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Abstract

Unlike classical causal inference, where the
goal is to estimate average causal effects
within a population, in settings such as per-
sonalized medicine, the goal is to map a unit’s
characteristics to a treatment tailored to maxi-
mize the expected outcome for that unit. Ob-
taining high-quality mappings of this type is
the goal of the dynamic treatment regime liter-
ature. In healthcare settings, optimizing poli-
cies with respect to a particular causal pathway
is often of interest as well. In the context of
average treatment effects, estimation of effects
associated with causal pathways is considered
in the mediation analysis literature.

In this paper, we combine mediation analy-
sis and dynamic treatment regime ideas and
consider how unit characteristics may be used
to tailor a treatment strategy that maximizes
an effect along specified sets of causal path-
ways. In particular, we define counterfactual
responses to such policies, give a general iden-
tification algorithm for these counterfactuals,
and prove completeness of the algorithm for
unrestricted policies. A corollary of our re-
sults is that the identification algorithm for re-
sponses to policies given in [16]] is complete
for arbitrary policies.

1 INTRODUCTION

Establishing causal relationships between actions and
outcomes is fundamental to rational decision-making.
The gold standard for establishing causal relationships
is the randomized controlled trial (RCT), which may be
used to establish average causal effects within a popula-
tion. Causal inference is a branch of statistics that seeks
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to predict effects of RCTs from observational data, where
treatment assignment is not randomized. Such data is of-
ten gathered from observational studies, surveys given
to patients during follow up, and in-hospital electronic
medical records.

While average treatment effects reported from imple-
mented RCTs, or hypothetical RCTs emulated by causal
inference methods using observational data establish
whether a particular action is helpful on average, opti-
mal decision making must tailor decisions to specific sit-
uations. In the context of causal inference this involves
finding a map between characteristics of an experimental
unit, such as baseline features, to an action that optimizes
some outcome for that unit. Methods for finding such
maps are studied in the dynamic treatment regime litera-
ture [3], and in off-policy reinforcement learning [2].

If an action is known to have a beneficial effect on some
outcome, it is often desirable to understand the causal
mechanism behind this effect. A popular type of mech-
anism analysis is mediation analysis, which seeks to de-
compose average treatment effects into direct and indi-
rect components, or more generally into components as-
sociated with specific causal pathways. These compo-
nents of the average causal effect are known as direct,
indirect, and path-specific effects, and are also defined as
population averages [I1, (8} [12]].

In this paper, we define counterfactual outcomes neces-
sary to personalize effects associated with causal path-
ways, give an algorithm for non-parametric identification
of these outcomes and prove that it is complete for arbi-
trary policies. We consider estimation methods for iden-
tified outcomes of this type in a companion paper [7].

Why Personalize Effects Along Causal Pathways?

It often makes sense to structure decision-making such
that the overall effect of an action on the outcome is max-
imized for a given unit. However, in some cases it is ap-



propriate to choose an action such that only a part of the
effect of an action on the outcome is maximized. Con-
sider management of HIV patients’ care. Since HIV is
a chronic disease, care for HIV patients involves design-
ing a long-term treatment plan to minimize the chance
of viral failure (an undesirable outcome). In designing
such a plan, an important choice is when to initiate pri-
mary therapy, and when to switch to a second line ther-
apy. Initiating or switching too early risks unneeded side
effects and “wasting” treatment efficacy, while initiating
or switching too late risks viral failure [4].

In the context of HIV, however, treatment adherence is an
important component of the overall effect of the drug on
the outcome. Patients who do not take prescribed doses
compromise the efficacy of the drug, and different drugs
may have different levels of adherence. Thus, for HIV
patients, the overall effect of the drug can be viewed as
a combination of the chemical effect and the adherence
effect [6]. Therefore, choosing an action that maximizes
the overall effect of HIV treatment on viral failure en-
tangles these two very different causal mechanisms. One
approach to tailoring treatments to patients in a way that
disentangles these mechanisms is to find a policy that
optimizes a part of the effect, say the chemical (direct)
effect of the drug, while hypothetically keeping the ad-
herence levels to some reference level. Finding such a
policy yields information on how best to assign drugs to
maximize their chemical efficacy in settings where ad-
herence levels can be controlled to that of a reference
treatment — even if the only data available is one where
patients have differential adherence.

2 PRELIMINARIES

We proceed as follows. We first give graph theoretic
preliminaries, and define graphical causal models that
equate counterfactual responses to interventions (setting
variables to values, contrary to fact) with truncated fac-
torizations of the observed data distribution [11]. Next,
we describe the more general edge intervention that sets
variables to different values for different outgoing edges
in a graph. Edge interventions are used to formulate di-
rect, indirect, and path-specific effects in mediation anal-
ysis. Then, we define counterfactual responses to poli-
cies that set variables not to constant values but to values
that potentially depend on other sets of variables. Ex-
tending these notions, we describe counterfactuals that
generalize both responses to edge interventions, and re-
sponses to policies, namely responses to edge-specific
policies. We briefly describe identification theory for
these counterfactuals in causal models with no hidden
variables, and note this theory is based on variations of a
truncated factorization known as the g-formula [[11]].

