenses have a finite depth of field, and usually suffer from a variety of defects



vignetting

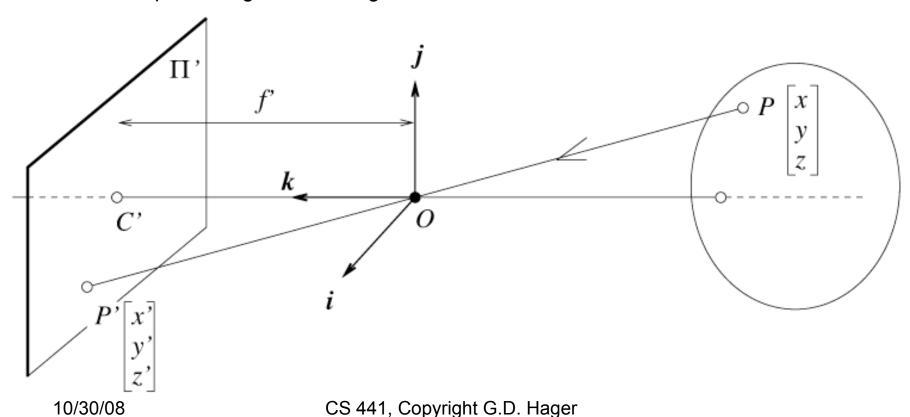
Spherical Aberration



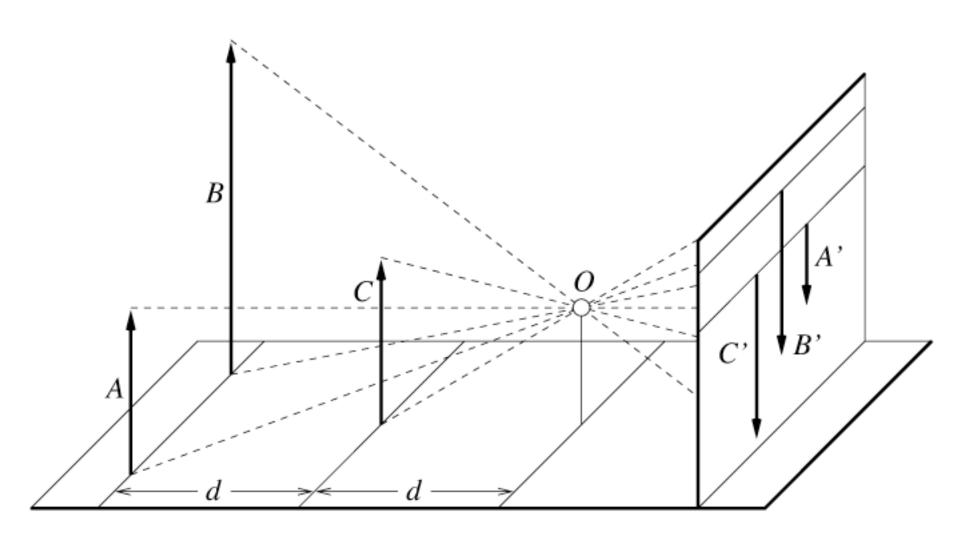
The equation of projection

- Equating z' and f
 - We have, by similar triangles,that (x, y, z) -> (-f x/z, -f y/z, -f)
 - Ignore the third coordinate, and flip the image around to get:

$$(x, y, z) \rightarrow (f\frac{x}{z}, f\frac{y}{z})$$



Distant objects are smaller



10/30/08

CS 441, Copyright G.D. Hager

Parallel lines meet



A Good Exercise: Show this is the case!

Projection Geometry: Standard Camera Coordinates

- By convention, we place the image in front of the optical center
 - typically we approximate by saying it lies one focal distance from the center
 - in reality this can't be true for a finite size chip!
- Optical axis is z axis pointing outward
- X axis is parallel to the scanlines (rows) pointing to the right!
- By the right hand rule, the Y axis must point downward
- Note this corresponds with indexing an image from the upper left to the lower right, where the X coordinate is the column index and the Y coordinate is the row index.

An Aside: Geometric Transforms

In general, a point in n-D space transforms rigidly by

newpoint = rotate(point) + translate(point)

In 2-D space, this can be written as a matrix equation:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} Cos(\theta) & -Sin(\theta) \\ Sin(\theta) & Cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} tx \\ ty \end{pmatrix}$$

In 3-D space (or n-D), this can generalized as a matrix equation:

$$p' = R p + T$$
 or $p = R^t (p' - T)$

Properties of Rotations

- In general, a rotation matrix satisfies two properties:
 - $-R^tR=RR^t=I$
 - $\det(R) = 1$
- What does this make the inverse of a rotation?
- Note that this defines some properties of the component vectors of the matrix.
- A 3D rotation can be expressed in many ways:
 - as a composition of individual rotations $R_{3d}(q_1, q_2, q_3) = R_{2d}(q_1) R_{2d}(q_2) R_{2d}(q_3)$
 - as an angle-axis n, q $R = I \cos(q) + (1-\cos(q)) (n n^t) + \sin(q) sk(n)$

An Aside: Geometric Transforms

Often, we want to *compose* transformations, but using separate translations and rotations makes that clumsy.

Instead, we embed points in a higher-dimensional space by appending a 1 to the end (now a 4d vector)

Now, using the idea of *homogeneous transforms*, we can write:

$$p' = \begin{pmatrix} R & T \\ 0 & 0 & 0 & 1 \end{pmatrix} p$$

R and T both require 3 parameters. These correspond to the 6 *extrinsic parameters* needed for camera calibration

How Do We Combine Projection and Transformation?

 Step 0: Points are expressed in some coordinate system that is not the cameras (e.g. a model or a robot):

$$- p = (x, y, z, 1)$$

Step 1: Transform the points into camera coordinates

$$- q = (x', y', z', 1) = T p$$

Step 2: Project the points

$$- u = f x'/z' ; v = f y'/z'$$

A linear step followed by a nonlinear step ...

