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Abstract

We investigate choosing point samples on a model comprising para-
metric patches to meet a user specified budget. These samples may
then be triangulated, rendered as points or ray-traced. The main
idea is to pre-compute a set of samples on the surface and at the
rendering time, use a subset that meets the total budget while re-
ducing the screen-space error across the model. We have used this
algorithm for interactive display of large spline models on low-end
graphics workstations. This is done by distributing the points on the
surface to minimize surface error. These points are then drawn as
screen-space squares to fill the gaps between them. Our algorithm
works well in practice and has a low memory footprint.
Keywords: Point sampling, Spline surfaces, Adaptive tessellation

1 Introduction

Curved surface models are used in applications ranging from com-
puter aided design and medical visualization to entertainment. For
example submarines, airplanes, automobiles, etc. are commonly
modeled as splines. Our overall goal is to render complex models
consisting of tens of thousands of spline patches, and be able to
explore and interact with them in real time on a graphics worksta-
tion with limited resources. Although the algorithm described in
this paper is broadly applicable to any parameterizable surface, we
focus on spline models.

1.1 Related research

Ray tracing [Whitted 1979; Kajiya 1982; Nishita et al. 1990], pixel
level subdivision [Catmull 1974; Shantz and Chang 1988], and
scan-line based algorithms [Whitted 1978; Blinn 1978; Lane et al.
1980] have been used for displaying spline models. These tech-
niques, although not as efficient as triangulation based methods,
generate more accurate images because they compute the position
and color of each pixel. In contrast, a triangle based tessellation has
accurate position and color only at the vertices of the triangles. One
compromise is to decompose the surface into nominally curved ‘el-
ements’, which follow the surface more closely than a triangle may
[Szeliski and Tonnesen 1992; Witkin and Heckbert 1994; Kalaiah
and Varshney 2002]. Such elements are not easily made C0 con-
tinuous as triangular approximations are. Nonetheless, if they are
small enough, they can be shaded well to produce accurate images
[Kalaiah and Varshney 2002; Adamson and Alexa 2003].

Recent research [Zwicker et al. 2001; Kalaiah and Varshney
2002; Adamson and Alexa 2003] shows how to perform this shad-
ing well. One aspect that has not received sufficient attention is:
how to select the locations of these elements on the surface, spe-
cially when the total number of samples is bounded. This is pre-
cisely what we address in this paper.

Computer graphics systems traditionally use triangles to ap-
proximate surfaces since triangle rendering may be hardware-
accelerated. View-dependent uniform [Abi-Ezzi and Shirman
1991; Kumar et al. 1996; Kumar et al. 1997] and adaptive triangu-
lation [Filip 1986; Vlassopoulos 1990] (as well as a combination of
the two [Chhugani and Kumar 2001]) have been employed to ren-
der spline models. Alternatively, one may generate a large number
of triangles and later perform view-dependent simplification of the
triangles [Hoppe 1996; Rossignac and Borrel 1993; Xia et al. 1997;
Schroeder 1997]. Recently, the two methods have been combined
into a single algorithm [Chhugani and Kumar 2001]. However, ex-
perience shows that in order to guarantee a small screen-space error,
we are forced to use many triangles that are small on the screen.

For triangles smaller than a pixel, point-based rendering has been
gaining popularity. The idea of using points as display primitives
for continuous surfaces was introduced in 1985 by [Levoy and
Whitted 1985], and recently has been explored further in [Gross-
man and Dally 1998; Rusinkiewicz and Levoy 2000; Pfister et al.
2000; Stamminger and Drettakis 2001]. These techniques use hi-
erarchical data structures and forward warping to store and render
the point data efficiently. Wand et al. [Wand et al. 2001] present
an output sensitive rendering algorithm that renders a dynamically
chosen sample of sub-pixel triangles. Algorithms that combine tri-
angle and point rendering have also been proposed [Cohen et al.
2001; Chen and Nguyen 2001].