We next consider identification theory for all counter-
factuals we described in hidden variable causal models.
This theory is more complex, and is based on the ID
algorithm [14} [17]. We rephrase the algorithm and its
necessary variations in a single line formula based on
the fixing operator described in [[10]. This reformula-
tion allows us to express any functional corresponding to
a counterfactual distribution identifiable in a hidden vari-
able causal model as a single truncated factorization for-
mula, just as identifiable counterfactual distributions in
fully observed models are expressed via the g-formula.
Finally, we describe a completeness result for the iden-
tification algorithm for responses to unrestricted edge-
specific policies in hidden variable causal models.

While our primary contributions lie in the presentation
of counterfactuals and identification theory for edge-
specific policies, we include some discussion of prior
theory to build up to our result, and show how identifi-
cation theory of edge-specific policies generalizes iden-
tification theory for edge-specific effects and policy in-
terventions.

Graph Theory

We will define statistical and causal models as sets of dis-
tributions defined by restrictions associated with graphs.
We will use vertices and variables interchangeably — cap-
ital letters for a vertex or variable (V), bold capital letter
for a set (V), lowercase letters for values (v), and bold
lowercase letters for sets of values (v). By convention,
each graph is defined on a vertex set V.

For a set of values a of A, and a subset AT C A, define
aa+ to be a restriction of a to elements in A. The state
space of A will be denoted by X 4, and the (Cartesian
product) state space of A will be denoted by X A .

For a graph mixed graph G with directed and bidirected
edges, and any V € V, we define the following ge-
nealogic sets: parents, children, ancestors, descendants,
and districts as: pag(V) = {(W € V | W — V},
chg(V) ={W e V|V = W} ang(V) = {W €
VIW = ... Vhdeg(V)={WeV ]|V >

o> Whdisg(V) ={W eV |V ... WL
By convention, ang(V) N deg(V) Ndisg(V) = {V}.
These sets generalize to VI C V disjunctively. For ex-
ample, pag (V') = Uy eyt pag(V). For A C 'V, define
pag(A) = pag(A) \ A, the parents of a set A.

The non-descendants of V' are denoted ndg(V) = V' \
deg (V). The set of districts forms a partition of vertices
in G and is denoted D(G). Finally, given a graph G and
A C 'V, the subgraph of G containing only vertices in A
and edges between these vertices is denoted Ga .



Statistical And Causal Models Of A Dag

A directed acyclic graph (DAG), or Bayesian network, is
a graph G with vertex set V connected by directed edges
and such that there are no directed cycles in the graph
(i.e. no sequences of edges and vertices V — ... W
and edge W — V). A statistical model of a DAG
G is the set of distributions p(V) such that p(V) =
[Ivev p(VIpag(V)). Suchap(V) is said to be Markov
relative to G.

Causal models of a DAG are also sets of distributions, but
on counterfactual random variables. Given Y € V and
A C V \ {Y}, a counterfactual variable, or ‘potential
outcome’, written as Y (a), represents the value of Y in
a hypothetical situation where A were set to values a
by an intervention operation [9]]. Given a set Y, define
Y(a) ={Y}(@) ={Y(a) | Y € Y}. The distribution
p(Y(a)) is sometimes written as p(Y|do(a)) [9].

Causal models of a DAG G consist of distributions de-
fined on counterfactual random variables of the form
V(a) where a are values of pag(V'). In this paper we
assume Pearl’s functional model for a DAG G with ver-
tices V which is the set containing any joint distribution

over all potential outcome random variables where the
sets of variables

{V(av) |av € Xpay)} |V € V}

are mutually independent [9]. The atomic counterfac-

tuals in the above set model the relationship between
pag(V'), representing direct causes of V, and V itself.
From these, all other counterfactuals may be defined us-
ing recursive substitution. For any A C 'V \ {V},

V(a) = V(apag(v)na, {pag(V) \ A}(a)). M

For example, in the DAG in Fig.|l|(a), Y (a) is defined
tobe Y(a, M (a, W), W).

A causal parameter is said to be identified in a causal
model if it is a function of the observed data distribu-
tion p(V). Otherwise the parameter is said to be non-
identified. In all causal models of a DAG G, all interven-
tional distributions p({V \ A}(a)) are identified by the
g-formula [[111]:

pUV\AY@) = [T p(VIPag(V)),, @

Vev\A

Not all interventional distributions are identified when
there are hidden variables present in the causal model.
We discuss identification theory in hidden variable DAGs
later in this paper.

Edge Interventions

A more general type of intervention in a graphical causal
model is the edge intervention [15], which maps a set

of directed edges in G to values of their source vertices.
Edge interventions have a natural interpretation in cases
where a treatment variable has multiple components that
a) influence the outcome in different ways, b) occur or do
not occur together in observed data, and ¢) may in prin-
ciple be intervened on separately. For instance, smoking
leads to poor health outcomes due to two components:
smoke inhalation and exposure to nicotine. A smoker
would be exposed to both of these components, while
a non-smoker to neither. However, one might imagine
exposing someone selectively only to nicotine but not
smoke inhalation (via a nicotine patch), or only smoke
inhalation but not nicotine (via smoking plant matter not
derived from tobacco leaves). These types of hypothet-
ical experiments correspond precisely to edge interven-
tions, and have been used to conceptualize direct and in-
direct effects [8} [12], often on the mean difference scale.

