
vLOD: A Scalable System for Interactive
Walkthroughs of Very Large Virtual

Environments

Jatin Chhugani
Johns Hopkins University

jatinch@cs.jhu.edu

Budirijanto Purnomo
Johns Hopkins University

bpurnomo@cs.jhu.edu

Shankar Krishnan
AT&T Labs - Research

krishnas@research.att.com

Jonathan Cohen
Johns Hopkins University

cohen@cs.jhu.edu

Subodh Kumar
Johns Hopkins University

subodh@cs.jhu.edu

March 19, 2003

Abstract

The problem of interactively rendering and navigating very large virtual envi-
ronments has been well-studied in computer graphics. The two effective methods
for efficient rendering of large polygonal models are to conservatively discard in-
visible geometry early in the pipeline and to remove unnecessary detail not dis-
cernible from the current view-point. There have been significant advances re-
cently in both these areas independently but few comprehensive methods have
been shown to derive maximum advantage of both methods at the same time.
We presentvLOD , a scalable system for performing interactive walkthroughs of
very large geometric models oncommoditygraphics hardware. Our system per-
forms work proportional to therequireddetail invisiblegeometry. We use a pre-
computation phase to determine cell based visibility as well as level-of-detail. This
pre-computation generates the geometry visible from a view cell at the right level
of detail. We encode changes between neighboring cell’s vLOD, which is not re-
quired to be memory resident. At rendering time, we incrementally re-construct the
vLOD for the current view-cell and render it. Due to the small run-time overhead,
we are able to display models with over tens of million polygons at interactive
frame rates with less than1 pixel error.

1 Introduction
Computer modeling of data is essential in fields such as engineering, flight training,
military exercises and medical and other simulations. Geometric models are used for

1

Figure 1: Powerplant Model

training, planning, design and other analyzes in these fields. Accurate modeling can re-
duce manufacturing cost and time to market or improve training of personnel who save
lives. It is not surprising, then, that models have been quickly growing in complexity
and richness. As a result, interactive walkthrough of these models is challenging.

It is true that the 3D model-display capability of widely available graphics hardware
has been growing steadily. The sizes of models have grown faster, however. Models
like ships, submarines and cities may require tens of million polygons or more to rep-
resent. Graphics workstations can barely display such models once in a few seconds.
Interactive walkthrough requires the display of over 10–20 frames every second. Our
goal is to enableaccuratewalkthrough oflarge models (even those that do not fit in
the main memory) onlow resourcecomputers – all at the same time.

An important result of our work is to demonstrate that arbitrarily high graphics
hardware rendering performance is not necessary to display models with arbitrarily
high complexity. The basic premise of this argument is that display devices have lim-
ited resolution and that limits the detail that can be displayed. This implies that if the
“right” set of triangles were displayed, no more than about one triangle per pixel would
ever be necessary (assuming that sub-pixel accuracy is not required). An implication of
this result is that the “right” algorithm canaccuratelydisplayarbitrarily sizedmodels
at least ten times a second on a million-pixel screen using a graphics card that can dis-
play 10 million polygons per second. Of course, this algorithm would have to deliver
to the graphics card only the visible objects at just the right detail; both are areas of
active research.

Much of the related research has concentrated on visibility pre-computation, model

2

pre-simplification, and image imposters. The first type of methods attempt to eliminate
geometry not visible from the current view-point. Accurate visibility computation is
a costly operation. Hence these algorithms conservatively compute a superset of vis-
ible geometry, which is passed on to the graphics hardware to determine true visibil-
ity. Simplification methods pre-compute a hierarchy of levels of detail (LODs) and at
rendering time traverse a data structure to select the LOD appropriate from the current
viewpoint. Imposter-based methods replace distant geometry by their images. All these
methods provide significant rendering speed-ups. Unfortunately, there has been sparse
research in methods to use these algorithms at the same time. [ESSS01] use a density
based heuristic to compute a probability function to measure visibility. Objects with
low probability of visibility are rendered at lower detail. [ASVNB00] similarly define
“hardly visible sets” and reduce the detail of partially occluded objects by increasing
the geometric error allowed for it. [WBP98] compute visibility by hierarchically subdi-
viding rays originating from a region in space into beams. At the leaf levels, if a beam
contains too many polygons, they pre-render them and sample the color. At rendering
time they simply select the appropriate beams to render. The algorithm by [LT99] is
similar in spirit. They pre-compute conservative visibility from regions of space and
use this information to guide the occlusion preserving LOD refinement during render-
ing. These algorithms process a large fraction of the geometry at rendering time and
suffer from too much rendering time overhead to be practical for massive models. Re-
cently, an exciting new approach to scene-complexity independent rendering algorithm
has been proposed [WFP+01]. The main idea of this algorithm is to render only a
small sample of the original set of triangles. This approach is only applicable to scenes
with many sub-pixel triangles and does not work well on realistic scene environments
with engineered models and high occlusion. Our method achieves similar input-size
independence but is also applicable to more general scenes. We do this by incurring
the cost of pre-processing when geometry relevant for different view-points are com-
puted and explicitly stored, thus eliminating the need for any expensive data-structure
traversal at rendering time.

Aliaga et al. [ACW+99] present MMR, the first comprehensive rendering system
that combines the different methods. In their system, the different LODs, visibility
and image imposters are separately processed in a pipeline. The visibility compu-
tation is performed at the rendering time. One problem with the serialized pipeline
approach of [ACW+99] is the choice of order between stages. If one performs visi-
bility first, one must devise a new algorithm to perform view-dependent adaptation of
the level of detail only for the visible geometry. Traditional LOD methods assume a
static model. Discretizing the geometry into bounding volumes and performing adapta-
tion independently on a visible volume introduces artifacts like cracks. If, on the other
hand, one adapts the detail first, cell based visibility pre-computation is not straight-
forward as the set of occluders and occludees both change dynamically. Recent work
[WVBIM02, GSYM02, VM02] solves these problems by employing multiple proces-
sors and machines and tolerating increased latency and increased geometric error. Our
goal is, instead, to focus on fidelity. We guarantee less than one pixel of error and allow
the rendering time resource to be a single user level PC. In order for this method to be
scalable we seek rendering timesindependentof the model size.

To avoid large computation at the rendering time, we must pre-compute some of

3

it. Current techniques already pre-compute spatial partitions and simplifications hierar-
chies but still require rendering time computation that is dependent on the model size.
Our key observation is that the actual model to be viewed from any position is, in fact,
independent of the overall model size. Even if many objects are visible from a point,
all the detail is not. In order to exploit it we must simply pre-compute all visibility
and detail information beforehand and store it with the model. Then at rendering time,
one only needs to fetch from a database the right (and small) set of triangles visible
from the given viewpoint and display them. An added advantage of this approach is
that it relieves the load on the CPU and enables it to perform any desired simulations
on the visible part of model. On the other hand, our approach suffers from substan-
tial pre-processing requirements. However, lifetime of many models is significantly
longer than a single walkthrough. Once the pre-processing is complete and released, a
multitude of users may be able to take advantage of a virtual walk through the model.

In this paper, we present a framework that derives the complete advantage of both
simplification and visibility computation at the same time. While our implementa-
tion makes specific choices of simplification and visibility algorithms, in fact, many
different geometric error-based simplification techniques and cell-based visibility al-
gorithms can be “plugged into” our framework. We partition space into view-cells and,
for each cell, pre-compute and store itsLOD: the triangles visible from the cell at the
appropriate detail. We show that neither the pre-processing time nor the disk storage
requirement are prohibitive. There is usually high coherence exhibited in vLODs of
adjacent cells. We compress and store the differences in vLOD between adjacent cells.
At rendering time, we simply reconstruct the vLOD from these differences and display
them.