Basic Projective Concepts

- We have seen homogeneous coordinates already; projective geometry makes use
 of these types of coordinates, but generalizes them
- The vector p = (x,y,z,w)' is equivalent to the vector k p for nonzero k
 - note the vector p = 0 is disallowed from this representation
- The vector v = (x,y,z,0)' is termed a "point at infinity"; it corresponds to a direction

Basic Projective Concepts

- In 2D space
 - points:
 - Cartesian point (x,y)
 - Projective pt (x,y,w) with convention that w is a scale factor
 - lines
 - a point p on the line and a unit normal n s.t. n · (p' p) = 0
 - multiplying through, also $n \cdot p' d = 0$, where d is distance of closest pt to origin.
 - any vector n · q = 0 where q is a projective pt
 - note, for two lines, the intersection is two equations in 3 unknowns up to scale
 i.e. a one-dimensional subspace, or a *point*
 - note that points and lines are dual --- I can think of n or q as the normal (resp. point) e.g.
 - two points determine a line
 - two lines determine a point

Basic Projective Concepts

- In 3D space
 - points:
 - Cartesian point (x,y,z)
 - Projective pt (x,y,z,w) with convention that w is a scale factor
 - lines:
 - a point p on the line and unit vector v for direction
 - for minimal parameterization, p is closest point to origin
 - Alternative, a line is the intersection of two planes (see below)
 - planes
 - a point p on the plane and a unit normal n s.t. n · (p' p) = 0
 - multiplying through, also $n \cdot p' d = 0$, where d is distance of closest pt to origin.
 - any vector $\mathbf{n} \cdot \mathbf{q} = 0$ where q is a projective pt
 - note, for two planes, the intersection is two equations in 4 unknowns up to scale --- i.e. a one-dimensional subspace, or a *line*
 - Note that planes and points are dual --- in the above, I can equally think
 of n or q as the normal (resp. point).

Properties of SVD

- Recall the Singular Value Decomposition of a matrix M (m by n) is M = U D V^t where
 - U is m by n and has unit orthogonal columns (unitary)
 - D is n by n and has the singular values on the diagonal
 - V is n by n and has unit orthogonal columns (unitary)
- Interpretation:
 - V is the "input space"
 - D provides a "gain" for each input direction
 - U is a projection into the "output space"
- As a result:
 - The null space of M corresponds to the zero singular values in D
 - In most cases (e.g. Matlab) the singular values are sorted largest to smallest, so the null space is the right-most columns of V
 - Matlab functions are
 - [u,d,v] = SVD(m)
 - [u,d,v] = SVD(m,0) ("economy svd")
 - if m > n, only the first n singular values are computed and D is n by n
 - useful when solving overconstrained systems of equations

Some Projective Concepts

- The vector p = (x,y,z,w)' is equivalent to the vector k p for nonzero k
 - note the vector p = 0 is disallowed from this representation
- The vector v = (x,y,z,0)' is termed a "point at infinity"; it corresponds to a direction
- In P²,
 - given two points p_1 and p_2 , $I = p_1 \times p_2$ is the line containing them
 - given two lines, I_1 , and I_2 , $p = I_1 \times I_2$ is point of intersection
 - A point p lies on a line I if $p \cdot I = 0$ (note this is a consequence of the triple product rule)
 - I = (0,0,1) is the "line at infinity"
 - it follows that, for any point p at infinity, $I \cdot p = 0$, which implies that points at infinity lie on the line at infinity.

Some Projective Concepts

- The vector p = (x,y,z,w)' is equivalent to the vector k p for nonzero k
 - note the vector p = 0 is disallowed from this representation
- The vector v = (x,y,z,0)' is termed a "point at infinity"; it corresponds to a direction
- In P³,
 - A point p lies on a plane I if $p \cdot I = 0$ (note this is a consequence of the triple product rule; there is an equivalent expression in determinants)
 - I = (0,0,0,1) is the "plane at infinity"
 - it follows that, for any point p at infinity, $I \cdot p = 0$, which implies that points at infinity lie on the line at infinity.

Some Projective Concepts

- The vector p = (x,y,z,w)' is equivalent to the vector k p for nonzero k
 - note the vector p = 0 is disallowed from this representation
- The vector v = (x,y,z,0)' is termed a "point at infinity"; it corresponds to a direction
- Plucker coordinates
 - In general, a representation for a line through points p_1 and p_2 is given by all possible 2x2 determinants of $[p_1 p_2]$ (an n by 2 matrix)
 - $u = (l_{4,1}, l_{4,1}, l_{4,3}, l_{2,3}, l_{3,1}, l_{1,2})$ are the Plűcker coordinates of the line passing through the two points.
 - if the points are not at infinity, then this is also the same as (p₂- p₄, p₄ § p₂)
 - The first 3 coordinates are the direction of the line
 - The second 3 are the normal to the plane (in R³) containing the origin and the points
 - In general, a representation for a plane passing through three points p₁, p₂ and p₃ are the determinants of all 3 | † 3 submatrices [p₁ p₂ p₃]
 - let I_{i,i} mean the determinant of the matrix of matrix formed by the rows i and j
 - $P = (I_{234}, I_{134}, I_{142}, I_{123})$
 - Note the three points are colinear if all four of these values are zero (hence the original 3x4 matrix has rank 2, as we would expect).
 - Two lines are colinear if we create the 4x4 matrix [p₁,p₂,p'₁,p'₂] where the p's come from one line, and the p's come from another and the determinant is zero.

Parallel lines meet

- First, show how lines project to images.
- Second, consider lines that have the same direction (are parallel) but are not parallel to the imaging plane
- Third, consider the degenerate case of lines parallel to the image plane
 - (by convention, the vanishing point is at infinity!)

A Good Exercise: Show this is the case!