Formally, we will write the mapping of a set of edges to
values of their source vertices using the following short-
hand: (a1W7)-, (aaWa)-, ..., (axWg)— to mean that
edge (A1W7)-, is assigned to value aj, (A2Wa)_, is
assigned to value ag, and so on until (AxWy)_, is as-
signed to value aj. Alternatively, we will write a,, to
mean edges in « are mapped to values in the multiset a
(since multiple edges may share the same source vertex,
and be assigned to different values). For a subset 5 C «,
and an assignment a,, denote ag to be a restriction of a,,
to edges in 5.

We will write counterfactual responses to edge in-
terventions as Y(a,) or, for simple cases, as:
Y ((aY)-, (¢’ M)_,) meaning the response to Y where
A is set to value a for the purposes of the edge (AY)_,
and to a’ for the purposes of the edge (AM)_,. An edge
intervention that sets a set of edges « to values in the
multiset a is defined via the following generalization of
recursive substitution (T):

Y(aa) = Y(azy) car; (Pag(Y)}Haa)),  ©)

where pag(Y) = {W | (WY')_, & a}. For example, in
the DAG in Fig.[1](a), Y ((a'Y)_,, (aM)_,) is defined as
Y(d',M(a, W), W).

For simplicity of presentation, we will restrict attention
to edge interventions with the property that if (AW)_, €
a, then for any V' € chg(A), (AV)_, € a. These types
of edge interventions set values for all causal pathways
for a set of treatment variables. This is the convention in
the majority of existing mediation literature as these in-
terventions are most relevant in practical mediation anal-
ysis problems. Specifically, in our HIV example, we are
interested in the effect of a drug along all pathways that
start with a particular edge, while the effect of the drug
via pathways that begin with other edges is kept to a ref-
erence level. This assumption may be relaxed, at the
price of complicating the theory [15].



Edge interventions are used to define direct and indirect
effects. For example, in the model given by the DAG
in Fig [1] (a), the direct effect of A on Y is defined as
E[Y (V). (aM)5)]  —  E[Y((@Y), (aM)-)]
which is equal to E[Y(a)] — E[Y(d,M(a))].
The indirect effect may be defined similarly as
E[Y((@'Y), (al).)] — E[Y((@Y),(@M))]
which is equal to E[Y (a/, M(a))] — E[Y(a/)]. The
direct and indirect effects add up to the ACE.

Note that while direct, indirect, and path-specific effects
may be defined directly as nested counterfactuals [8}[13]],
this notation quickly becomes unreadable for compli-
cated interventions applied at multiple time points. The
edge intervention notation may be viewed as a general-
ization of the do(.) operator notation of Pearl to media-
tion problems, which avoids having to specify the entire
nested counterfactual, and instead directly ties interven-
tions and sets of causal pathways to which these inter-
ventions apply (as represented by the first edge shared
by all pathways in the set).

Identification of edge interventions in graphical causal
models without hidden variables corresponds quite
closely with identification of regular (node) interven-
tions, as follows. Let A, = {A | (AB),, € a}.
Consider an edge intervention given by the mapping
do. Then, under the functional model of a DAG G,
the joint distribution of counterfactual responses p({V \
A, }(a,)) is identified via the the following generaliza-
tion of (2)) called the edge g-formula:

I PWVlagzv)_eay, pag(V)). 4)
VEV\A,

For example, in Fig (1| (a), p(Y ((aY), (d'M)-)) =
> woar P(Yla, M, W)p(Mla’, W)p(W), which is ob-
tained by marginalizing W, M from the edge g-formula.

Edge interventions represent a special case of the more
general notion of a path intervention [15]. Responses
to both of these interventions are used to define path-
specific effects [8], however responses to edge interven-
tions are precisely those that are always identified under
the functional model of a DAG, via . Responses to
path interventions that cannot be rephrased as responses
to edge interventions are not identified even in a DAG
model, including the functional model, due to the pres-
ence of recanting witnesses [1]]. For this reason, in this
paper we restrict attention only to edge interventions and
responses to edge-specific policies.

Responses To Treatment Policies

In personalized medicine settings, counterfactual re-
sponses to conditional interventions that set treatment
values in response to other variables via a known func-
tion are of interest. As an example, assume the graph

in Fig. [T] (b) represents an observational study of can-
cer patients where W) represents baseline patient met-
rics, Ay is the primary therapy, W is the measured in-
termediate response to the primary therapy, A, is a de-
cision to either continue primary therapy or switch to
a secondary therapy in the event of a poor response to
Aq, and W5 is the outcome of interest. In this setting,
we might be interested in evaluating policies in the set
{fAl : xW{) = xAUfAz : x{W07W1} = xAz} that
map patient characteristics to decisions about therapies
A; and A;. We evaluate the efficacy of these policies
via the counterfactual variable Ws(fa4,, fa,), represent-
ing patient outcomes had treatment decisions been made
according to those policies.