Main Contributions : Our method scales well with increasing model size. We have
been able to interactively render models with nearly 50 million triangle, most of which
reside on the disk at each frame. Another primary consideration in our framework is
to have a small memory footprint at rendering time, given the model sizes we deal
with. While fast walkthrough is the main goal of this work, we have solved several
component problems which are interesting in their own right and occur in a variety of
applications. In particular, the important contributions of this paper are:

• vLOD generation: We provide an effective hardware accelerated algorithm to
compute cell-based visibility and compute the appropriate LOD of the visible
set.

• Model Storage: We provide a formulation of the disk layout problem and a
heuristic to solve it. Customized disk layout of out of core information helps
reduce the time taken to load data needed in any given frame. We also provide
an algorithm for effective compression and efficient decompression of locations
of objects on the disk. This problem has not been adequately addressed before.
This ensures that vLODs are space efficient. Typically, our total vLOD storage
requirements are similar to the original model size and thus we about double the
total space requirements.

• Fast Walkthrough systemOur vLOD-based algorithm is able to render large
geometric data sets with single pixel geometric error at interactive speeds. We

4

are able to process models in excess of 50 million triangles, generate the vLODs,
and render the geometry. Since we only maintain compressed vLODs for a few
neighboring cells in memory at runtime, our rendering system has a small main
memory requirement.

The primary limitation of the paper is the large pre-computation time. However,
we do not need the pre-computation to be on a low-resource computer. Our pre-
computation algorithm parallelizes very well and we have used a cluster of worksta-
tions performing pre-computations overnight. We believe this step can be speeded up
significantly with further improvements in our algorithms. Our technique is best suited
for environments containing high detail as well as high occlusion depth. It does not
work well for environment with mostly small disconnected polygons.

A conceptual view of our system is shown in Fig. 2.

Figure 2: Block diagram of the system architecture

1.1 Other related work

Visibility computation and polygon simplification have been areas of substantial re-
search recently. Both techniques provide significant rendering speedups.

Exact visibility computation from a given viewpoint is not very practical, hence
most of existing research has focused on computing conservative approximations. Con-
servative algorithms retainsomeinvisible geometry but do not cullany visible ge-
ometry. Visibility computation usually involves occlusion culling, back-face culling
and view-frustum culling. Object-based visibility computation algorithms hierarchi-
cally compute the visibility for a group of triangles from the given viewpoint [GKM93,
HMC+97, CT97, ZMHH97, KMGL99]. On the other hand, cell-based visibility [TS91,
CCOZ98, WWS00, DDTP00, SDDS00, WWS01] pre-computes conservative visibility
from a region of space. At rendering time, objects visible from the view cell that the
given viewpoint lies in are sent through the graphics pipeline to generate the correct dis-
play. Viewcell-based visibility computation has become popular recently due to its rel-
ative low cost at rendering time. An exact view cell visibility algorithm could be based
on the computation of aspect graphs [GCS91] or visibility complex [DDP96, DDP97].
However, with size complexity ofO(n9) andO(n4), respectively, and similar compu-
tation complexity, such approaches are infeasible for large models. The more prac-
tical approach is to subdivide space, say using an Octree, and pre-compute visibil-
ity from each cell in the space. Most current techniques choose a set of occluders

5

appropriate for each view cell and cull out the hidden geometry. In addition to oc-
clusion computation, hierarchical view-frustum and back-face computation algorithms
[ZH97, KMGL99, JC01] have also been developed. Our method combines all three
types of visibility computation into a view-cell based scheme. We use a variant of
[WWS00] and [KMGL99] in our implementation.

Over the recent years, polygon simplification and LOD representation algorithms
[Hop96, GH97, COM98, ME99] have also matured. While a small number of static
levels of detail are useful if models are easily divided into objects, most environments
require view-dependent refinement of detail [XV96, Hop97, FMP97], specially in the
neighborhood of the viewer. The basic idea is to generate a set of simplification op-
erations (e.g., edge collapse), which may be applied independent of each other. The
rendering subsystem, then, chooses all applicable operations to perform that do not
cause the screen-space error to exceed a given bound. We use a variant of [FMP98]
in our implementation. [FMP98] generates a directed acyclic graph of nodes and arcs
such that geometry is associated with the arcs and nodes with simplification operations.
A cut through this graph represents the model at some level of detail.

1.2 Organization

The rest of this paper is organized as follows. The computation and management of
vLOD is detailed in section 2. We discuss disk layout and geometry reordering in
section 3. In sections 4 and 5 we provide details of the level of detail and visibility pre-
computation used in our system. Section 6 describes our implementation and results.
We conclude in section 7

2 vLOD Management
In this section, we describe the computation and maintenance of vLODs in our frame-
work. The basic concept of vLOD is quite simple:

• Hierarchically partition the viewing space.

• For each partition, or cell, adapt the level of detail so that the screen-space error
when viewed from anywhere in the cell is bounded (using any geometric error-
based simplification algorithm). Given, a screen-space error bound, we present
in section 2.2 the procedure to compute the worst case object space error of all
view-point in a convex cell.

• Obtain vLOD by discarding geometry that is guaranteed to not be visible from
anywhere in the cell (using any cell-based visibility algorithm).

• Encode and compress the differences (∆’s) between vLOD of a cell and its neigh-
boring cells.

• At rendering time, construct vLOD of the cell the viewer is in (using∆’s) and
display it.

The differences are small on average, making the vLOD framework possible. To
make it really practical, though, we must manage and encode the∆’s in such a way that

6

storage requirements are reduced, and the time to reconstruct vLODs from them is very
small. The strengths of vLOD framework lies in its simplicity and its ability to use any
LOD adaptation and visibility computation algorithm. Our prototype implementation
works well on commodity graphics hardware. It scales well and is able to interactively
render models larger than available memory. vLOD also supports bounded screen-
space error as well as guaranteed speed visualization (though, not both at the same
time).

2.1 Spatial partitioning

Ideally, our view-space partitioning has three requirements:

• Visibility and detail of objects as seen from different points inside a single cell
do no vary much. This ensures that we do not use much more geometry than are
ideally needed for the given viewing parameters.

• The vLODs of adjacent cells do not vary by much. This ensures that the size of
∆’s are small. Visibility sometimes changes drastically between cells. Hence,
the worst case size of∆ can be large although the average size is small. (Section
2.3 describes how larger∆’s are compressed more efficiently.)

• The number of cells are small and their vLODs may be easily computed. This
ensures small storage overhead and efficient preprocessing.

In our implementation, we use an octree-based partitioning scheme. We start with
a uniform grid and refine it further. A cell,C, is too large and hence subdivided,
if its vLOD(C) is larger than a user-specified value. Occasionally, subdividing these
cells does not produce sufficient reduction in vLODs. In this case, we check the ratio
of its vLOD and vLODmin(C), where vLODmin(C) is the smallest vLOD(Ci), for all
subdivided cells,Ci , of C. If vLOD(C) is no more than twice vLODmin(C), we do not
subdivide the cellC.

2.2 Object space to screen-space error transformation

In order to use view-dependent error in terms of the number of pixels, we need a func-
tion that maps the object-space error,δo(p), at pointp to screen-space errorδs. We de-
fine thescaling factor, S(p), of p with respect to the view-cell such thatδo(p) = δs

S(p) .
The scaling factor is the maximum ratio between an infinitesimally small vector in the
objects space and its projection in the screen space from any viewpoint in the view-cell.
We computeS(p) as follows:

The scaling factor for a pointp with respect to the viewpointv, Sv(p) = (f+z)2

(f .L)
[CK01], whereL is the distance ofp from v, f is the focal length and(f + z) is the
projection length of the vector~vpalong the principle viewing direction.