Vanishing points

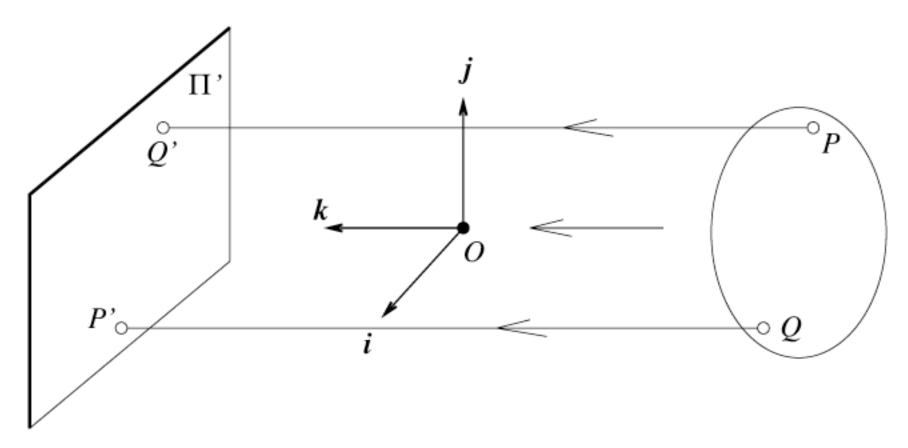
- Another good exercise: show the form of projection of *lines* into images.
- Each set of parallel lines (=direction) meets at a different point
 - The vanishing point for this direction
- Sets of parallel lines on the same plane lead to collinear vanishing points.
 - The line is called the *horizon* for that plane

The Camera Matrix

- Homogenous coordinates for 3D
 - four coordinates for 3D point
 - equivalence relation (X,Y,Z,T) is the same as (k X, k Y, k Z,k T)
- Turn previous expression into HC's
 - HC's for 3D point are (X,Y,Z,T)
 - HC's for point in image are (U,V,W)

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix} \qquad (U, V, W) \to (\frac{U}{W}, \frac{V}{W}) = (u, v)$$

Orthographic projection



Suppose I let f go to infinity; then

$$u = x$$

$$v = y$$

10/30/08

CS 441, Copyright G.D. Hager

The model for orthographic projection

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

Scaled Orthography (Weak Perspective)

Issue

- perspective effects, but not over the scale of individual objects
- collect points into a group at about the same depth, then divide each point by the depth of its group

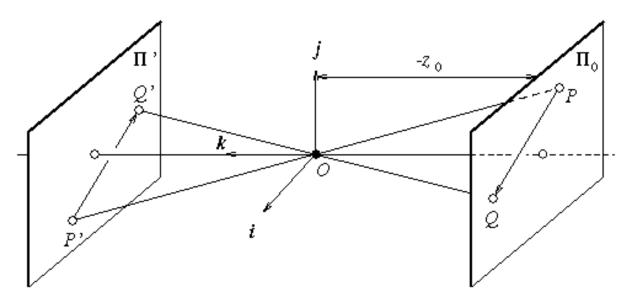
Adv: easy

Disadv: wrong

$$u = sx$$

$$v = sy$$

$$v = sy$$
$$s = f / Z *$$



The model for Scaled Orthography

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & Z*/f \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

Intrinsic Parameters

Intrinsic Parameters describe the conversion from unit focal length metric to pixel coordinates (and the reverse)

$$x_{mm} = -(x_{pix} - o_x) s_x --> -1/s_x x_{mm} + o_x = x_{pix}$$

 $y_{mm} = -(y_{pix} - o_y) s_y --> -1/s_y y_{mm} + o_y = y_{pix}$

or

$$\begin{pmatrix} x \\ y \\ w \end{pmatrix}_{pix} = \begin{pmatrix} -1/s_x & 0 & o_x \\ 0 & -1/s_y & o_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}_{mm} = K_{int} p$$

It is common to combine scale and focal length together as the are both scaling factors; note projection is unitless in this case!

10/30/08 CS 441, Copyright G.D. Hager

Putting it All Together

Now, using the idea of *homogeneous transforms*, we can write:

$$p' = \begin{pmatrix} R & T \\ 0 & 0 & 0 & 1 \end{pmatrix} p$$

R and T both require 3 parameters. These correspond to the 6 *extrinsic parameters* needed for camera calibration

Then we can write

q = M p' for some projection model M

Finally, we can write

u = K q for intrinsic parameters K

The Camera Matrix

- Homogenous coordinates for 3D
 - four coordinates for 3D point
 - equivalence relation (X,Y,Z,T) is the same as (k X, k Y, k Z,k T)
- Turn previous expression into HC's
 - HC's for 3D point are (X,Y,Z,T)
 - HC's for point in image are (U,V,W)

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix} \qquad (U, V, W) \to (\frac{U}{W}, \frac{V}{W}) = (u, v)$$

Camera Calibration

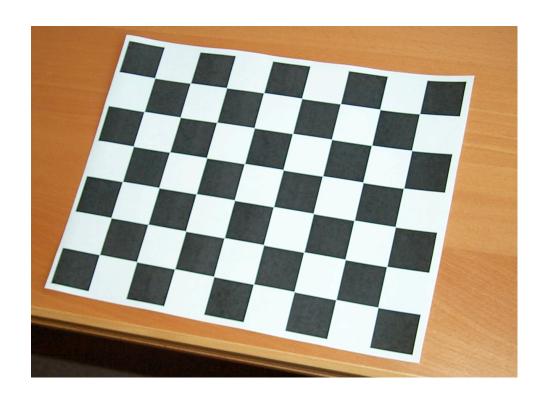
Calibration = the computation of the camera intrinsic and extrinsic parameters

- General strategy:
 - view calibration object
 - identify image points
 - obtain camera matrix by minimizing error
 - obtain intrinsic parameters from camera matrix
- Most modern systems employ the multi-plane method
 - avoids knowing absolute coordinates of calibration poitns