These types of variables are defined via a generaliza-
tion of (1)), where instead of setting values of parents in
Aq, A, to values fixed by the intervention, values of par-
ents in A are instead set according to fa, and fa,. In
particular, Wa(f4,, fa,) is defined as

Wafa,(Wi[fa,(Wo), Wol, Wo), Wi[fa,(Wo), Wol, fa;(Wo), Wol.
)

The distribution of this variable is identified under the
functional model via the natural generalization of (2)) as

> p(WeWo, fa, (Wo), Wi, fa, (Wo, W1)) X
Wo, W1

p(W1|Wo, fa, (Wo))p(Wo).  (6)

More generally, given a DAG G, a topological ordering
<,and aset A C V, foreach A € A, define W 4 to be
some subset of predecessors of A according to <. Then,
given a set of functions fa of the form f4 : Xw, — X4,
define Y (fa ), the counterfactual response Y € V to A
being intervened on via fao = {f4 | A € A}, as

Y({fa(Wa(fa))[|A € pag(Y) N A}, {pag(Y) \ A}(fAz%

In a functional model of a DAG G, the effect of f5 on the
set of variables not being intervened upon, V' \ A, repre-
sented by the distribution p({V \ A)}(fa)), is identified
by the following modification of (2)) [16]:

[ p(VI{fa(Wa)lAc Anpag(V)},pag(V)\A). (8)
VEV\A

3 EDGE-SPECIFIC POLICIES

We now give a general definition of counterfactual re-
sponses to edge-specific policies that generalize both re-
sponses to edge interventions (where a variable is set to



Figure 1: (a) A simple causal DAG, with a treatment A,
an outcome Y, a vector W of baseline variables, and a
mediator M. (b) A more complex causal DAG with two
treatments Ay, Ao, an intermediate outcome W7, and the
final outcome W5. H is a hidden common cause of the
W variables. (c) A graph where p(Y (a, M (a’))) is iden-
tified, but p(Y' (fa (W), M (a))) is not.

different constants for different outgoing edges) and re-
sponses to policies, where a variable is set according to a
single known function for all causal pathways at once.

As an example, we can view Fig. [I] (a) as representing
a cross-sectional study of HIV patients of the kind de-
scribed in [6]], where W is a set of baseline character-
istics, A is one of a set of possible antiretroviral treat-
ments, M is adherence to treatment, and Y is a binary
outcome variable signifying viral failure. In this type
of study, we may wish to find f4(W) that maximizes
the expected outcome Y had A been set according to
fa(W) for the purposes of the direct effect of A on Y,
and A were set to some reference level a for the pur-
poses of the effect of A on M. In other words, we
may wish to find f4 (W) to maximize the counterfactual
mean E[Y (fa(W), M(a, W),W)]. This would corre-
spond to finding a treatment policy that maximizes the
direct (chemical) effect, if it were possible to keep ad-
herence to a level M (a) as if a reference (easy to adhere
to) treatment a were given.

We now give a general definition for responses to such
edge-specific policies. Fix a set of directed edges «, and
define A, = {A| (AB)_ € a}. As before, we assume
if (AW)_, € o, then forall V' € chg(A), (AV)_, € a.
Define fo, = {f{*")~ : Zw, — X4 | (AW)_, € a}
as the set of policies associated with edges in . Note that
fo may contain multiple policies for a given treatment
variable A.

Define Y (f, ), the counterfactual response of Y to the set
of edge-specific policies f,, as the following generaliza-
tion of (3) and (7):

Y ({7 (Wa(a)(AY ) € a}, {pag(Y)}(a)) 9)

In our earlier example, if fravy, (am),; =

{f{E‘AY)H(WLfIgAM)%}, where fa assigns A to
a constant value a, then Y (ffiay), (am.}) =
Y(fA(W)vM(a7W)aW)

The joint counterfactual distribution for responses to
edge-specific policies, p({V (fo)|V € V\A,}), is iden-
tified under the functional model, and generalizes and
(6) as follows:

[Tr(VI{£S )~ (Wa)(AV) -, €a}, pag (V). (10)
VEV\A,

This is a consequence of the fact that (4) holds
regardless of how edge interventions are set. In
Fig.[1] (a), for example, p(Y (fa(W), M (a, W), W)) =
EW’Mp(Y\fA(W),M,W)p(M|a,W)p(W).

4 IDENTIFICATION IN HIDDEN
VARIABLE DAG MODELS

In a causal model of a DAG where some variables are
hidden, not every causal parameter is a function of the
observed data distribution. It is well known, however,
that any two hidden variable DAGs which share a special
mixed graph called a latent projection [9] share identifi-
cation theory (see [10] for a proof).

Given a DAG G(V U H), where V are observed and H
are hidden variables, define a latent projection G(V) to
be an acyclic directed mixed graph (ADMG) with the
vertex set V and — and <> edges. Anedge A — B
exists in G(V) if there is a directed path from A to B in
G(V UH) with all intermediate vertices in H. Similarly,
an edge A <> B exists in G(V) if there is a path without
consecutive edges — o < from A to B with the first
edge on the path of the form A < and the last edge on
the path of the form — B, and all intermediate vertices
on the path in H. For example, the graph in Fig. [2|(b) is
the latent projection of Fig. 2] (a).

We will describe identification results on latent projec-
tions directly. General algorithms for identification of
interventional distributions were given in [14} [17], for
responses to edge interventions in [[13[], and for policies
in [[16]. Here we reformulate these results as one line
formulas using the fixing operator described in [[L0]. We
do so to explicate the connection between these earlier
results, and our new identification algorithm.

Reformulation Of The ID Algorithm

A complete algorithm, called the ID algorithm, for
identifying interventional distributions of the form
p(Y|do(a)), or p(Y(a)), for Y C V \ A was given
in [17]] and simplified in [14]. We now illustrate how
this algorithm may be further simplified into a one line
formula, which can be viewed as a generalization of the
g-formula from the fully observed DAG to the hidden
variable DAG case. We then show how this formula may



be generalized appropriately to yield identification algo-
rithms for edge interventions, and edge-specific policies
in hidden variable causal models, just as g-formula was
generalized to these cases in fully observed DAGs.