The focus of this paper is on allocating a budget of total number
of samples among a number of surface patches of a model. This is
similar in spirit to the problem solved by [Funkhouser and Séquin
1993]. However, the granularity of primitive selection in our appli-
cation is much finer and hence the knapsack formulation is too slow.
We assume as input: {Fi}, a set of surface patches, and C, the total
number of elements that can be displayed (or otherwise processed)
in a single frame. We first allocate Ci to patch Fi so that ∑Ci = C,
ensuring fairness. Fairness implies that all patches have approxi-
mately the same maximum screen-space error. (We measure error
in terms of geometric distance between surfaces.) Further, for each
patch Fi we determine which Ci points on the domain (samples) to
choose so that the deviation of these samples from the actual surface
is minimized. We also produce a size parameter for these samples:
the elements must be drawn large enough so that no holes are left
between neighboring elements.

Our goal is to limit the overhead of the sample selection algo-
rithm at the rendering time, as the CPU is often required to pro-
cess the elements themselves. Hence, we perform most of the com-
putation before the rendering starts. This pre-computation phase
chooses a list of samples on the surface, sorted by their ‘impor-
tance’ in reducing deviation. This results in more samples chosen
in the areas of high curvature. At the rendering time, we first com-
pute Ci for patch Fi and then simply select its Ci most important
samples.

We demonstrate our algorithm by employing it in a surface



rendering system. In our system we have used points (OpenGL
GL POINT) as screen-primitives for simplicity. (Hence we will
use screen-primitive and point-primitive interchangeably.) We also
choose to let the primitives overlap in object space (in the spirit of
point-based rendering) and thus do not need to maintain or man-
age any topological information. Since these points are distributed
uniformly in the screen space, they may also be used to speed up
surface ray intersecting for efficient ray-tracing. One might also
similarly choose to, instead, triangulate the samples and obtain uni-
form screen triangles.

1.2 Main contributions

Our algorithm has two parts. It pre-computes a set of sample points
on each surface patch, computing more samples in highly curved ar-
eas. At the rendering time, a view-dependent subset of these sam-
ples is selected and associated primitives are sent to the graphics
pipeline. Its main novel components are:

• An algorithm to pre-compute samples locations in the de-
creasing order of importance

• An algorithm to fairly allocate the overall budget to individual
patches, which distribute screen-space error uniformly across
the model

• A system implementing the above algorithms demonstrating
efficient spline model rendering

In this paper we present a novel error diffusing budget allocation
of samples. It is important to note that we consider the curvature of
the underlying surface to determine which samples to pre-compute
and which subset to use at run time; other recent point-based ren-
dering algorithms [Zwicker et al. 2001; Stamminger and Drettakis
2001; Fleishman et al. 2003] do not. As a result of these strategi-
cally placed samples, we are able to generate fewer points for sim-
ilar error bounds. We do not need to maintain any expensive data
structure of selected samples either. We also guarantee a hole free
tiling of surface patches; some [Stamminger and Drettakis 2001] do
not.

In a system where the rendering speed is important, a point-based
scheme needs to be combined with triangle based tessellation [Co-
hen et al. 2001; Chen and Nguyen 2001] for largely flat areas on the
screen. Furthermore, richer primitives instead of point-primitives
may be used as in [Kalaiah and Varshney 2002] to improve im-
age quality. We do not address point filtering or anti-aliasing here
but recent techniques [Zwicker et al. 2001] could be applied at the
cost of hardware rendering performance. Our method is well suited
for smooth shading. In fact, applications requiring textures seem
to necessarily require richer primitives (or much smaller points).
Another limitation of our technique is the need to pre-compute a
fixed set of samples. However, the data stored per sample is small
and hence many may be stored. Further, on the rare occasion when
even more samples are needed, extra samples may be computed dy-
namically. This may be acceptable if only few patches need extra
samples on average.

1.3 Organization

In this presentation, we assume familiarity with NURBS and Bézier
surfaces and Delaunay triangulation. We elaborate the basic idea
behind our approach in Section 2. This is followed by the details
of the algorithm in Sections 3 (pre-sampling) and 4 (render time
sample selection). Section 5 describes our implementation and re-
ports the results obtained. Finally, conclusions are drawn and future
directions listed in Section 6.