- Error minimization:
 - Linear least squares
 - · easy problem numerically
 - · solution can be rather bad
 - Minimize image distance
 - · more difficult numerical problem
 - solution usually rather good, but can be hard to find
 - start with linear least squares
 - Numerical scaling is an issue

Camera Calibration: Problem Statement

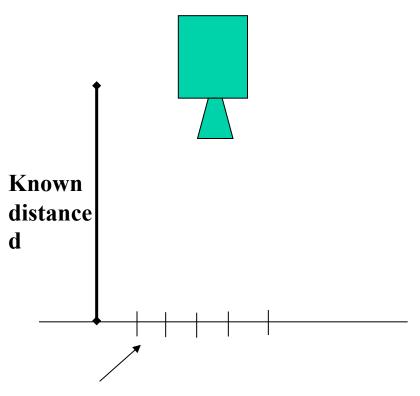
Compute the camera intrinsic (4 or more) and extrinsic parameters (6) using only observed camera data.



A Quick Aside: Least Squares

- Total least squares: a x_i + b y_i = z_i
 - Leads to min_{a b} \mathring{a}_i (a x_i + b y_i z_i)²
 - Equivalent to $\min_d \mathring{a}_i \mid\mid d^t u_i z_i \mid\mid^2$
 - Equivalent to $\min_{\mathbf{U}} ||\mathbf{U} \, d \mathbf{z}||^2$
 - Solution is given by taking derivatives yielding U^t U d = U^t z
 - This implies that U^t U must be full rank!
- Suppose I have min_p sum_i || f(p, x_i) z_i ||² ?
 - Many solutions, however notice if we Taylor series expand f, we get
 - $\min_{\Delta p} sum_i || f(p_0, x_i) + J_f(p_0, x_i) \triangle p z_i ||^2$
 - Define "innovation" $b_i = f(p_0, x_i) z_i$
 - Define $J = [J_f(p_0, x_1); J_f(p_0, x_2) ...; J_f(p_0, x_n)]$
 - Solve $min_{\triangle p} \parallel J \triangle p b \parallel^2$
- Finally, suppose we have min_A å_i || A u_i b_i ||²
 - Equivalent to $min_A \parallel A U = B \parallel^2_F$
 - Equivalent to solving A U = B in the least squares sense
 - Solution is to write A U U^t = B U^t ==> A = $(U U^t)^{-1} B$

CAMERA CALIBRATION: A WARMUP



$$\frac{rk_i}{d} = (x_i - o_x)s_x$$
$$\frac{r}{d} = (x_{i+1} - x_i)s_x$$

$$\frac{r}{d} = (x_{i+1} - x_i)s_x$$

known regular offset r

A simple way to get scale parameters; we can compute the optical center as the numerical center and therefore have the intrinsic parameters

Calibration: Another Warmup

- Suppose we want to calibrate the affine camera and we know
 u_i = A p_i + d for many pairs i
- m is mean of u's and q is mean of p's; note m = A q + d
- $U = [u_1 m, u_2 m, ... u_n m]$ and $P = [p_1 q, p_2 q, ... p_n q]$
- $U = A P \rightarrow U P' (P P')^{-1} = A$
- d is now mean of u_i A p_i

Types of Calibration

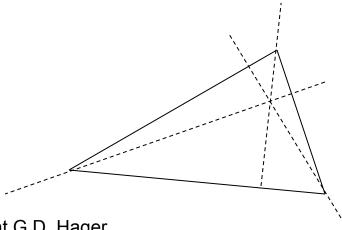
- Photogrammetric Calibration
- Self Calibration
- Multi-Plane Calibration

Photogrammetric Calibration

- Calibration is performed through imaging a pattern whose geometry in 3d is known with high precision.
- PRO: Calibration can be performed very efficiently
- CON: Expensive set-up apparatus is required; multiple orthogonal planes.
- Approach 1: Direct Parameter Calibration
- Approach 2: Projection Matrix Estimation

The General Case

- Affine is "easy" because it is linear and unconstrained (note orthographic is harder because of constraints)
- Perspective case is also harder because it is both nonlinear and constrained
- Observation: optical center can be computed from the orthocenter of vanishing points of orthogonal sets of lines.



Basic Equations

$$^{c}T_{w}=(T_{x},T_{y},T_{z})^{\prime}$$

$$^{c}R_{w}=(R_{x},R_{y},R_{z})^{\prime}$$

$$^{c}p = {^{c}R_{w}}^{w}p + {^{c}T_{w}}$$

$$u = -f \frac{R_x p + T_x}{R_z p + T_z}$$

$$v = -f \frac{R_y p + T_y}{R_z p + T_z}$$
CS 441, Copyright G.D. Hager

Basic Equations

$$\bar{u}_i f_y(R_y p_i + T_y) = \bar{v}_i f_x(R_x p_i + T_x)$$

$$\bar{u}_i (R_y p_i - T_y) - \bar{v}_i \alpha (R_x p_i + T_x) = 0$$

$$r = \alpha R_x$$
 and $w = \alpha T_x$
 $t = R_y$ and $s = T_y$
one of these for each point

$$A_i = (u_i p_i, u_i, -v_i p_i, -v_i) \text{ and } A[t, s, w, r]' = 0$$

Properties of SVD

- Recall the singular values of a matrix are related to its rank.
- Recall that Ax = 0 can have a nonzero x as solution only if A is singular.
- Finally, note that the matrix V of the SVD is an orthogonal basis for the domain of A; in particular the zero singular values are the basis vectors for the null space.
- Putting all this together, we see that A must have rank 7 (in this particular case) and thus x must be a vector in this subspace.
- Clearly, x is defined only up to scale.

Basic Equations

$$A_i = (u_i p_i, u_i, -v_i p_i, -v_i)$$
 and $A[t, s, w, r]' = Am = 0$

Note that m is defined up a scale factor!