The version of the ID algorithm in [14], shown in
Fig. [T] in the Appendix, proceeds as follows. Lines
2 and 3 reformulate the original query p(Y(a)) as
> vy P(Y*(a")), where Y*, A* partition ang(Y),
and Y* = ang,, ,(Y). In line 4, the distribution
p(Y*(a*)) is factorized into terms corresponding to dis-
tricts D in the subgraph Gy, with the ID algorithm
called recursively on each term. These terms corre-
spond to interventional distributions p(D | do(V \ D =
cv\p)), Where cy\p is any set of values of V \ D con-
sistent with a. In subsequent recursive calls, lines 2, 6
and 7 are iterated for each term until it is identified, or
the failure condition is reached. Here line 2 corresponds
to marginalizing out irrelevant variables, and lines 6 and
7 correspond to identifying a part of the set of intervened
on variables in V' \ D via the g-formula.

Consider Fig. [2] (b), where A represents a binary treat-
ment, Y an outcome of interest, W a vector of baseline
confounding factors, and M, W variables mediating the
causal effect of A on Y. We are interested in identify-
ing the counterfactual distribution p(Y (a)) as a function
of the observed data distribution p(Wy, A, M, W1,Y).
Here ang(Y) = {Y, M, W1, Wy, A} is partitioned into
Y* = {Y,M,W1,Ws} and A* = {A}, with Gy~
shown in Fig. [2| (c). There are three districts in this
graph, {Wy, M}, {Wi}, and {Y}. Thus, the ID
algorithm attempts to identify p(Wy, M|do(wy,y,a)),
p(Wl Ido(w()v m,y, CL)) and p(Y|dO(’w0, m,wy, a’))

o
e, CFD
O IXLD A
(©) (d)

040y
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Figure 2: (a) A causal model with a treatment A and
outcome Y. (b) A latent projection of the DAG in
(a). (c) The graph derived from (b) corresponding to
Gy = Gry,mwowhy- (d) A CADMG corresponding
to p(M, Wp|do(a)).

As an example, identifying p(Wy, M|do(w1,y,a)) en-
tails the following steps. First, Y and W/, as irrelevant
variables that do not cause W, and M, are marginal-
ized out via line 2, leading to a subproblem where
p(Wo, M|do(a)) is identified from p(Wy, A, M) with
the subgraph corresponding to this subproblem shown in
Fig. 2] (d). In this subproblem, p(Wy, M|do(a)) is iden-

tified as p(M|a, Wo)p(Wy) via the g-formula in line 6.
The recursion alternates steps that marginalize and apply
the g-formula can be unified via a fixing operator applied
to graphs and distributions that arise in the intermediate
steps of the ID algorithm. We now define these graphs
and distributions formally.

CADMGs And Kernels

A kernel gv(V|W) is a mapping from Xy to normal-
ized densities over V. Conditioning and marginalization
are defined in kernels in the usual way:

v (AIW) =Y "qv (VIW); gv(V\A|AUW) = T2 2
VA qv

for A C V. A conditional distribution is one type
of kernel, but others are possible. The functional
p(M|a, Wo)p(Wy) = p(Wp, M|do(a)) in the previous
example is a kernel, ¢(M, Wy|a), that is not in general
equal to the conditional distribution p(M, Wy|a).

A conditional ADMG (CADMG) G(V, W) is a type of
ADMG where nodes are partitioned into two sets. The
set W corresponds to fixed constants, and the set V cor-
responds to random variables. A CADMG has the prop-
erty that no edges with an arrowhead into an element of
‘W may exist. Intuitively, a CADMG represents a situa-
tion where some variables have already been intervened
on. Pearl introduced a similar concept called the ‘mu-
tilated graph’ in [9]. For example, the graph in Fig. ]
(d) is a CADMG G({Wy, M },{A}) corresponding to
the situation where Wy, M are random variables and A
is fixed to a constant. Just as a distribution may be as-
sociated with a DAG via factorization, so may a kernel
be associated with a CADMG in a particular way [10].
For example, the CADMG in Fig. [2] (d) may be associ-
ated with p(Wy, M|do(a)) = p(M|a, Wo)p(Wp). Ge-
nealogic definitions, such as pag(.), carry over identi-
cally to CADMG:s. Districts in a CADMG are defined as
subsets of V.

The Fixing Operator And The ID Algorithm

Given a CADMG G(V, W), a variable V' € V is fixable
if deg(V) Ndisg(V) = 0. For example, in Fig. 2] (b),
M is fixable, while Wy is not. Intuitively, V is fixable in
a CADMG G(V, W) if, in a causal graph representing
a hypothetical situation p(V|do(w)), where variables in
W were already intervened on, p(V \ {V}|do(w,v))
is identified by the application of the g-formula to
p(V]do(w)). Whenever a variable V' is fixable, a fix-
ing operator may be applied to both the CADMG and
the kernel to yield a new causal graph and a new kernel
representing the situation where V' is also intervened on.