2 Background

In order to ensure that the elements at the chosen samples cover the
surface, we must draw them large enough to fill the gaps between
them. We have chosen spheres to bound the size of the elements in
the object space. We generate the minimum radius of these spheres
so that they cover the patch. Thus, if the elements drawn at each
sample cover the sphere, we eliminate holes. In our system we
display the samples as GL POINTs. We describe how to form cov-
ering spheres next.

2.1 Spheres as elements

Imagine spheres at the sampled points on the surface such that every
point on the surface lies inside at least one sphere. In other words,
when these spheres are projected on the image plane, the ellipses
thus formed would have no gaps between them (Figure 1). As we
show later, the spheres centered on our sampled points have the
property that the actual surface does not deviate by more than r
from the surface of the spheres, where r is the radius of the largest
sphere. We choose the sample points so that they locally reduce the
deviation of the surface from the approximating surface (i.e. the
surface of the sphere) and hence reduce the radius of the sphere.

Spheres on the patch in 
Object Space

Image Plane

Projection of Spheres
   with no holes

Figure 1: Projection of surface samples on image plane

To render an individual sphere, we compute the center, Q, of the
projected ellipse (by projecting the sample point). We next compute
the maximum deviation (say d) of the elliptical surface from Q.
Now if we render a square splat of dimension 2d centered at Q,
the surface of the projected ellipsoid is covered (Figure 2). At the
rendering time, we need to compute Q and d. Assigning the same
value of d to all spheres on a spline patch greatly simplifies the
problem without increasing by much the total number of spheres
needed for a given error bound. We will prove that the screen-
primitive’s size, d, that we assign to each patch is optimal up to
an integer. In other words, the value of d we compute is less than
one pixel away from the optimal value. Thus for each patch, we
choose samples that when projected as points on the screen, do not
leave any holes, and also obey the deviation bounds. To compute
the samples and their point sizes for a given patch, we just need
logM table lookups for a patch, where M is the total number of
pre-computed samples.
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Figure 2: Square splat covering the projection of a sphere on the
image plane



2.2 Overall algorithm

Our algorithm has two main steps:

Pre-sampling: We progressively compute an ordered list of sam-
ple points on the domain of each spline patch. These samples are
associated with spheres centered at them. Each new sample mini-
mizes the deviation of the resulting spheres from the original sur-
face (across all points on the domain). The point also stores this
deviation value. Note that these values are non-increasing. As sam-
ples are added, old spheres’ radii change.

View-dependent point selection: At the rendering time, we
start with the list of pre-computed domain samples for each patch.
We first compute the screen-space error δ (F) that must be incurred
for each patch to remain under the overall budget. For a patch, F,
we first compute ∆(F) (the required object-space error) = γδ (F),
where γ is the scaling of the longest projection (detailed in section
2.3). We now search for ∆(F) in the sorted list of error values
stored for patch F. By construction, adding the corresponding
sample and all its predecessors guarantees ∆(F).

2.3 Scale factor computation

The allocation across the patches is entirely view-dependent and
performed online. The allocation within a patch uses surface deriva-
tives and is slower. In order to perform this allocation fast, we have
decided to choose samples from a list of candidates. This list must
be pre-computed. This means the error at the samples must be pre-
computed in the object space. However, we measure the final error
as the distance between the rendered primitive and the actual sur-
face in the screen space. We use the scale factor to transform errors
between the object and screen spaces and show how to compute it
in this section.