A = UDV' and choose m as column of V corresponding to the smallest singular value

Basic Equations

$$A_i = (u_i p_i, u_i, -v_i p_i, -v_i)$$
 and $A[t, s, w, r]' = Am = 0$

 $||t|| = |\gamma|$ gives scale factor for solution $||w|| = |\gamma|\alpha$

We now know R_x and R_y up to a sign and g. $R_z = R_x \times R_y$

We will probably use another SVD to orthogonalize this system (R = U D V'; set D to I and multiply).

Last Details

- We still need to compute the correct sign.
 - note that the denominator of the original equations must be positive (points must be in front of the cameras)
 - Thus, the numerator and the projection must disagree in sign.
 - We know everything in numerator and we know the projection, hence we can determine the sign.
- We still need to compute T_z and f_x
 - we can formulate this as a least squares problem on those two values using the first equation.

$$\bar{u} = -f_x \frac{R_x p + T_x}{R_z p + T_z} \to \bar{u}(R_z p + T_z) = -f_x (R_x p + T_x) f_x (R_x p + T_x) + \bar{u} T_z = -\bar{u} R_z p A(f_x, T_z)' = b \to (f_x, T_z)' = (A'A)^{-1} A'b$$

Direct Calibration: The Algorithm

- 1. Compute image center from orthocenter
- 2. Compute the A matrix (6.8)
- 3. Compute solution with SVD
- 4. Compute gamma and alpha
- 5. Compute R (and normalize)
- 6. Compute f_x and and T_z
- 7. If necessary, solve a nonlinear regression to get distortion parameters

Indirect Calibration: The Basic Idea

- We know that we can also just write
 - $-\mathbf{u}_{h} = \mathbf{M} \mathbf{p}_{h}$
 - $x = (u/w) \text{ and } y = (v/w), \mathbf{u}_h = (u,v,1)'$
 - As before, we can multiply through (after plugging in for u,v, and w)
- Once again, we can write
 - Am = 0
- Once again, we use an SVD to compute m up to a scale factor.

Getting The Camera Parameters

$$M = \begin{bmatrix} -f_x R_x + o_x R_z & -f_x T_x + o_x T_z \\ -f_y R_y + o_y R_z & -f_y T_y + o_y T_z \\ R_z & T_z \end{bmatrix}$$

We'll write

$$M = \begin{bmatrix} q_1 \\ q_2 & q_4' \\ q_3 & \end{bmatrix}$$

Getting The Camera Parameters

$$M = \begin{bmatrix} -f_x R_x + o_x R_z & -f_x T_x + o_x T_z \\ -f_y R_y + o_y R_z & -f_y T_y + o_y T_z \\ R_z & T_z \end{bmatrix}$$
 FIRST:

We'll write

$$M = \left[\begin{array}{cc} q_1 \\ q_2 & q_4' \\ q_3 \end{array} \right]$$

THEN:

$$R_{y} = (q_{2} - o_{y} R_{z})/f_{y}$$

$$R_{x} = R_{y} x R_{z}$$

$$T_{x} = -(q_{4,1} - o_{x} T_{z})/f_{x}$$

$$T_{y} = -(q_{4,2} - o_{y} T_{z})/f_{y}$$

|q₃| is scale up to sign; divide by this value

 $M_{3.4}$ is T_z up to sign, but T_{z} must be positive; if not divide M by -1

$$o_x = q_1 \cdot q_3$$

 $o_y = q_2 \cdot q_3$
 $f_x = (q_1 \cdot q_1 - o_x^2)^{1/2}$
 $f_y = (q_2 \cdot q_2 - o_y^2)^{1/2}$

Finally, use SVD to orthogonalize the rotation,

Self-Calibration

- Calculate the intrinsic parameters solely from point correspondences from multiple images.
- Static scene and intrinsics are assumed.
- No expensive apparatus.
- Highly flexible but not well-established.
- Projective Geometry image of the absolute conic.

Model Examples: Points on a Plane

- Normal vector $n = (n_x, n_y, n_z, 0)$; point $P = (p_x, p_y, p_z, 1)$ plane equation: $n \cdot P = d$
 - w/o loss of generality, assume n₇ ¹ 0
 - Thus, $p_z = a p_x + b p_v + c$; let B = (a, b, 0, c)
 - Define P' = $(p_x, p_y, 0, 1)$
 - P = P' + (0,0,B P',0)
- Affine: u = A P, A a 3 by 4 matrix
 - u = $A_{1,2,4}$ P' + A_3 B P' = A_{3x3} P_{3x1}
 - Note that we can now *reproject* the points u and group the projections --- in short projection of projections stays within the affine group
- Projective p = M P, M a 4 by 3 matrix
 - $p = M_{1,2,4} P' + M_3 B P' = M P_{3\times 1}$
 - Note that we can now *reproject* the points p and group the resulting matrices --- in short projections of projections stays within the projective group

Planar Homographies

- First Fundamental Theorem of Projective Geometry:
 - There exists a unique homography that performs a change of basis between two projective spaces of the same dimension.

$$s[u \ v \ 1]^T = A[r_1 \ r_2 \ r_3 \ t][X \ Y \ Z \ 1]^T$$

 $s[u \ v \ 1]^T = A[r_1 \ r_2 \ r_3 \ t][X \ Y \ 0 \ 1]^T$
 $s[u \ v \ 1]^T = A[r_1 \ r_2 \ t][X \ Y \ 1]^T$
 $s[u \ v \ 1]^T = H[X \ Y \ 1]^T$

Projection Becomes

$$s\tilde{m} = H\tilde{M}$$

Notice that the homography H is defined up to scale (s).