Given V € V fixable in a CADMG G(V, W), the
fixing operator ¢y (G) yields a new CADMG G(V \
{V},W U {V}), where all vertices and edges in
G(V, W) are kept, except V is viewed as fixed, and
all edges with arrowheads into V' are removed. Given
V € V fixable in a CADMG G(V, W), and a ker-
nel gv(V|W) associated with G, the fixing operator
dv(qv; G) yields a new kernel gy (v (V \ {V}W U
{V}) = qv(VIW)/gv(VIW U ndg(V)), where the
denominator is defined as above by marginalization and
conditioning within the kernel gy. If chg(V) = 0, di-
vision by ¢v (V| ndg(V)) is equivalent to marginalizing
V from gv. In this way, the fixing operator unifies appli-
cations of the g-formula in lines 6 and 7 of the ID algo-
rithm, and marginalization of irrelevant variables in line
2 of the ID algorithm, and the recursive operation of the
ID algorithm can be expressed concisely as repeated in-
vocations of the operator. This allows us to concisely ex-
press functionals returned by ID algorithm and its vari-
ations, including our new algorithm for identifying re-
sponses to edge-specific policies, as one line formulas.

A set VI C V is said to be fixable in a latent projec-
tion G(V) if there is a valid sequence (V7, Va, ..., V) of
variables in VT such that V; is fixable in G, V5 is fixable
in ¢y, (G), and so on. If VT is fixable, V \ VT is called
a reachable set. If p(V) is a marginal of a distribution
p(V U H) Markov relative to a DAG G(V U H), and
G(V) is a latent projection, then CADMG/kernel pairs
obtained from G(V) and p(V) by any valid sequence in
VT is the same [10} [17]. As a result, for any fixable set
V'in G, writing ¢+ (G) or ¢y (gv; G) is well-defined,
and means “apply the fixing operator to elements of VT
in some valid sequence,” with the understanding that any
such sequence will yield the same result.

The existence of a valid fixing sequence for each district
in Gy- implies corresponding terms may be identified
via lines 2, 6, and 7 of the ID algorithm, and the overall
algorithm can be rephrased as:

p(Yldo@) = 3 ]
Y*\Y DED(Gy )

=3 I ¢vio®(V)iG(V))aza,

Y*\Y DED(Gy+)

p(D[do(V\D))la=a (11)

which yields the following identifying formula for
p(Y'|do(a)) in our example in Fig. [2|(a):

p(Y(@) = > p(Wi|M,A=a,Wo)x
Wo,A, M, W1
(12)
P(M|A = a,Wo)p(Wo) > p(Y|Wr, M, A, Wo)p(Wo, A).
Wo,A

We omit the full derivation in the interest of space. See
the section on identification of edge-specific policy inter-

ventions and the appendix for a complete example. Ob-
serve that this equation is a generalized version of Pearl’s
front-door formula [9]).

Whenever V' \ D for every D is fixable, the formula
yields the correct expression for p(Y|do(a)) in terms of
the observed data. If some V \ D is not fixable, the
algorithm fails, and p(Y|do(a)) is not identified. See
[[10] for a detailed proof.

Edge Interventions

Identification of path-specific effects where each path is
associated with one of two possible value sets a,a’ was
given a general characterization in [13] via the recant-
ing district criterion. Here, we reformulate this result
in terms of the fixing operator in a way that generalizes
(T1), and applies to the response of any edge interven-
tion, including those that set edges to multiple values
rather than two. This result can also be viewed as a gen-
eralization of node consistency of edge interventions in
DAG models, found in [[15].

Given A, = {A | (AB), € «}, and an edge
intervention given by the mapping a,, define Y* =
ang,,, ». (Y). The joint distribution of the counterfac-
tual response p({V \ A,}(a,)) is identified if p({V \
A,}(a)) is identified via (1), and for every D €
D(Gy+), for every A € A,, a, has the same value as-
signment for every directed edge out of A into D. Under
these assumptions, we have the following result.

Theorem 1 p(Y (a,)) is identified and equal to

Z H ¢)V\D(p(V);g)’a{(AD)HEO\DED,AEAQ} (13)

Y*\Y DED(Gy)

Proof: This follows directly from results in [13] and
[10]. Identifying edge interventions entails identifying
[Ipen(g,.)p(Dldo(ap)), where ap is an assignment
for pag (D), and ap possibly assigns different values to
elements of A with respect to different districts. The fact
that this identification algorithm can be rephrased as (13)
follows directly by Theorem 60 in [10]. |

Consider again the example in Fig. 2| (a). Now assume
we set A = a for the edge (AM)_, and A = o
for the edge (AW7)_,. The identifying functional for
p(Y((aW1)_,, (@’ M)_,)) has the same form as (12)), but

some terms are evaluated at A = a, and some at A = a’:

> p(WilM, A =a,Wo)
Wo,A, M, Wy
(14)
p(M|A = a',Wo)p(Wo) > p(Y[Wo, A, M, W1)p(Wo, A)
Wo,A



Policy Interventions (Dynamic Treatment Regimes)

A general algorithm for identification of responses to a
set of policies fo was given in [16]. We again reformu-
late this algorithm in terms of the fixing operator. Define
a graph G, to be a graph obtained from G by removing
all edges into A, and adding for any A € A, directed
edges from W 4 to A. By definition of W 4, Gg, is guar-
anteed to be acyclic. Define Y* = ang,, (Y)\ A. As-
sume p(Y*(a)) is identified in G. Then, under the above
assumptions, we have the following result.