We define the scale factor of a point p in object space as the
length of the smallest vector anchored at p that projects to a unit
vector in the screen space (Figure 3). As shown below, this mini-
mum value equals ( f +z)2

f L where L is the length of the vector from
the eye to the point p, and f is the focal length, and ( f + z) is the
length of the projection of the vector from the eye to the point p,
along the principle viewing direction.
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Figure 3: Scaling of a unit vector in screen space

We first compute the maximum deviation of the perspec-
tive projection of the surface of a sphere from the projection
of its center. Let p = (x,y,z) be the center of the sphere
and let (r,θ ,φ) be the local spherical coordinates of the vec-
tor rooted at the center of the sphere that has the projec-
tion of maximum length. So the Euclidean coordinates of
the tip of the vector (say q(r,θ ,φ ) are (x + r sin(θ)cos(φ),y +
r sin(θ)sin(φ),z + r cos(θ)). Let XY plane be the image plane

and let (0,0,− f ) be the camera center. Projection of p on the im-
age plane = p′ = ( f x

f +z ,
f y

f +z ,0) and projection of q = q′(r,θ ,φ) =

(
f (x+r sin(θ)cos(φ))

f +z+r cos(θ)
,

f (y+r sin(θ)sin(φ))
f +z+r cos(θ)

,0). So maximizing the pro-
jection is equivalent to maximizing the length of p′q′ over all θ
and φ , which yields |p′q′| = f L2

( f +z)
[

( f +z)
√

(

L2

r2 −1
)

−
√

x2+y2

] where

L =
√

x2 + y2 +( f + z)2

This gives the ratio (γ) of length of the vector to its projection
length = r

|p′q′| . In particular, the scaling at a point is given by an
infinitesimally small vector rooted at the point, i.e., r → 0:

γ = lim
r→0

r
|p′q′| =

( f + z)2

f L
(1)

3 Pre-Computation

Recall that we precompute a list of ‘important’ samples for each
patch, as well as the radii of covering sphere at those locations.

3.1 Pre-sampling

We would like to produce the best approximating set Sn of n sam-
ples for each value of n. Let us say, we cover samples Si with the
set Oi of object primitives (sphere in our example). Since we do
not want to store a different set for each n, we mandate Sn ⊂ Sn+1.
Given n centers and radii, we need to find the n+1st center and the
new n + 1 radii that minimize the deviation of the resulting On+1
from the surface. To save time and space we have chosen to com-
pute a single radius rn+1 that may be used for all objects in On+1.
The following algorithm, though, is able to generate radii incremen-
tally so that only a small number of samples in Sn need to change
their corresponding radii in Sn+1. The location of samples in patch
domains are chosen as follows:

1. Start with a minimal sample set (e.g. the four corners) in the
domain.

2. Generate the (2D) Delaunay triangulation of this minimal
set. (Other good quality triangulation may be used as well.)
Now compute the center and the radius of the circumscribing
spheres for each of the triangles obtained (see Section 3.2).

3. While the sphere with the maximum radius has a radius
greater than a user specified error ∆u:
Append to S, (Q,rmax), the center and the radius of the largest
circumsphere of all triangles (in domain space). Also add Q
to the Delaunay triangulation.

At the end of the process, we have an ordered list, S, of domain
samples for each patch and their radii. We only store the largest
radius for each Sn, thus overdrawing some samples.

Claim 1: Maximum deviation of a surface patch from the ap-
proximating sphere is equal to the radius of the sphere that encloses
that patch.

Justification: We guarantee this by making sure that the sphere
bounds the surface element (more in section 3.2). Clearly, every
point inside a sphere of radius r is at a distance less than or equal to
r from the surface.

Claim 2: At any instant of the domain triangulation, let rmax be
the maximum radius of the circumspheres. If we draw spheres with
radius = rmax on all the sampled points on the surface, no holes are
left on the surface.