For a view-cell, we find the maximumSv(p) over all viewpoints in the cell. This
maxima,S(p), is Lcos2(FOV), whereFOV is the maximum field of view. The scaling
factor of an object is the maximumS(p) over all pointsp of the object.

7

Figure 3: Scaling factor of an arc from a view-cell

2.3 vLOD Construction and Cell Differences

In this section, we will describe our technique for computing and storing vLODs as-
suming a nominal visibility and simplification algorithm. The specific details of these
algorithms will be described later in the paper, but for now, it suffices to assume that
the simplification algorithm produces the objects at a detail so that the approximating
error is less than a pixel when viewed from the current view-cell. We eliminate the
objects which we determine to be invisible.

Most simplification algorithms are also capable of producing a sequence of oper-
ations (e.g., edge-collapse and vertex-merge) that can be efficiently encoded. For the
sake of generality, we do not use these operations.

In most cases, the vLODs between two adjacent cells exhibit high coherence.
Therefore, it is not necessary to store the complete vLOD set at every cell. Instead,
we store the differences between their vLODS. We currently assume that the lists of
objects in the LODs of two adjacent cells fits in the main memory. We sort them and
compute the difference, which we compress and store. If cellsCi andCj are adjacent
(have a common face), we store the∆ associated with the boundary ofCi andCj only
once.

2.4 vLOD ∆ Compression

There has been recent research in compressing pre-computed visibility information
[PS99, GSF99]. In [PS99], for example, they represent the visibility information at
each cell as a bit vector (one bit per polygon). Columns and rows are collapsed based
on a similarity metric to generate compressed version of the table. Unfortunately in our
case, due to the large number of polygons, bit-mask based encoding of vLODs [PS99,
GSF99] is prohibitively expensive. Our methods produce much higher compressions.

8

We have found that the number of IDs in a single∆ is usually small (less than
1% of the total number of IDs, even in models with many occlusion events). As a
result, storing each ID appearing in∆ as an integer produces files of sizes more than 25
times smaller than raw bit-masks. We use variable-length encoding of offsets between
consecutive IDs in a∆. Techniques based on Huffman encoding usually work well
with variable length encoding of text strings. However, literature on compressing a
short and sorted list of small integers is scant. The frequencies of digits in a such a list
of numbers are uniformly distributed, thus affording Huffman coding little advantage
over fixed length encoding. Furthermore, the overhead of storing frequency table per∆
is significant. We use a two-bit a delimiter based technique for our compression. This
achieves a compression even better than gzip and Huffman encoding for smallerδs and
is much faster. For largerδs we us adaptive Huffman encoding.

Delimitor based Variable Length Encoding
Single pass compression:

1. Assume that 0 is never recorded and all numbers begin with a 1.

2. Add a two bit delimiter11 between consecutive numbers in the sequence. This
implies a string of111 signifies the start of a new number at the last 1.

3. Replace instance of 11 in the input to 110 (note that delimiting11 is always
followed by a 1)

4. If a number ends in a 01 (possibly after applying rule 3), replace it by 011. This
helps disambiguate the case of finding delimiters after a 1, i.e., 111, from 111 as
seen later.

The decompression algorithm is also simple and performs a single pass over its
input:

1. If a 11111 sequence is encountered in a string, append a 1 to the output and end
the number, the last one in this sequence starts a new number. Note that this
sequence could also be broken down as delimiter11 followed by a new number.
We mark this number as ambiguous and continue until we discover we have
made a mistake.

2. A 11110 is not allowed to appear at the start of a new number in the output.
Note that the first 1 does belong to the new number but could not be alone as all
instances of 1 get replaced by 11 in the compressed data by rule 4. This happens
if we have consumed an extra 11 in step 1 before. We fix this by shifting right
the ambiguous number last found by 1 bit. Note that the ambiguity only happens
just before a string of 1s in the output and is discovered at the first non 1 number
encoded in the data.

3. Otherwise, if a 111 is encountered the current number is ended and a new one
started at the last 1.

4. Otherwise, if a 110 is encountered, we discard the 0

9

5. Otherwise, simply shift the next bit into the output

Due to the simplicity of the algorithm, our decompression is also very fast and
requires only a few microseconds per∆. If the input consists of long sequences of
consecutive numbers we run-length encode∆s to obtain a further compression by a
factor of 2. Our permutation algorithm (3) ensures that each∆ consists of several
lists of consecutive values. If we store only the offset of each run’s beginning from the
previous run’s end, and the current run’s length. We obtain an even higher compression.
In practice, we obtain compression ratio of greater than 100 over the raw bit masks, and
output about 2 times smaller than direct LZW compression of the run-length encoded
data.

3 Polygon Re-ordering for Compression and Reducing
Disk Latency

Once all the∆s across cell transitions are computed, we need to lay them out on disk.
The layout on disk can be chosen from a spectra of possible layouts whose extrema
satisfy certain properties optimally. One extreme is to have all the geometry compris-
ing individual ∆s laid out contiguously, while the other extreme is to have the entire
geometry laid out once. The former scheme is very efficient in terms of diskseeksand
optimal in the amount of extra geometry that has to be read. However, all the∆s are
laid out individually, the amount of the data replication is very high. The latter scheme
is optimal in terms of the data replication factor, but the time required to read all the
relevant information in a given∆ can be potentially very high. For our application, the
ideal layout is one that minimizes a cost function whose terms include the replication
factor and latency in disk reads.

We consider two variations of the optimization problem. In the first case, we con-
sider the case of no replication with single reads allowed per∆. This implies that the
problem reduces to re-ordering the geometry (or generating a permutation) such that
the polygons in each∆ appear contiguously in the order. This problem addresses the
issue of minimizing disk seeks as well as the amount of extra geometry that is read
in. If we construct a binary matrix where rows are indexed by cell transitions and
columns by polygons, the above re-ordering problem is identical to the well-known
consecutive-onesproblem [BL76]. This problem and most of its variants are known to
be NP-complete. In our case, the size of these matrices are related to the model size
and can be in the order of 106.

We now describe a simple heuristic to achieve the consecutive-ones property. We
start by giving some definitions to aid in the explanation.

Definition 3.1 Hamming Distance:Given two d-dimensional bit vectors u and v, the
Hamming distance H(u,v) is defined as the minimum number of bit flips to go from u
to v. In other words, H(u,v) = Σd

i=1(ui +vi)%2, where ui is the ith bit in u.

Definition 3.2 Run: A run is a maximal consecutive sequence of 1’s in a bit sequence.
Given a bit vector u, the function R(u) defines the number of runs in it. For example,

10

the vector u= 0011100111010has R(u) = 3. This can be extended to matrices by
adding the number of runs in each row.

Alizadeh et. al [AKNW93] showed the relationship to the matrix permutation
and the travel salesman problem (TSP). They showed that given a matrix as defined
above, the permutation induced by a minimum length Hamiltonian cycle (TSP) in the
Hamming metric, minimizes the total number of its runs. Ideally, if the matrix has a
consecutive-ones property, then each row will have exactly one run. Given the general
infeasibility of such permutations, we are resorting to minimizing the total number of
runs. Even though the TSP is an NP-complete problem, a number of efficient heuristics
have been developed which produce close to optimal results in practice.

The best implementation for computing a near-optimal TSP tour of points in a met-
ric space uses aseed tourthat is then refined by heuristics that break the tour and
recombine it to achieve a local improvement [JM97]. This seed tour is computed us-
ing nearest neighbours; start at some point, pick its nearest neighbour, and then repeat,
choosing for each point its closest neighbour that is not already in the tour (the nearest
unvisitedneighbour). In practice, the algorithm constructs a list of thek nearest neigh-
bours for each point in a preprcessing phase: ifk is chosen suitably, then for all but a
small fraction of points the nearest unvisited neigbour will be in this list, and a general
nearest neighbour query will be unnecessary.