Theorem 2 p(Y (fa)) is identified in G. Moreover, the
identification formula is

> I

(Y*UA)\Y DED(Gyx)

dvip(p(V); G)| (15)

épas (D)NA

where épag(D)m A IS defined as

{A=fa(Wa)| A€ pag(D) NnA} pag(D) NA#0D
0 otherwise

Proof: This follows from the fact that identification
of p(Y(fa)) can be rephrased as identification of
p(Y*(a)), with values a set according to {W 4 |A € A},
where all W 4 in the set are subsets of Y *. Identification
of p(Y*(a)) may be rephrased as follows by Theo-
rem 60 in [10]. O

The outer sum over A in is vacuous if fa is a set of
deterministic policies. To illustrate ([1;1), in our example
in Fig.[2](b), p(Y (A = fa(Wp))) is identified as

Z p(Wi|M, A=f(Wo),Wo)

Wo,A, M, Wy
(16)
p(M|A=f(Wo),Wo)p(Wo) > p(Y|Wi1,M,A,Wo)p(Wo,A)
Wy, A

Identification Of Edge-Specific Policies

Having reformulated existing identification results on re-
sponses to policies (I5) and responses to edge interven-
tions arising in mediation analysis (I3) in terms of the
fixing operator, we generalize these results for identifica-
tion of responses to edge-specific policies.

Given A, = {A|(AB)- € a}, and a set of edge-
specific policies given by the set of mappings f,,, define
the graph ;s to be one where all edges with arrowheads
into A, are removed, and directed edges from any vertex
in Wy to A € A, added. Fix a set Y of outcomes of
interest, and define Y* equal ang, (Y)\ A,. We have
the following result.

Theorem 3 p(Y (f.)) is identified if p(Y*(a)) is identi-
fied, and for every D € D((Gs, )y =), fa yields the same
policy assignment for every edge from A € A, to D.
Moreover, the identifying formula is

H d)V\D(p(V); g)‘épag(p)mAa Y

(Y*UAL)\Y DED(Gy+)

where épaf;(D)mAa is defined to be {A = fa(W,) €
foz | A€ pag(D> n Aa}’ ifpag(D) N Aa 7é @, and is
defined to be the () otherwise.

Proof: This is a straightforward generalization of the
proofs of Theorems [I]and [2] ]

Responses to edge-specific policies are identified in
strictly fewer cases compared to responses to edge in-
terventions. This is because Y * is a larger set in the for-
mer case. As an example, consider the graph in Fig.
(c), where we are interested either in the counterfactual
p(Y(a, M(a'))), used to define pure direct effects, or the
counterfactual p(Y (fa(W), M(a'))).

For the former counterfactual, we have Y* = {Y, M},
and p(Y (a, M(a'))) equal to

> P(Y, m|a, w)p(w) )
> ( W e ) S ptm | wpfw
We omit the detailed derivation in the interest of space.
For the latter counterfactual, however, the set Y* =
{Y, M, W} forms a single district in Gy, and the edge-
specific policy set f{(aar)_,,(ay)_,} sets edges from A to
this district to different policies. As a result, Theorem
is insufficient to conclude identification.

Generalizations of the example in Fig. [T] (b) are the
most relevant in practice, as their causal structure cor-
responds to longitudinal observational studies, of the
kind considered in [11]], and many other papers. How-
ever, we illustrate complications that may arise in iden-
tifiability of responses to edge-specific policies with
our running example in Fig. [2] (b), where we are in-
terested in the response of Y to edge-specific policies

AM)_, AWy)
fraann . awn)y = (= (W), 70~ (W)
Theorem [3|yields the following identifying formula:

S [lpnlma = f0 ), wo)] a8y
Wo,A,M,W1

x [p(M|A = f7~ (Wo), Wo)p(Wo)]

<[ 3 p(Y|W1,M,A,W0)p(WQ7A)HA
Wo,A

Note that (T8) generalizes both (T4), which sets A to dif-
ferent constants in different terms, and , which sets A
to the output of a function that depends on W,. We give
a detailed derivation of this functional in the appendix.



S ON COMPLETENESS

An identification algorithm for a class of parameters is
said to be complete relative to a class of causal models
if, whenever the algorithm fails to identify a parameter
within a model class, the parameter is in fact not identi-
fied within that class.

The ID algorithm is known to be complete for the class
of interventional distributions in the class of functional
models [5,[14]. We restate this result here, and give a se-
quence of increasingly general completeness results for
the identification algorithms described so far. Complete-
ness results on policies and edge-specific policies are
new. For completeness results pertaining to policies, we
assume a completely unrestricted class of policies. If the
set of policies of interest, fo or f, is restricted, or alter-
natively if the causal model has parametric restrictions,
completeness results we present may no longer hold.

Theorem 4 Given disjoint subsets Y, A of V in an
ADMG G, define Y* = ang,,, 5 (Y). Then p(Y(a)) is
not identified if there exists D € D(Gy~) that is not a
reachable set in G.

Corollary 1 The algorithm for identification of
p(Y (), as phrased in (1), is complete.

Theorem 5 Given A, = {A | (AB), € a}, and
an edge intervention given by the mapping a,, define
Y* = ang,, 5. (Y). The joint distribution of the coun-
terfactual response p({V \ Ay} (ay)) is not identified if
p({V \ A,}(Q)) is not identified, or there exists D €
D(Gy~) and A € A,, such that a, has the different
value assignments for a pair of directed edges out of A
into D.