Justification: Suppose the radius of the circumcircle of a trian-
gle, t, is r. If we draw three circles with radius r and centers at the



three vertices of t, no point on the triangle would be left uncovered
(Figure 4). Hence drawing spheres with a radius rmax, rmax > r, at
each vertex would cover all triangles.
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Figure 4: Covering surface by drawing spheres at the vertices

Moreover, the maximum deviation of the surface from these
spheres still remains the same, because for each circumscribing
sphere of a triangle, each surface point is at most at a distance of
radius from the center and each of the three substituting spheres
pass through the center of the original sphere. Hence the deviation
criteria and the criterion for no holes are simultaneously satisfied by
selecting points in the above fashion. Also with each sample point,
we get the maximum object space deviation ∆i (for the ith selected
point), between the approximation and the surface if all the points
S j , j ≤ i are considered on the surface for point rendering. Note
that ∆i+1 ≤ ∆i and ∆|S| ≤ ∆u, where |S| is the total number of sam-
ples pre-computed and ∆u is the user specified value as described
in section 3.1. (Technically, deviation could increase on adding a
new point for some degenerate patches as shown in Figure 5. Even
in these rare cases, adding a sequence of samples always leads to a
lower deviation. We add or delete the sequence of samples together
and assign a single index to them.) Thus given a deviation bound
δ , we can find the prefix of S that generates an approximation with
deviation less than or equal to δ in the screen space (or γδ in the
object space).

. . .

.

.

p
1

p
0

Figure 5: The maximum deviation occurs at p0 when the curve is
approximated by a straight line as shown on the left. The deviation
increases when we use three samples as shown on the right.

3.2 Computation of sphere parameters

For each triangle in the object space, we need to find the center
and the radius of the sphere that encloses every point on the surface
corresponding to the region inside the triangle on the domain space.
Let the three domain points (of Bezier patch F) be represented as
t = (p1, p2, p3), pi = (ui,vi). Let P1 = F(p1),P2 = F(p2) and P3 =
F(p3) be the corresponding object space points. Now compute the

circumcenter, Q, and the circumradius, r1, for the triangle P1P2P3,
unless:

1. All the three points are coincident. Set Q = P1 and r1 = 0.

2. The three points lie on a straight line. Let P1 and P2 be the

extreme points. Set Q =
P1+P2

2 and r1 =
|P1P2|

2 .

3. The three points form an obtuse angled triangle (circumcenter
is outside). Let P1 and P2 be the end points of the longest

edge. Set Q =
P1+P2

2 and r1 =
|P1P2|

2 .

Having evaluated Q and r1, shoot a ray QR perpendicular to the
plane of the triangle, intersecting the surface at point R (Figure 6).
We use Powell’s method [Chhugani and Kumar 2001; Press et al.
1993] to find the point of intersection. Let |QR| = r2. Consider the

sphere with center R and radius r =
√

r2
1 + r2

2 . We find the point,
P, on the sub-patch furthest from R (again using Powell’s method),
and if |PR| > r, set r = |PR|.
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Figure 6: Computation of the radius and center of the circumscrib-
ing sphere

4 Online Sampling

In this section we describe the point-based tessellation algorithm
that meets a user-specified budget. This meets a target frame-rate
also even with a GL POINT based renderer as we have used. Since
we use small point sizes in practice, we have found that the fill rate
is usually not the bottleneck. Thus bounding the number of points
drawn is sufficient to meet a target frame-rate in practice.

Recall that a fair allocation of the budget implies a uniform
screen-space error across all patches. In other words, we should
allocate the same screen-space error to all patches: the smallest
such error that still allows us to meet the overall budget. Our algo-
rithm, instead, allocates error such that the screen-space error of all
patches are within a pixel of each other.

4.1 Sample selection for a patch

To meet the required screen-space deviation, δ (F) for patch F, the
object-space deviation required for the approximation is ∆(F) =
γ(F)δ (F), where γ(F) is the minimum of the scale factors of all
points comprised by F. (Recall that the minimum value of γ corre-
sponds to the maximum projected length of the error vector.)