Multi-Plane Calibration

- Hybrid method: Photogrammetric and Self-Calibration.
- Uses a planar pattern imaged multiple times (inexpensive).
- Used widely in practice and there are many implementations.
- Based on a group of projective transformations called homographies.
- m be a 2d point [u v 1]' and M be a 3d point [x y z 1]'.
- Projection is

$$s\tilde{m} = A[R \ T]\tilde{M}$$

Review: Projection Model

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix}_{pix} = \begin{pmatrix} s_u & 0 & o_u \\ 0 & s_v & o_v \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \end{pmatrix}_{mm}$$

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix}_{pix} = \begin{pmatrix} fs_u & 0 & o_u \\ 0 & fs_v & o_v \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \end{pmatrix}_{mm} = \begin{pmatrix} \alpha & \gamma & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \end{pmatrix} Ap$$

10/30/08

CS 441, Copyright G.D. Hager

Review: Projection Model

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix} = I \begin{bmatrix} R, T \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix}_{pix} = \begin{pmatrix} fs_u & 0 & o_u \\ 0 & fs_v & o_v \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \end{pmatrix}_{mm} = \begin{pmatrix} \alpha & \gamma & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \end{pmatrix}_{Ap}$$

10/30/08

CS 441, Copyright G.D. Hager

Result

- We know that $\begin{bmatrix} h_1 & h_2 & h_3 \end{bmatrix} = sA \begin{bmatrix} r_1 & r_2 & t \end{bmatrix}$
- From one homography, how many constraints on the intrinsic parameters can we obtain?
 - Extrinsics have 6 degrees of freedom.
 - The homography supplies 8 values.
 - Thus, we should be able to obtain 2 constraints per homography.
- Use the constraints on the rotation matrix columns...

Computing Intrinsics

Rotation Matrix is orthogonal....

$$r_i^T r_j = 0$$
$$r_i^T r_i = r_j^T r_j$$

Write the homography in terms of its columns...

$$h_1 = sAr_1$$

$$h_2 = sAr_2$$

$$h_3 = sAt$$

Computing Intrinsics

Derive the two constraints:

$$h_1 = sAr_1$$

$$\frac{1}{s}A^{-1}h_1 = r_1$$

$$\frac{1}{s}A^{-1}h_2 = r_2$$

$$r_1^T r_2 = 0$$

$$r_1^T r_2 = 0
 h_1^T A^{-T} A^{-1} h_2 = 0$$

$$r_1^T r_1 = r_2^T r_2$$

 $h_1^T A^{-T} A^{-1} h_1 = h_2^T A^{-T} A^{-1} h_2$

Closed-Form Solution

$$\operatorname{Let} B = A^{-T} A^{-1} = \begin{bmatrix} \frac{1}{\alpha^2} & -\frac{\gamma}{\alpha^2 \beta} & \frac{v_0 \gamma - u_0 \beta}{\alpha^2 \beta} \\ -\frac{\gamma}{\alpha^2 \beta} & \frac{\gamma^2}{\alpha^2 \beta^2} + \frac{1}{\beta^2} & -\frac{\gamma(v_0 \gamma - u_0 \beta))}{\alpha^2 \beta^2} - \frac{v_0}{\beta^2} \\ \frac{v_0 \gamma - u_0 \beta}{\alpha^2 \beta} & -\frac{\gamma(v_0 \gamma - u_0 \beta))}{\alpha^2 \beta^2} - \frac{v_0}{\beta^2} & \frac{(v_0 \gamma - u_0 \beta)^2}{\alpha^2 \beta^2} + \frac{v_0^2}{\beta^2} + 1 \end{bmatrix}$$

- Notice B is symmetric, 6 parameters can be written as a vector b.
- From the two constraints, we have h₁^T B h₂ = v₁₂ b

$$\left[\begin{array}{c} v_{ij}^{T} \\ (v_{11} - v_{22})^{T} \end{array}\right] b = 0;$$

- Stack up n of these for n images and build a 2n*6 system.
- Solve with SVD.
- Extrinsics "fall-out" of the result easily.

Computing Extrinsics

$$s[u \ v \ 1]^T = A[r_1 \ r_2 \ t][X \ Y \ 1]^T$$

 $s[u \ v \ 1]^T = H[X \ Y \ 1]^T$

First, compute H' = A⁻¹ H

Note that first two columns of H' should be rotation use this to determine scaling factor

Orthogonalize using SVD to get rotation

Pull out translation as scaled last column

Non-linear Refinement

- Closed-form solution minimized algebraic distance.
- Since full-perspective is a non-linear model
 - Can include distortion parameters (radial, tangential)
 - Use maximum likelihood inference for our estimated parameters.

$$\sum_{i=1}^{n} \sum_{j=1}^{m} ||m_{ij} - \hat{m}(A, R_k, T_k, M_j)||^2$$

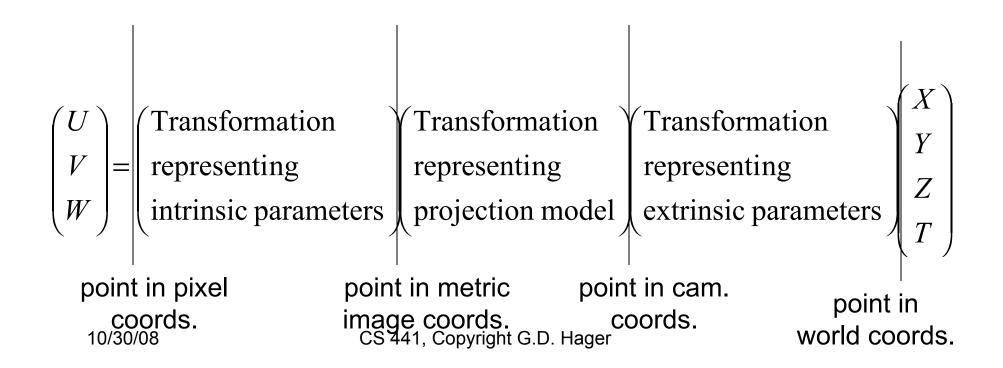
Multi-Plane Approach In Action

• ...if we can get matlab to work...