For Euclidean metrics, computing such nearest neighbours is relatively easy using
data structures likekd-trees [Ben75]. However, for the Hamming metric, this is non-
trivial. We implemented the greedy strategy to compute nearest neighbors on top of the
traveling salesman algorithm for matrices of size upto 360000× 27000. Once the seed
tour is contructed, the algorithm goes through an iterative process of reducing the cost
of the tour. We usek = 20 in our implementation. Table 1 shows the performance of
various aspects of the algorithm. We can see that on an average the results of the TSP
give a factor of 3-6 improvement in the number of runs over the original matrix.

Size kNN TIme Seed Tour Time Imp1 Imp500k Time/Iter.
500 2 0.7 3.1 6.28 0.005
1000 10 2.8 3.26 5.57 0.008
3000 162 31.1 2.84 4.56 0.015
9000 2400 584.1 2.78 4.25 0.025
27000 23393 7446.7 2.73 - 0.05

Table 1: Performance of the Hamming-Traveling Salesman Problem:Sizerefers to the
columns in the matrix,kNN TIme : time to create list ofk-nearest neighbors,Seed
Tour Time : time to create greedy tour,Imp1: improvement ratio in the number of
runs after first iteration,Imp500k: improvement ratio in cost after 500000 iterations,
Time/Iter. : refers to the time taken per iteration. All times are in seconds measured on
an SGI R10000 processor with 196 MHz. CPU and 7GB of main memory.

Note also that, in our case, the dimension of the Hamming space is very large (of the
order of 105) and each point in this space contains only a few non-zero entries. Hence,
the data representation is in the form of a sparse matrix (for each point, we maintain a

11

list of the non-zero dimensions), and even the distance computation is expensive, being
linear in the number of non-zero dimensions of the two points being considered, rather
than constant for Euclidean metrics.

These facts make computing the desired tour a challenging problem. A closer look
at the data reveals the following observation, illustrated in Figure 4. On average, if
we determine the nearest neighbour of a point and consider the set of points within
distance twice that of the nearest neighbour, then this set is extremely large, approach-
ing a constant fraction of the entire point set. Moreover, although the maximum dis-
tance between a random point and its furthest point can be large, most of the points
lie reasonably close to it (in terms of the ratio to the nearest neighbour distance). This
suggests (and has been borne out by preliminary experiments) that standard approaches
for doing approximate Hamming metric nearest neigbours computations [CDF+00] are
likely to perform badly, because even a factor-two approximation to the nearest neigh-
bour contains a large set of candidates to consider, driving the cost of determining
nearest neighbours toO(n) per point (andO(n2) overall). However, this anomalous
behaviour has a positive side; since a constant fraction of points lie within this ball, it
implies that a constant-sized sample of points will contain at least one point within the
ball with constant probability. Even more striking is the fact that asinglesample set
will suffice to provide near neighbours forall point sets. Formally, let 0< α < 1 be
the fraction of points lying in the ball of radius 2rp around a pointp, whererp is the
distance fromp to its nearest neighbour. Then with probability 1/n, a sample of size
clogn/α will contain at least one point in this ball. In fact, there exists a constantc′

such that a sample of sizec′ logn/α points will contain a point within the ball ofeach
point in the set.

This observation yields an approximation heuristic that runs in timeO(nlogn) in-
stead ofO(n2). We will not discuss this in detail here, but the above sampling can be
designed to work in a disk-sensitive fashion, so that it can be implemented on a system
with small memory.

4 Polygon Simplification
We have used a range of different simplification algorithms with our system, depending
on the characteristics of the current model. For the city model, we applied an iterative
edge-collapse algorithm with a projection-based error metric [CMO97]. This algo-
rithm produces an MT data structure, capable of fine-grained view-dependent triangle
refinement. For the powerplant model, we applied a more simple and robust half-edge
collapse algorithm. The error metric in this case is a conservative bound accumulated
from the lengths of the collapsed edges, similar to the bound provided by [RB93] and
the first-pass error estimate made by [Gueziec96]. For this model, we output several
discrete levels of detail rather than the more continuous level of detail encoded by the
MT.

Whichever level of detail algorithm is employed, it is useful if it provides a guar-
anteed error bound for the geometric distance between the original and simplified
surface (if it does not, a guaranteed error bound may be computed as a post-process
[CRS98, ASCE02]. Without such an error bound, establishing a rigorous relationship
between level of detail and visibility is impossible.

If we wish to preserve visibility conservatively in the presence of geometry level of

12

(a) Density of points within a small ball around a random
point. The y-axis plots the fraction of points within the ball,
and the x-axis shows the number of points in the point set.

(b) Fraction of points contained in balls of increasing radius
around a random point. The x-axis is the distance divided by
the nearest neighbour distance

Figure 4: Distance distribution statistics for a random point. In all cases, the numbers
were obtained by averaging over multiple trials.

13

detail, we should use an error threshold of less than one pixel of screen space deviation
when we choose the levels of detail to use for a particular cell. In addition, we should
use the same levels of detail during the visibility computation that we do during the
rendering of cells. These conservative choices can provide some of the scalability
benefit of levels of detail for large-scale models while delivering correct visibility at
the given screen resolution.

The use of level of detail also has some effect on the optimization of polygon order-
ing for improved disk access. Each level of detail adds another polygon group to the set
of geometry to be organized. However, because only one level of detail of each object
may be visible from any cell, these additional polygon groups do not reduce increase
the constraints on disk layout. In fact, these levels of details may be seen as a form of
cheap replication which alleviates some of the constraints imposed by the many view
cells.

5 Visibility Computations
Current cell-visibility computation techniques are simply impractical for large models.
We exploit the significant hardware rendering speeds available on the graphics cards
devise an effective, yet practical algorithm.

The main advantages of out visibility algorithm are that it can handle general
scenes. The occluders can be collection of polygons. It is able to find occludees hid-
den jointly by multiple occluders. It parallelizes well. As a result it scales well with
increasing model sizes.

We first briefly present an algorithm for environments restricted to 2.5D (vertical)
occluders and then describe our general 3D occlusion computation algorithm and a
hierarchical back-face culling algorithm.

Given a set of polygons{Pi}, occlusion culling is the process of finding the subset
{Hv

i }, that are completely hidden from view-pointv by a set of polygonsOi ,O ⊂ P
[ZMHH97, WS99, WWS00, KCC01]. We callO the set ofoccluders. It is also possible
to compute{HV

i }, the set of polygon hidden from every viewpointv in the setV (also
called the view-cell) [ZMHH97, WS99, WWS00, KCC01]. Clearly,{HV} ⊂ {Hv},
for all v in V and hence all polygons in{HV} continue to be invisible fromv. In our
system, view-cell based visibility pre-computation is used to speed up the rendering.

5.1 2.5D Occlusion culling

For some architectural scenes it is possible to choose occluder polygons that extend all
the way to the floor. In other words for any pointp on the occluder, the linepFp is
contained in the occluder, whereFp lies on the floor andpFp is perpendicular to it. We
call these 2.5D occluders.

Our 2.5D occlusion culling algorithm is based on the idea ofoccluder shadowsby
Wonka et al.[WS99]. This idea is based on shadow volumes [Cro77, HMC+97]. They
employ the graphics hardware to speed up the shadow test.

The algorithm of Wonka et al.[WS99] works as follows: Given a viewpointv and a
2.5D occluder whose top edge has verticesa andb, they find a planeΠ determined by
v, a andb. Using this plane, they compute the vertices of a quad asa+t(a−v), a, b and

14

Figure 5: Occlusion culling using shadow volumes

b+ t(b−v) for a large value of the parametert. These quads are computed for all the
occluder polygons. For the special case of 2.5D occluders, the occluder shadows form
a terrain. Using this fact, they render the quads orthographically from the top (calling
the resulting image the cull map) and use the hardwarez-buffer to fuse the shadows
generated by various occluders. If the contents of thez-buffer are read back, occlusion
tests can be performed very efficiently by simple depth checks. An object is occluded
if its depth (when viewed from above) is larger than the corresponding entry in the cull
map.