Unfortunately, the scale factor of a set of points can vary arbi-
trarily. Hence, even though we could use a single scale factor per
patch, we employ a more spatially coherent scheme. We use an oc-
tree based spatial partitioning of space. For all patches contained
in a sufficiently small partition, we use the same scale factor. Typ-
ically partitions close to the view-point are more refined than those
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Figure 7: Grouping patches based on scaling factor

further away, as the scale factor close to the view point varies faster.
The sample selection proceeds as follows:

1. Start with the octree cubes used in the previous frame. We
call a cube terminal if the scale factor of the eight corners
of the cube differ by less than γu, a user-specified tolerance.
For example, the terminal nodes are shown in Figure 7. The
example node B is terminal because max1≤i, j≤4 |γi − γ j|< γu.
If a leaf node from the previous frame ceases to be terminal,
we subdivide it. Otherwise, if a leaf node’s parent becomes
terminal, we recursively delete the nodes at the current level.
If γu is chosen to be 1

δ , the approximation does not under-
deviate by more than a unit pixel, where δ is the desired upper
bound on the screen space deviation.

2. The scale factor of a cube is the smallest of the scale factors of
its corners. For each patch completely contained in a terminal
cube, B, with scale factor γ(B), we choose all samples Si, i ≤
j, such that the associated deviation ∆ j < δγ(B) and ∆ j−1 >

δγ(B).

3. If a patch lies in more than one terminal cubes that are all
adjacent to each other, we assign to the patch, the minimum
scale factor of those cubes.

4. For larger patches, however, we do need to use different scale
factors in different regions of the patch. We subdivide the
domain of patches that span terminal cubes that are not adja-
cent to each other. We apply the scaling algorithm described
above to each sub-domain K to compute the required object-
space deviation ∆K . For each sub-domain, we find the subset,
SK ⊂ S, of samples in S that belong to domain K.

4.2 Budget allocation per patch

At the rendering time, to guarantee a given frame rate, we can ren-
der only a certain number of points per frame on a given graphics
platform. Let us say the maximum number of allowable points per
frame is C, a user specified constant.

Formally, we need to compute Ci, the budget for patch i, such
that ∑i(Ci) = C. Let the total number of patches be N. For distribu-
tion purpose, we would want to minimize the screen space error for
every patch. Since we use the size of the screen-primitive to bound
the maximum deviation, by choosing the same screen-primitive size
for every patch we fairly distribute error. In particular, a point size
of d bounds the maximum screen space deviation of the actual sur-
face from the approximation surface by δ = d

2 .
We compute the patch budget Ci from the overall budget C in-

crementally from the previous frame’s solution. Consider frame
j. Assume the scale factor for the ith patch is γi( j). Hence, if a

point size of δi( j) is chosen, we can compute the maximum al-

lowable object space deviation for the patch (∆i( j) = γi( j) δi( j)
2 ).

This object space deviation equals the maximum allowable radii of
spheres on the surface. So we need to search for ∆i( j) in the list
of pre-computed values of errors and use the corresponding prefix
of samples. This requires at most log(Mi) lookups, where Mi is the
number of pre-computed samples for the ith patch. So we can de-
fine a function C j

i : R → N that takes the point-size of the rendered
points for that patch, and returns the number of points required. We
can obtain such C j

i ,∀i ∈ [1..N].
Hence the optimization problem can be stated as follows:

Minimize (Maxiδi( j), such that ΣiC
j
i (δi( j)) ≤C and ∀i δi( j) ≥ 0

C j
i resembles a step function, (see Figure 8) and we need to for-

mulate this function for every patch for each frame. The optimal
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Figure 8: Step function for a particular position of some patch

solution would assign the same point size to each patch. Solv-
ing the above equation analytically, to get the optimum solution,
might require in the worst case O(N(Mmax)) steps, where Mmax is
the maximum number of pre-computed points for any patch. This
is clearly an expensive solution. In practice, though, we need only
integer point sizes. So we propose the following algorithm, which
does not require computing the function C j

i
for the whole point size

range, but instead just for a few discrete values.

1. Assign a point size of d = 1 for each patch.

2. Compute the number of total points required, and let C′ =
ΣiCi, where Ci is the number of points required for the ith
patch.

3. If C′ ≤C, then render all the patches with this point size.

4. If C′ > C, increase the point size d by 1, and go back to step
2.

The above algorithm does a linear search to arrive at a point size
that satisfies the budget. Clearly any integer point size less than d
would overshoot the budget. However, this algorithm is linear in
the maximum allowed point size. In order to improve it, we exploit
the temporal coherence of the movement of the navigator to obtain
a 2n-time bounded approximation algorithm.