Camera parameters

Summary:

- points expressed in external frame
- points are converted to canonical camera coordinates
- points are projected
- points are converted to pixel units



Calibration Summary

- Two groups of parameters:
 - internal (intrinsic) and external (extrinsic)
- Many methods
 - direct and indirect, flexible/robust
- The form of the equations that arise here and the way they are solved is common in vision:
 - bilinear forms
 - -Ax = 0
 - Orthogonality constraints in rotations
- Most modern systems use the method of multiple planes (matlab demo)
 - more difficult optimization over a large # of parameters
 - more convenient for the user

Lens Distortion

 In general, lens introduce minor irregularities into images, typically radial distortions:

$$x = x_d(1 + k_1r^2 + k_2r^4)$$

$$y = y_d(1 + k_1r^2 + k_2r^4)$$

$$r^2 = x_d^2 + y_d^2$$

- The values k₁ and k₂ are additional parameters that must be estimated in order to have a model for the camera system.
 - The complete model is then:

$$\mathsf{q} = \mathsf{distort}(\mathsf{k}_{1,}\mathsf{k}_{2},\,\mathsf{K}(\mathsf{s}_{\mathsf{x}},\,\mathsf{s}_{\mathsf{y}},\,\mathsf{o}_{\mathsf{x}},\,\mathsf{o}_{\mathsf{y}}) \,^{*}\,(\Pi(\mathsf{p};\,\mathsf{R},\,\mathsf{t})))$$

The Final Iterations

- Recall scalar linear least squares:
 - $\min_{x} sum_{i} (y a x)^{2}$
- To go to multiple dimensions
 - $-\min_{x} sum_{i} ||y Ax||^{2}$
- What if we have a nonlinear problem?
 - $\min_{\mathbf{x}} \operatorname{sum}_{\mathbf{i}} ||\mathbf{y} \mathbf{F}(\mathbf{x})||^2$

Multi-Camera Calibration

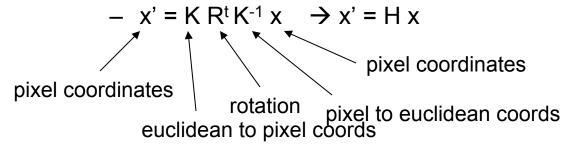
- Note that I might observe a target simultaneously in two or more cameras
 - For any given pair, I can solve for the transformation between them
 - For multiple pairs, I can optimize the relative location
- This is the natural lead-in to computational stereo ...

Estimating A Homography

- Here is what looks like a reasonable recipe for computing homographies:
 - Planar pts $(x_1; y_1; 1, x_2; y_2; 1, ..., x_n; y_n; 1) = X$
 - Corresponding pts $(u_1; v_1; 1, u_2; v_2; 1, ... u_n; v_n; 1) = U$
 - -U=HX
 - U X' (X X')⁻¹ = H
- The problem is that X will not be full rank (why?)
- Another problem, it is really I_i U_i = H X_i
- So we'll have to work a little harder ...
 - hint: work out algebraically eliminating l_i

Resampling Using Homographies

- Pick a rotation matrix R from old to new image
- Consider all points in the image you want to compute; then
 - construct pixel coordinates x = (u,v,1)
 - K maps unit focal length metric coordinates to pixel (normalized camera)



Sample a point x' in the original image for each point x in the new.

Rectification

- The goal of rectification is to turn a verged camera system into a non-verged system.
 - Let us assume we know $p_r = {}^rR_1 p_1 + T$
 - how would we get this out of camera calibration?
- Observation:
 - consider a coordinate system where the stereo baseline defines the x axis, z is any axis orthogonal to it, and y is z cross x.
 - x = T/||T||
 - $y = ([0,0,1] \times x)/||[0,0,1] \times x||$
 - z = x cross y
 - Note that both the left and right camera can now be rotated to be parallel to this frame
 - $^{1}R_{u} = [x \ y \ z]$ is the rotation from unverged to verged frame for left camera
 - ${}^{r}R_{u} = {}^{r}R_{l}{}^{l}R_{u}$

Bilinear Interpolation

- A minor detail --- new value x' = (u',v',1) may not be integer
- let $u' = i + f_u$ and $v' = j + f_v$
- New image value b = (1-f_u)((1-f_v)I(j,i) + f_v I(j+1,i)) + f_u((1-f_v)I(j,i+1) + f_v I(j+1,i+1))

Estimating Changes of Coordinates

- Affine Model: y = A x + d
- How do we solve this given matching pairs of y's and x's?
- How many points do we need for a unique solution?
- Note this can be written sum_i || y Ax -d ||²
 - It can also be written using the Frobenius norm
- Answer:

Estimating Changes of Coordinates

- Consider a 2D Euclidean model
 - -y=Rx+t
- How many points to solve for this transformation?
- Consider a 3D Euclidean model
 - y = Rx + t
- How many points to solve for this transformation?
- Here, SVD will come to the rescue!
 - Compute barycentric y' and x'
 - Compute $M = Y' X'^T$
 - $-M=UDV^{T}$
 - $-R=VU^{T}$

An Approximation: The Affine Camera

 Choose a nominal point x₀, y₀, z₀ and describe projection relative to that point

•
$$u = f[x_0/z_0 + (x-x_0)/z_0 - x_0/z_0^2 (z - z_0)] = f(a_1 x + a_2 z + d_1)$$

•
$$v = f [y_0/z_0 + (y - y_0)/z_0 - y_0/z_0^2 (z - z_0)] = f (a_3 y + a_4 z + d_2)$$

· gathering up

alternatively:

• A =
$$[a_1 \ 0 \ a_2; \ 0 \ a_3 \ a_4]$$

•
$$d = [d_1; d_2]$$

•
$$u = A P + d$$

add external transform

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} a_1 & 0 & a_2 & d_1 \\ 0 & a_3 & a_4 & d_2 \\ 0 & 0 & 0 & 1/f \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

alternatively:

 u = A (RP + T) + d --> u = A* Q where A* is 2x4 rank 2 Matrix and Q is homogeneous version of P