Wonka et al.[WWS00] later extended the idea of occluder shadows to perform
view-cell based occlusion culling by subdividing the view-cell into small regions, and
shrinking each occluder by an amount equal to the region’s radius. The view-cell oc-
clusion may then be conservatively estimated by occlusion from the center of the cell
using the shrunk occluders. They then use a multi-pass rendering phase to compute
conservative shadow volumes with respect to the original view-cell.

We use the idea of occluder shadows and cull maps as the basis of our algorithm,
but eliminate the cost of subdivision.

Instead, our algorithm for finding cell-based shadow volumes computes a shadow
frustum bounded by planes, which is guaranteed to be completely contained in the
actual shadow-volume. This frustum is computed as an intersection of half-spaces.
The bounding planes (calledhorizon planes) of each half-space passes through a single
edge of the occluder and a vertex of the view cell such that the occluder and view cell
are completely contained in the half-space. For each edge of the occluder, there is
at least one vertex of the view cell that obeys this property (it can be proved by the
feasibility of a simple linear program). We determine such horizon planes for each edge
of the occluder. The intersection of the half-spaces determines a shadow volume that is
guaranteed to lie completely inside the actual shadow because the shadow volume and
(a bounding volume of) the view cell lie entirely on opposite sides of the occluder (see

15

Figure 5).
For the special case of 2.5D occluders, the shadow frusta that we compute also form

a terrain. We employ the same strategy as [WS99] to draw these planes orthographi-
cally from the top and use the hardwarez-buffer to speed it up. Once all the horizon
planes are rendered, we read back thez- buffer for performing occlusion tests.

5.2 3D Occlusion culling

Recall that our goal is to eliminate polygons in the shadow of other polygons when
viewed from the cell. If we could use the hardware to clip against this umbra region,
we could obtain an efficient algorithm. Unfortunately, the umbra is bounded by ruled
quadratic surfaces with negative curvature [Tel92] and is tough to precisely compute.
In order to exploit the graphics hardware for occlusion computation, we must transform
the view-cell based visibility algorithm to a view-point based rendering algorithm. to
quickly compute the visibility. We, hence, use occluder shrinkage to achieve this.

Figure 6: View-cell visibility computed from a point

Consider the example in Fig. 6, with view-cellVi and occluderO j . If we con-
struct the supporting planes [CT97], that remain tangent to bothVi andO j , we obtain
a shadow area (light shaded area) contained in the umbra. Now consider pointvi con-
tained within the supporting planes. If we draw planes passing throughvi and parallel
to the supporting planes, we obtain a view frustum (dark shaded area) contained in
the shadow. Every polygon hidden bypq, (thick line), when seen fromvi , is hence
guaranteed to be hidden byO j from every point onVi . We call pq the shrunk version
of O j . The shrinking depends on the choice of pointv. This shrinkage is different
from [DDTP00]’s and we do not need to expand the occludees. Neither do we need to

16

generate a large number of samples as in [WWS00].
For multiple occluders,Oi , note thatv must lie in the shadow frusta of all occluders.

We find the best location forv in the intersection of the frusta by maximizing the sum
of volumes of all shrunk frusta.

5.2.1 Optimization of the projection point, v

Having computed the shadow frustum for each of the connected components, we pro-
ceed to find the optimal rendering point from which these shadow frustum will be
rendered. We formulate it as a convex quadratic optimization equation. Therendering
pointhas the following properties:

• For each of the connected components, therendering pointmust lie inside its
shadow frustum.

• The shadow frustum, when rendering from thisrendering pointmust maximize
the amount of geometry lying completely inside them.

The last condition above is computationally intensive to solve for. Hence we adopt
a conservative approach. Assuming a uniform density of geometry in the world space,
we formulate our optimization function as maximizing the sum of the volumes inside
each of the shadow frustum. In case the density function of the geometry is given (or
computed), we can scale up the individual volumes by their density functions to be the
representative of the actual geometry lying in them. The details are are follows:

Let us replace each geometry componentCi by C′
i such thatC′

i is a planar approx-
imation ofCi . Let the equation of the plane (C′

i) be N̂i .X = Di1, whereN̂i is the unit
normal facing toward the view-cell, andDi1 is some constant. Let̂Ni .X = Di2 be the
equation of the plane that just lies insideW, the bounding box of the world. Also, for
each connected component, we can compute its optimal rendering point (Oi), which is
simply the nearest point (Ii j) to the connected componentCi . We would want our final

rendering point to be as close toOi as possible. Let̂di1, .., d̂in represent then direction
vectors (each making an angle of greater thanπ

2 with N̂i . The volume of the shadow
frustum equates to13 α H3

2 −H3
1 , whereH2 andH1 are the heights ofOi from the two

planes respectively, andα is a function ofN̂i , d̂i1, .., d̂in.

In terms ofOi , the volume is represented asH1 = N̂i .Oi −Di1 andH2 = N̂i .Oi −Di2.

Hence Volume =1
3α(Di1−Di2)(3(N̂i .Oi)

2− (N̂i .Oi)(3Di1 + 3Di2) + D2
i1 + D2

i2 +
Di1Di2)

Let the optimalrendering pointbe represented asOR. Hence the volume expres-
sion becomes
1
3α(Di1−Di2)(3(N̂i .OR)2− (N̂i .OR)(3Di1 + 3Di2)+ D2

i1 + D2
i2 + Di1Di2) Hence, the

net optimization equation becomes:

17

Maximize (Σi
1
3α(Di1−Di2)(3(N̂i .OR)2−(N̂i .OR)(3Di1+3Di2)+D2

i1+D2
i2+Di1Di2))

s.t. Σi(Σ j(Ai j ≤ Bi j))

However, the above equation is not guaranteed to give an optimal solution in poly-
nomial time. We adopt the following approach to formulate a convex equation which
is guaranteed to have an optimal global solution. Instead of maximizing the volume of
the newly obtained frustum, we minimize the distance of the new rendering pointOR
from each of theOi , and scale the distances by the height of the shadow frustum. The
net equation becomes:

Minimize (Σiα(Di1−Di2)((N̂i .OR)2 +(N̂i .Oi)
2−2(N̂i .OR)(N̂i .Oi))

s.t. Σi(Σ j(Ai j ≤ Bi j))

The time complexity of solving the above optimization equation is proportional to
the number of inequalities, which in our case are the chosen occludes. The following
modification reduces the running time to constant time. The basic idea is as follows:

The number of inequalities in the above optimization equation equals O(N∗nmax),
wherenmax is the maximum number of edges in any of the connected component. This
clearly blows up the running time complexity. We reduce these number of inequalities
to O(Σidegreei , iε[1..M]). Basically, for each edge emanating from a vertex, we com-
pute the intersection of each shadow frustum plane with that edge, and maintain the
closest point on that edge. After iterating through all the half planes, we compute for
each plane of the view-cell, the closest plane (or say t-2 planes, if there are t points on
that plane). Thus the running time complexity reduces to O(t2), which is constant for a
given cell.

Using the above optimization decreased the Visible Set of most of our view-cells
by 5% - 10%. The time taken for setting up the optimization equation was around 0.02
seconds.