1. Allocate to each patch, the point size it had in the previous
frame.

2. Compute the number of total points required, and let C′ = ΣiC
′
i

where C′
i is the number of points required for the ith patch.

3. If C′ < C, decrease the point sizes of each of the patches by
one, and recompute C′ after processing each patch, and termi-
nate when C′ ≥C.



4. If C′ > C, increase the point sizes of each of the patches by
one, and recompute C′ after processing each patch, and termi-
nate when C′ ≤C.

In practice, because of the temporal coherence of the eye point,
the solution does not change much between frames, and hence usu-
ally in 1–2 passes, we obtain the optimal solution up to integral
point sizes. This implies that our solution generates errors less than
one pixel larger than the optimal. For a better bound on the point
size, we could perform a binary search, using the same methodol-
ogy. However, the cost of computing a tighter approximation far
exceeds the benefit of using such a solution.

Claim 3: Let di and d j be the point sizes allocated to patches i
and j respectively. Then |di −d j| ≤ 1.

Justification: The proof follows from our technique of changing
point sizes for each patch. Each patch starts with a point size of
1 (before the first frame). The sizes are sequentially increased or
decreased in round-robin order. Hence the difference in point sizes
between any two patches would at most be one.

Note that constant screen-space point sizes only imply that the
screen space error is well distributed across the model. We still
have fewer, bigger object-space splats for flat regions and smaller,
denser ones for more curved regions.

5 Implementation and Results

We have implemented our algorithm and tested it on a variety of
models. All timings reported in this paper are from an Onyx2 with
a 400 MHz R12000 and an InfiniteReality graphics card. Our ex-
periments consisted of viewing a variety of models from various
view points.

Our method of selecting points does not lead to a large overlap
between neighboring points. Let us say we compute the size d(> 1)
to render m points in any frame. If we render the same patch with
a point size of d − 1, we can see some holes on the screen for the
corresponding patch (see Figure 9). Hence given the criteria of
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Figure 9: Holes on the Teapot model when the points are rendered
with a point size just one less than the computed one

At the pre-processing stage, for each sampled point, we store the
position (u,v), the deviation of the triangulation and the radius (or
deviation) of the sphere required at that point. The actual domain
position of each sample need not be very precise. Note that one
byte can accommodate more than enough tessellation (255×255).
In fact, using one byte each for u and v, and two bytes for storing the
deviation (appropriately scaled) is usually enough for good quality
rendering. Thus we may represent a spline patch with its original
control points, and 6n additional bytes, for selected n samples on

a patch. The number of points may be reduced to satisfy storage
bounds. This value of n determines the extent to which point ren-
dering can be used. Additionally, we can also pre-compute and
store the three spatial coordinates of the sampled points and up to
three normal coordinates, although they can be efficiently computed
and cached at the rendering time [Kumar et al. 1995].

In Table 1, we report the pre-processing time for different mod-
els. This pre-processing algorithm takes time that is proportional to
the total surface area of the model, and not to the number of patches.
Hence some of the models with large number of patches can be pre-
processed comparatively faster. The pre-processing for any patch is
independent from that of any other patch of the model. Hence pre-
computation can also be carried out in parallel. However, all the
times reported are for a single processor. Also, we compute a large
number of samples per patch (by giving a small deviation thresh-
old), to carry out extensive tests. Hence the pre-processing times
are very high for some of the models.