Summary: Other Models

- The orthographic and scaled orthographic cameras (also called weak perspective)
 - simply ignore z
 - differ in the scaling from x/y to u/v coordinates
 - preserve Euclidean structure to a great degree
- The affine camera is a generalization of orthographic models.
 - u = Ap + d
 - A is 2 x 3 and d is 2x1
 - This can be derived from scaled orthography or by linearizing perspective about a point not on the optical axis
- The projective camera is a generalization of the perspective camera.
 - u' = Mp
 - M is 3x4 nonsingular defined up to a scale factor
 - This just a generalization (by one parameter) from "real" model
- Both have the advantage of being linear models on real and projective spaces, respectively.

Related Transformation Models

- Euclidean models (homogeneous transforms); bp = bT_a a p
- Scaled Euclidean models: bp = s bTa ap
- Similarity: bp = S bT_a ap, S a diagonal matrix with positive values
- Affine models: ${}^{b}p = {}^{b}K_{a} {}^{a} p$, $K = [A,t;0 \ 0 \ 0 \ 1]$, $A \in GL(3)$
- Projective models: ^bp = ^bM_a ^a p, M ∈ GL(4)
 - Ray models
 - Affine plane
 - Sphere

Model Stratification

	Euclidean	Similarity	Affine	Projective
<u>Transforms</u>				
rotation	х	Х	х	х
translation	х	X	x	x
uniform scaling		X	x	x
nonuniform scaling			х	х
shear			х	х
perspective				x
composition of proj.				х
<u>Invariants</u>				
length	х			
angle	х	Х		
ratios	х	х		
parallelism	х	х	х	
incidence/cross rat.	Х	Х	х	Х

10/30/08

CS 441, Copyright G.D. Hager

Why Projective (or Affine or ...)

- Recall in Euclidean space, we can define a change of coordinates by choosing a new origin and three orthogonal unit vectors that are the new coordinate axes
 - The class of all such transformation is SE(3) which forms a group
 - One rendering is the class of all homogeneous transformations
 - This does not model what happens when things are imaged (why?)
- If we allow a change in scale, we arrive at similarity transforms, also a group
 - This sometimes can model what happens in imaging (when?)
- If we allow the 3x3 rotation to be an arbitrary member of GL(3) we arrive at affine transformations (yet another group!)
 - This also sometimes is a good model of imaging
 - The basis is now defined by three arbitrary, non-parallel vectors
- The process of perspective projection does not form a group
 - that is, a picture of a picture cannot in general be described as a perspective projection
- Projective systems include perspectivities as a special case and do form a group
 - We now require 4 basis vectors (three axes plus an additional independent vector)
 - A model for linear transformations (also called collineations or homographies) on Pⁿ is GL(n+1) which is, of course, a group

Planar Homographies

- First Fundamental Theorem of Projective Geometry:
 - There exists a unique homography that performs a change of basis between two projective spaces of the same dimension.

$$s\tilde{m} = H\tilde{M}$$

- Notice that the homography is defined up to scale (s)
- We can show that the projection of a plane is described by a homography
- In P(2), we have
 - p' = H p for points p
 - $u' = H^t u$ for lines u
- Note to define the homography, we need three basis vectors
 plus the unit point!
 10/30/08 CS 441, Copyright G.D. Hager

Model Examples: Points on a Plane

- Normal vector $n = (n_x, n_y, n_z, 0)$; point $P = (p_x, p_y, p_z, 1)$ plane equation: $n \cdot P = d$
 - w/o loss of generality, assume n₇ ¹ 0
 - Thus, $p_z = a p_x + b p_v + c$; let B = (a, b, 0, c)
 - Define P' = $(p_x, p_y, 0, 1)$
 - P = P' + (0,0,B P',0)
- Affine: u = A P, A a 3 by 4 matrix
 - u = $A_{1,2,4}$ P' + A_3 B P' = A_{3x3} P_{3x1}
 - Note that we can now *reproject* the points u and group the projections --- in short projection of projections stays within the affine group
- Projective p = M P, M a 4 by 3 matrix
 - $p = M_{1,2,4} P' + M_3 B P' = M P_{3\times 1}$
 - Note that we can now *reproject* the points p and group the resulting matrices --- in short projections of projections stays within the projective group

Basic Equations

$$u_{pix} = \frac{1}{s_x}u + o_x$$

$$v_{pix} = \frac{1}{s_y}v + o_y$$

$$\bar{u} = u_{pix} - o_x = -f_x \frac{R_x p + T_x}{R_z p + T_z}$$

$$\bar{v} = v_{pix} - o_y = -f_y \frac{R_y p + T_y}{R_z p + T_z}$$

A Quick Aside: Least Squares

- Familiar territory is y_i = a x_i + b ==> min_{a.b} å_i (a x_i + b y_i)
- Total least squares: a x_i + b y_i = z_i
 - Leads to $\min_{a,b} \mathring{a}_i (a x_i + b y_i z_i)^2$
 - Equivalent to min_d å_i || d^t u_i z_i ||²
 - Equivalent to $\min_{U} || \mathbf{U} d \mathbf{z} ||^2$
 - Solution is given by taking derivatives yielding U^t U d = U^t z
 - This implies that U^t U must be full rank!
- Another way to think of this:
 - let d = (a, b, 1)
 - Let $w_i = (x_i, y_i, z_i)$, W the matrix with rows w_i
 - Then we can write
 - $\min_{d} || Wd ||^2_F \text{ with } ||d|| = 1 \text{ or } W^t W d = 0 \text{ with } ||d|| = 1$
 - Another way to state this is solve W d = 0 in least squares sense with ||d|| = 1
 - How do we solve this?