5.2.2 Occlusion Query

An occluder may be a polygon or a collection of connected polygons. We first decom-
pose the model into connected components and generate the shadow frustum for each
component. Our current implementation has only been tested with convex occluders
but concave occluders may also be used as long as the shadow frustum can be con-
servatively computed [BNSVR01]. Our visibility computation algorithm first selects
all components larger than the view-cell size as potential occluders. Smaller occluders
have a converging shadow volume and hence shrink to NULL. We partition occluders
into clusters based on their direction fromv to simplify rendering. To compute visi-
bility with respect to each cluster, we first find the projection pointv. We then shrink
each occluder in the cluster by its reduced-shadow planes: planes parallel to shadow
planes and passing throughv. Occlusion behind shrunk occluders can be efficiently
determined using the NVIDIA Occlusion Query OpenGL extension. We render the
shrunk occluders first. We then draw the occludees with depth-buffer write disabled
and the Occlusion Query extension enabled. The query returns a zero for occludees not
visible. The others are ’visible list’. This visible list progressively refined by rendering
with the successive occluder cluster.

18

Figure 7: 3D Visibility Pipeline

Note that a pixel may only be partially covered by the occluders but may yet be as-
signed their depth value causing occludees to be mis-classified as hidden. We perform
conservative rendering by using alpha cut-off. We enable blending such that partially
covered pixels result in an alpha value of less than 1 and hence are not updated with
the depth value of the rendered occluders.

5.3 Hierarchical back-face culling

Back-face culling is a simple, yet effective technique to prune out polygons that face
away from the viewer. Instead of testing individual polygons, significant gains can be
obtained if a collection of polygons can be classified as front- or back-facing using
a single test [KMGL99]. This test can be used as part of a hierarchical strategy for
performing back-face culling. However, instead of performing the test from a single
viewpoint, our test needs to determine their orientation from all viewpoints inside a
single cell.

Before we proceed to our algorithm, we describe an algorithm to compute a bound-
ing cone (represented by an axis and half-angle) for a collection of unit vectors. It will
be used as a subroutine frequently in our culling algorithm.

Figure 8: (a) Incremental computation of shell angle and axis vector (b) Illustration of
vector addition by parallelogram rule

19

Computing bounding cones for a set of unit vectors: The bounding cone com-
putation is very similar to the one presented by Sederberg et al.[SM88]. However, the
result published there has a minor error in it. We have taken the liberty of correcting
it here. Figure 8(a) is also taken from [SM88]. The bounding cone obtained from this
algorithm is not an optimal one, but it is near-optimal and linear in time complexity.

Let us assume that afteri iterations of the algorithm, our unit axis vector isA i with
half angleθi . In this discussion, we represent the normalized form of a vectorv by
v̂. Given a set ofn vectorsV1,V2, . . . ,Vn, we initializeA1 to V̂1 andθ1 to 0. Each
subsequent vectorV i+1 is checked to see if it lies within the cone. The vector lies
within the cone if cosθi ≤ ˆV i+1 ·A i . If it lies within the cone,A i+1 = A i andθi+1 = θi .
Otherwise, a new cone is formed which is the smallest cone containing the old cone
and the new vector. Let the angle between the vectorsˆV i+1 andA i be α as shown
in Figure 8(a). Consider a vectorVt that lies in the same plane asA i and ˆV i+1 and
makes an angleθi with A i . Clearly, this vector lies on the previous cone. We want to
determine this vector in terms ofA i and ˆV i+1. From the Figure 8(a), it is clear thatVt

can be expressed as some linear combination ofA i and− ˆV i+1 (i.e.,Vt = qA i − ˆV i+1).
To determineq, we use the parallelogram law for the sum of two vectors. It is shown
in Figure 8(b).

Consider two vectorsa andb at an angleθ . Let the vectora+b form an angleα
with a. From the triangle law, we know that

‖ a ‖
‖ b ‖

=
sin(θ −α)

sinα

Figure 9: Cell-based hierarchical back-face culling

20

In our case,q, which is the ratio of the lengths ofA i and− ˆV i+1, is given by

q =
sin(θi +α)

sinθi

GivenVt , we compute the new axis of the cone

A i+1 =
V̂t + ˆV i+1

‖ V̂t + ˆV i+1 ‖

and the angle is given by cosθi+1 = A i+1 · ˆV i+1.
An andθn give the axis and half angle of the cone bounding all the original vectors.
We are now ready to describe our back-face culling algorithm. We start with a col-

lection of polygons, its axis-aligned bounding box,B, and a view cell (see Figure 9).
Since we have the normals for each of the polygons, we use the above routine to com-
pute a bounding cone,(N̂,θ), for all the normal vectors. This bounding normal cone
can have its apex anywhere insideB (by construction). For the sake of argument, let
this point bev. Consider the set of all view rays starting atv and ending anywhere
inside the view cell. It is easy to see that these rays can be bounded by another cone
whose apex is atv and bound the vectors fromv to the vertices of the view cell. We
call this cone thevisibility cone, (V̂v,αv). Figure 9 shows the visibility cone.

Given these two cones, we can now test if any of the polygons atv is front- or
back-facing from anywhere inside the view cell as follows. Let us denote byΓv =
cos−1 N̂ · V̂v + αv + θ and γv = cos−1 N̂ · V̂v −αv − θ , the maximum and minimum
angle between two vectors, one chosen from the normal cone and the other chosen to
lie within the visibility cone. Sincev can lie anywhere insideB, we compute visibility
cones from the eight corners of the bounding boxB and update the extremal values of
Γv andγv. Let the overall maxima and minima beΓ andγ, respectively.

If Γ < π

2 , then any polygon insideB is front-facingwith respect to the view cell. If
γ > π

2 , then any polygon insideB is back-facingwith respect to the view cell. If neither
of these conditions are satisfied, the result is inconclusive and we partition the set of
polygons into two halves and proceed recursively. At the end of the recursion, we have
polygons classified asfront-facing, back-facing, orneither. We remove the back-facing
set alone and use the rest as potential front-facing polygons.

6 Implementation and Results
We have implemented our vLOD system and tested it on a detailed 3D powerplant
model (13 million triangles, Fig. 1) and a notional city model (Figs. 13-15 consisting
of 52.4 million triangles). We have tested our implementation extensively on a Silicon
Graphics Onyx2 Infinite Reality workstation and a 2.8GHz Intel PC with an NVIDIA
Geforce4 graphics card. The city model has high occlusion from many cells, but due
to a large number of small polygons and open areas in the powerplant model, this is a
particularly tough case for occlusion culling.

In addition to the visibility computation algorithm described in Section 5, we also
implemented the dual ray-space algorithm of [KCC01]. While the rendering time per-
formance was similar, the preprocessing time with the other scheme was much higher

21

and is not reported here. This visibility computation assumes 2.5D occluders. Our
implementation preselects occluders based on polygon sizes.

The images generated are the same as if the visibility and simplification were com-
puted at rendering time. Our method does not discard any visible geometry and uses
an appropriate level of detail for visible geometry. We have performed experiments to
check the coherence. In typical walkthroughs, one only needs to cross a boundary in
less than 10% of the frames on average. Most frames require 0 or 1 boundary crossing.
Hence, we only try to maintain the∆ with respect to the six faces of an Octree cube
in the main memory. We use asynchronous reads to prefetch the relevant∆’s from the
disk. Figure 10 shows a frequency diagram of the ratio between∆ and vLOD in a typ-
ical walkthrough of the city model. Less than 10% of the time is∆(C) more than half
the size of vLOD(C) for any given cellC.

Figure 10: High Coherence: Frequency diagram of ratio of∆ and vLOD

The powerplant model is well known for its complexity. Our city model currently
stores no complex texture information but is sufficient to demonstrate the efficacy of
our method. The model contains several detail areas and has a highly dynamic range of
detail. For example, the cars on the street (see figure 15) each contain over a 100,000
triangles. Several groups of cars are sparsely distributed on the roads of the model.
Buildings also contain internal geometry. There is high concentration of highly de-
tailed geometry in the gallery: one of the city buildings. We have only included the
powerplant in the video due to its common usage. As can be seen, we are able to
maintain interactive frame rate most of the time.