In Table 2, we report the time spent by the algorithm to compute
the appropriate point samples that need to be sent to the graphics
pipeline. Note that the overall frame rate for the large models (e.g.,
the garden) is low even with few points. This is because our sample
selection method takes time proportional to the number of patches.
The hierarchical version of the algorithm would reduce this time
further. Also, we report the average screen space error (defined as
the arithmetic mean of the screen space error used for displaying
the model every frame) for the simulated browsing of the models.
In fact, even the variance in error across frames is low and thus
acceptable quality is maintained in all frames. It can be seen that
a very small fraction of the total rendering time (∼ 10%) is spent
in software to figure out the correct samples. We achieve real time
frame rates for most of the models on a hardware customized for tri-
angle rendering. Another interesting observation was that when the
screen space area of a patch was considerably large, screen space
errors of even 3−4 pixels did not produce noticeable artifacts (see
color plate). This can be explained by the small percentage of er-
ror in the projection. Hence, one might use the metric of relative
screen-space error (obtained by dividing the screen-space error with
some normalized area of the screen space projection).

Number Num Samples Pre-process

Model of Pre-computed time

Patches in minutes

Teapot 32 129,273 09

Spoon 66 234,290 17

Goblet 72 123,396 15

Dart 100 141,150 09

Coke 330 475,674 32

Scissors 505 141,243 14

Pencil 570 1,051,624 70

Dragon 5354 1,473,961 96

Garden 38646 1,231,200 82

Table 1: Pre-sampling performance

We also note some aliasing artifacts for a low budget of points.
These are noticeable across the boundary of patches that do not
have any neighboring patches. See Figure 10 for an example. (The
artifacts are enhanced by a two times image scaling.) Methods like
[Zwicker et al. 2001] help alleviate it. However, they don’t work



Points %-time

Model per Average spent Frame

frame error in software rate

Teapot 90,000 1.8 0.3 31

Spoon 90,000 1.1 0.6 34

Goblet 100,000 1.45 0.5 34

Dart 90,000 0.7 0.6 36

Coke 90,000 2.09 0.9 25

Scissors 90,000 1.7 0.9 24

Pencil 70,000 3.00 2.44 23

Dragon 50,000 3.12 11.9 20

Garden 50,000 7.5 19.1 7

Table 2: Run-time behavior of our algorithm

well for large point sizes. Reducing the point size on the boundary
or silhouettes will reduce this problem.
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Figure 10: Aliasing effects across the boundary of a patch

Visual artifacts can also be seen across boundaries of patches
having appreciable discontinuity in normal values from the bound-
aries of neighboring patches (see Figure 11). To reduce this prob-
lem, we smooth normals near the boundary. These normals are av-
eraged with the nearby boundary points on the adjacent patch. For
example, normal, NA(u,v), for patch A with adjacent patch F is re-

placed by ε+(1−v)
2ε NA(u,v)+

ε−(1−v)
2ε NF(u,0), for all samples with

v in [1− ε,1], with a small ε . In practice, ε around 0.005 works
well. In Figure 12 we show the improvement in rendering of the
base of a goblet model using the modified algorithm.

6 Conclusion

We have presented a view-dependent algorithm for distributing
samples on a parametric patches. We have demonstrated a display
system using points as primitives proxying for each sample. The
algorithm does most of its work off-line. At the rendering time, it
performs minimal computation to select the set of samples that need
to be rendered. This may be used to provide a guaranteed frame-rate
visualization. We are able to obtain real time rendering rates with
small errors for most models. Our current scheme pre-computes
a list of samples for each patch. If more samples are sometimes
needed, one could generate them online as in [Chhugani and Kumar
2001]. For patches large on screen, however, it is faster to use trian-
gle primitives. Current hardware is often not well optimized for ren-
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Figure 11: Visual artifact due to a large discontinuity in the normal
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Figure 12: Reduction in artifact for ε = 0.004

dering points. We expect the gains of using point-based tessellation
to increase when such optimizations becomes routine. Preventing
artifacts at the boundary of point-based elements and traditional tri-
angles remains an open problem when the budget is limited. In our
scheme we have chosen to allocate the same screen-space size to all
elements of a patch. At the cost of more space, we could compute
and store per element sizes. Another possibility of improvement
lies in reducing (or eliminating) the online sampling density for in-
visible areas of the surface. The pre-sampling can also be made
more rigorous by using disk-like, instead of sphere, object primi-
tives and also by considering surface normals and other application
dependent features.
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