In the precomputation stage, we generated about five million cells for the UNC
Powerplant model. It takes four nights on a 16 machines Linux cluster. The time

22

to compute vlod is 0.4 to 2.2 seconds per viewcell. The time to shrink occluder is
0.16 seconds, while rendering and performing occlusion query takes about 0.2 to 2
seconds. Our linux cluster can render approximately 3-4 million triangles per second
using vertex arrays, and 50-70K occlusion queries per second.

In our hierarchical subdivision scheme, we also employ two stopping criteria which
are the number of visible triangles and the level of the octree. About 30% of the
viewcell that reach the lowest level octree require further subdivision. Their average
vLOD is about 1.5 times our triangles threshold.

We also perform an informal comparison of our cell visibility result versus estimat-
ing vLOD by taking 125 sample points inside a viewcell. On average, the overestimates
of our cell visibility algorithm is about two to ten times of the sampling’s result (which
is an underestimate of vLOD for the viewcell).

Figure 11: VLOD’s triangle count versus view frustum culling

For a particular path through the UNC Powerplant (path 2 in the accompanying
video), we visited 180 cells, and had to cross 228 cells. For each of the boundary
transition, we fetch around 2 KBytes of data. For the same path, we plot the number of
triangles render by our system as compared to the number of triangles render by only
view frustum culling. The number of triangles rendered by our system is much less
as compared to the number of triangles intersecting the view frustum (Figure 11). We
achieve frame rates of around 15-40 frames per second with a screen space error of less
than a pixel leading to almost no visual difference.

7 Conclusion
We have presented a new way to combine rendering acceleration techniques into a
common framework. In fact, as more efficient simplification and visibility algorithms
are developed, they can be easily incorporated into our system. This framework is
particularly well suited for models with high occlusion complexity and large spatial
extent. Our implementation, even though lacking in many of the optimizations, is able
to achieve interactive frame rates on models with around 50 million polygons without
using pixel based approximations. This is significantly faster than has been achieved
before. Our initial experimentation exhibits a high degree of scalability and suggests

23

Figure 12: Powerplant Model

that we will be able to display much larger models are interactive rates. We are in the
process of acquiring realistic models with over a hundred million polygons. With more
accurate visibility pre-computation and smarter partitioning, we believe our framework
can eliminate graphics subsystem bottlenecks for a large class of visualization applica-
tions.

The memory footprint of our system is extremely low and we have been able to dis-
play large city models even on commodity laptop computers. We can handle models
larger than the main memory size as we only store the vLOD of the current view-cell
and the∆ of its neighbors in memory at a time. Manageable hard disk storage over-
head, low memory requirement and interactive rendering speed make our framework
an excellent vehicle for static model walkthrough and some computer games.

A number of optimizations can be performed on our existing system. The per-
formance of the rendering algorithm is directly dependent on the size of the vLODs.
This size can be reduced significantly by performing more aggressive occlusion culling
and as well as increasing the occluder set. Our current implementation is not able to
bound the size of the vLOD for each cell. Some cells still have large vLOD. Subdi-
viding the view-cell further only increases the storage requirement without sufficient
improvements in the vLOD size. We believe that a better spatial partitioning algorithm
is needed to improve the performance of this system. We currently allow only limited
update of detail at the rendering time. In future, we want to expand that capability. It
would also be useful to allow some animation or other dynamic changes to the models.
We believe, small coherent changes can be handled in our framework.

24

References

[ACW+99] D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson, K. Hoff,
T. Hudson, W. Stuerzlinger, R. Bastos, M. Whitton F. Brooks, and
D. manocha. Mmr: An integrated massive model rendering system us-
ing geometric and image-based acceleration. InProc. Symposium on
Interactive 3D Graphics, pages 101–106, Atlanta, GA, 1999.

[AKNW93] F. Alizadeh, R. M. Karp, L. A. Newberg, and D. K. Weisser. Physical
mapping of chromosomes: A combinatorial problem in molecular biol-
ogy. InACM/SIAM Symposium on Discrete Algorithms, pages 371–381,
1993.

[ASCE02] N. Aspert, D. Santa-Cruz, and T. Ebrahimi. Mesh: Measuring errors be-
tween surfaces using the hausdorff distance. InProceedings of the IEEE
International Conference on Multimedia and Expo, volume I, pages 705
– 708, 2002.http://mesh.epfl.ch.

[ASVNB00] Carlos And́ujar, Carlos Saona-V́azquez, Isabel Navazo, and Pere Brunet.
Integrating occlusion culling and levels of detail through hardly-visible
sets.Computer Graphics Forum, 19(3):C187–C194, August 2000.

[BDS+01] R. Bukowski, L. Downs, M. Simmons, C. Squin, and S. Teller. City-
walk: A second generation walkthrough system. In7th International
Conference on Virtual Systems and Multimedia (VSMM), October 2001.

[Ben75] J. L. Bentley. Multidimensional binary search trees used for associative
searching.Commun. ACM, 18(9):509–517, September 1975.

[BL76] K.S. Booth and G.S. Leuker. Testing for the consecutive ones property,
interval graphs, and graph planarity using pq-tree algorithms.Journal of
Computer and System Sciences, 13:335–379, 1976.

[BNSVR01] P. Brunet, I. Navazo, C. Saona-Vázquez, and J. Rossignac. Hoops: 3d
curves as conservative occluders for cell-visibility.Computer Graphics
Forum, 20(10), 2001.

[CCOZ98] Yiorgos Chrysanthou, Daniel Cohen-Or, and Eyal Zadicario. Viewspace
partitioning of densely occluded scenes. InProceedings of the Four-
teenth Annual Symposium on Computational Geometry (SCG’98), pages
413–414, New York, June 1998. Association for Computing Machinery.

[CDF+00] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D.
Ullman, and C. Yang. Finding interesting associations without support
pruning. InICDE, pages 489–499, 2000.

[CK01] J. Chhugani and S. Kumar. View-dependent adaptive tessellation of para-
metric models. InProc. Symposium on Interactive 3D Graphics, pages
59–62, Chapel Hill, NC, 2001.

25

[CKS02] W. Correa, J. Klosowski, and C. Silva. Out-of- core rendering of large
models. Technical Report TR-653-02, Princeton University, 2002.

[CMO97] J. Cohen, D. Manocha, and M. Olano. Simplifying polygonal models us-
ing successive mappings. InIEEE Visualization, pages 395–402, 1997.

[COM98] J. Cohen, M. Olano, and D. Manocha. Appearance preserving simplifi-
cation. InProc. ACM SIGGRAPH, 1998.

[Cro77] F. Crow. Shadow algorithms for computer graphics. InProc. ACM SIG-
GRAPH, pages 242–248, 1977.

[CRS98] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring error on
simplified surfaces.Computer Graphics Forum, 17(2):167–174, 1998.

[CT97] S. Coorg and S. Teller. Real-time occlusion culling for models with
large occluders. InProc. Symposium on Interactive 3D Graphics, pages
83–90, 1997.

[DDP96] Fŕedo Durand, George Drettakis, and Claude Puech. The 3D visibil-
ity complex: A new approach to the problems of accurate visibility.
In Xavier Pueyo and Peter Schröder, editors,Eurographics Rendering
Workshop 1996, pages 245–256, New York City, NY, June 1996. Euro-
graphics, Springer Wien. ISBN 3-211-82883-4.

[DDP97] Fŕedo Durand, George Drettakis, and Claude Puech. The visibility skele-
ton: A powerful and efficient multi-purpose global visibility tool. In
Turner Whitted, editor,SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, pages 89–100. ACM SIGGRAPH, Addison Wesley,
August 1997. ISBN 0-89791-896-7.

[DDTP00] Fŕedo Durand, George Drettakis, Joëlle Thollot, and Claude Puech. Con-
servative visibility preprocessing using extended projections. InSig-
graph 2000, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 239–248. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[ESSS01] J. El-Sana, N. Sokolovsky, and C. Silva. Integrating occlusion culling
with view-dependent rendering. InProc. IEEE Visualization, pages 371–
378, August 2001.

[FMP97] Leila De Floriani, Paola Magillo, and Enrico Puppo. Building and
traversing a surface at variable resolution. InIEEE Visualization ’97,
October 1997.

[FMP98] Leila De Floriani, Paola Magillo, and Enrico Puppo. Efficient implemen-
tation of multi-triangulations. InProceedings IEEE Visualization’98,
pages 43–50. IEEE, 1998.

26

[GCS91] Z. Gigus, J. Canny, and R. Seidel. Efficiently computing and repre-
senting aspect graphs of polyhedral objects.IEEE Trans. Pattern Anal.
Mach. Intell., 13(6):542–551, 1991.

[GH97] M. Garland and P. Heckbert. Surface simplification using quadric error
metrics. InProc. ACM SIGGRAPH, pages 209–216, 1997.

[GKM93] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. In
Proc. ACM SIGGRAPH, pages 231–238, 1993.

[GSF99] C. Gotsman, O. Sudarsky, and J. Fayman. Optimized occlusion culling
using five-dimensional subdivision.Computer & graphics, 23(5):645–
654, 1999.

[GSYM02] N. Govindaraju, A. Sud, S. Yoon, and D. Manocha. Parallel occlusion
culling for interactive walkthroughs using multiple gpus. Technical Re-
port Technical Report TR02-027, University of North Carolina at Chapel
Hill, 2002.

[Gueziec96] A. Gúeziec. Surface simplification inside a tolerance volume. Techni-
cal report, Yorktown Heights, NY 10598, March 1996. IBM Research
Report RC 20440.

[HMC+97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Ac-
celerated occlusion culling using shadow frusta. InProc. Symposium on
Computational Geometry, 1997.

[Hop96] H. Hoppe. Progressive meshes. InProc. ACM SIGGRAPH, pages 99–
108, 1996.

[Hop97] H. Hoppe. View dependent refinement of prograssive meshes. InProc.
ACM SIGGRAPH, pages 189–198, 1997.

[HSLM02] K. Hillesland, B. Salomon, A. Lastra, and D. Manocha. Fast and sim-
ple occlusion culling based on hardware depth queries. Technical Re-
port Technical Report TR02-039, University of North Carolina at Chapel
Hill, 2002.

[JC01] D. Johnson and E. Cohen. Spatialized normal cone hierarchies. InProc.
Symposium on Interactive 3D Graphics, pages 129–134, Durham, NC,
2001.

[JM97] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A
case study in local optimization. In E. H. L. Aarts and J. K. Lenstra,
editors,Local Search in Combinatorial Optimization, pages 215–310.
John Wiley and Sons, Ltd., 1997.

[KCC01] Vladlen Koltun, Yiorgos Chrysanthou, and Daniel Cohen-Or. Hardware-
Accelerated from-Region visibility using a dual ray space. In12th Eu-
rographics Workshop on Rendering, pages 205–216, 2001.

27

[KMGL99] S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hierarchical back-face
culling. Computers and Graphics, 23(5):681–692, 1999.

[LT99] F. Law and T. Tan. Preprocessing occlusion for real-time selective re-
finement. InProc. Symposium on Interactive 3D Graphics, pages 47–54,
1999.

[ME99] Dinesh Manocha and Carl Erikson. GAPS: General and automatic
polygonal simplification. In Stephen N. Spencer, editor,Proceedings
of the Conference on the 1999 Symposium on interactive 3D Graphics,
pages 79–88, New York, April 1999. ACM Press.

[PS99] M.V. Panne and A.J. Stewart. Efficient compression techniques for pre-
computed visibility. In12th Eurographics Workshop on Rendering, Ren-
dering Techniques, pages 305–316, 1999.

[RB93] J.R. Rossignac and P. Borrel. Multi-resolution 3d approximations for
rendering complex scenes. InGeometric Modeling in Computer Graph-
ics, pages 455–465, Genova, Italy, 1993. Spreinger Verlag (eds. B. Fal-
cidieno and T. Kunii).

[SDDS00] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion. Conservative vol-
umetric visibility with occluder fusion. In Kurt Akeley, editor,Sig-
graph 2000, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 229–238. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[Sim01] M. Simmons.Tapestry: An Efficient Mesh-based Display Representa-
tion for Interactive Rendering. PhD thesis, UC Berkeley, May, 2001.
Technical Report UCB//CSD-01-1153.

[SM88] T.W. Sederberg and R.J. Meyers. Loop detection in surface patch inter-
sections.Computer Aided Geometric Design, 5:161–171, 1988.

[Tel92] S. Teller. Computing the antipenumbra of an area light source. InSig-
graph 1992, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 139–148. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 1992.

[TS91] S. Teller and C. Śequin. Visibility preprocessing for interactive walk-
throughs.ACM Computer Graphics, 25(4):61–69, 1991. (SIGGRAPH
Proceedings).

[VM02] G. Varadhan and D. Manocha. Out-of-core rendering of massive geo-
metric environments. InProc. of IEEE Visualization, 2002.

[WBP98] Y. Wang, H. Bao, and Q. Peng. Accelerated walkthrough of virtual envi-
ronments based on visibility preprocessing and simplification.Computer
Graphics Forum, 17(3):C187–C194, 1998.

28

[WFP+01] Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer auf der
Heide, and Wolfgang Straer. The randomized z-buffer algorithm: Inter-
active rendering of highly complex scenes. InSiggraph 2001, Computer
Graphics Proceedings, Annual Conference Series, pages 361–370. ACM
Press / ACM SIGGRAPH / Addison Wesley Longman, 2001.

[WS99] Peter Wonka and Dieter Schmalstieg. Occluder shadows for fast walk-
throughs of urban environments. In P. Brunet and R. Scopigno, editors,
Computer Graphics Forum (Eurographics ’99), volume 18(3), pages 51–
60. The Eurographics Association and Blackwell Publishers, 1999.

[WVBIM02] N. Govindaraju W. V. Baxter III, A. Sud and D. Manocha. Gigawalk: In-
teractive walkthrough of complex environments. Technical Report Tech-
nical Report TR02-013, University of North Carolina at Chapel Hill,
2002. Also in Rendering Techniques ’02.

[WWS00] Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibility pre-
processing with occluder fusion for urban walkthroughs. In11th Euro-
graphics Workshop on Rendering, Brno, Czech Republic, June 2000.

[WWS01] Peter Wonka, Michael Wimmer, and François X. Sillion. Instant visi-
bility. In A. Chalmers and T.-M. Rhyne, editors,EG 2001 Proceedings,
volume 20(3) ofComputer Graphics Forum, pages 411–421. Blackwell
Publishing, 2001.

[XV96] J. Xia and A. Varshney. A dynamic view-dependent simplification for
polygonal models. InProc. IEEE Visualization, pages 327–334, San
Fransisco, CA, 1996.

[ZH97] H. Zhang and K. Hoff. Fast backface culling using normal mask. In
Proc. Symposium on Interactive 3D Graphics, pages 51–58, Providence,
RI, 1997.

[ZMHH97] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility culling using
hierarchical occlusion maps. InProc. ACM SIGGRAPH, pages 77–88,
1997.

29

Figure 13: View inside the gallery I

30

Figure 14: View inside the gallery II

Figure 15: View of cars on the street

31