Corollary 2 The algorithm for identification of
p(Y(an)), as phrased in (13)), is complete.

Theorem 6 Define Gr, to be a graph obtained from G by
removing all edges into A, and adding for any A € A,
directed edges from W 4 to A. Define Y* = ang,, (Y)\
A. Then if p(Y*(a)) is not identified in G, p(Y (fa))
is not identified in G if fao is the unrestricted class of
policies.

Corollary 3 The algorithm for identification of
p(Y(fa)), as phrased in (I3), is complete for unre-
stricted policies.

Theorem 7 Define the graph G;, to be one where all
edges with arrowheads into A, are removed, and di-
rected edges from any vertex in W 5 to A € A, added.
Fix a set'Y of outcomes of interest, and define Y* equal
ang, (Y)\ Aq. Then if p(Y*(a)) is not identified, or

there exists D € D((Gj, )y~), such that §, yields differ-
ent policy assignments for two edges from A € A, to D,
p(Y (fo)) is not identified.

Corollary 4 The algorithm for identification of

p(Y(fa)), as phrased in (I7), is complete for unre-
stricted policies.

Detailed proofs of these results are in the Appendix.
Corollaries are immediate consequences of the preced-
ing Theorems.

6 CONCLUSION

In this paper, we defined counterfactual responses to
policies that set treatment values in such a way that they
affect outcomes with respect to certain causal pathways
only. Such counterfactuals arise when we wish to per-
sonalize only some portion of the causal effect of a treat-
ment, while keeping other portions set to some reference
values. An example might be optimizing the chemical
effect of a drug, while keeping drug adherence to a ref-
erence value.

We gave a general algorithm for identifying these re-
sponses from data, which generalizes similar algorithms
due to [[16}|13] for dynamic treatment regimes, and edge-
specific effects, respectively. Further, we showed that
given an unrestricted class of policies the algorithm is
complete. As a corollary, this established that the identi-
fication algorithm for dynamic treatment regimes in [16]
is complete for unrestricted policies.

Given a fixed set of policies associated with a set of
causal pathways, and assuming yields a functional
containing only conditional densities, as is the case in
the functional (T8)), the counterfactual mean under those
policies E[Y (f,)] may be estimated using the maximum
likelihood plug-in estimator. Such an estimator can be
viewed as a generalization of the parametric g-formula
[L1] to edge-specific policies. More general estimation
strategies, and approaches to learning the optimal set of
policies are the subject of our companion paper [7]].

Acknowledgments

This research was supported in part by the NIH grants
ROI AI104459-01A1 and RO1 AI127271-01A1. We
thank the anonymous reviewers for their insightful com-
ments that greatly improved this manuscript.



References

(1]

(2]

[3

—

(4]

[5

—

[6

—_

[7

—

[8

—_—

[9

—

(10]

(11]

(12]

[13]

(14]

C. Avin, L. Shpitser, and J. Pearl. Identifiability of path-
specific effects. In Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
05), volume 19, pages 357-363. Morgan Kaufmann, San
Francisco, 2005.

D. P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Pro-
gramming. Athena Publishing, 1996.

B. Chakraborty and E. E. M. Moodie.  Statistical
Methods for Dynamic Treatment Regimes (Reinforcement
Learning, Causal Inference, and Personalized Medicine).
Springer, New York, 2013.

M. A. Hernan, E. Lanoy, D. Costagliola, and J. M.
Robins. Comparison of dynamic treatment regimes via
inverse probability weighting. Basic and Clinical Phar-
macology and Toxicology, 98:237-242, 2006.

Y. Huang and M. Valtorta. Pearl’s calculus of interven-
tions is complete. In Twenty Second Conference On Un-
certainty in Artificial Intelligence, 2006.

C. Miles, 1. Shpitser, P. Kanki, S. Melone, and E. J. Tch-
etgen Tchetgen. Quantifying an adherence path-specific
effect of antiretroviral therapy in the nigeria pepfar pro-
gram. Journal of the American Statistical Association,
2017.

R. Nabi and 1. Shpitser. Estimation of personalized ef-
fects associated with causal pathways. In Proceedings of
the Thirty Fourth Conference on Uncertainty in Artificial
Intelligence (UAI), 2018.

J. Pearl. Direct and indirect effects. In Proceedings of the
Seventeenth Conference on Uncertainty in Artificial In-
telligence (UAI-01), pages 411-420. Morgan Kaufmann,
San Francisco, 2001.

J. Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2 edition, 2009.

T. S. Richardson, R. J. Evans, J. M. Robins, and I. Sh-
pitser. Nested Markov properties for acyclic directed
mixed graphs, 2017. Working paper.

J. M. Robins. A new approach to causal inference in
mortality studies with sustained exposure periods — ap-
plication to control of the healthy worker survivor effect.
Mathematical Modeling, 7:1393-1512, 1986.

J. M. Robins and S. Greenland. Identifiability and ex-
changeability of direct and indirect effects. Epidemiol-
0gy, 3:143-155, 1992.

L. Shpitser. Counterfactual graphical models for longitu-
dinal mediation analysis with unobserved confounding.
Cognitive Science (Rumelhart special issue), 37:1011—
1035, 2013.

I. Shpitser and J. Pearl. Identification of joint interven-
tional distributions in recursive semi-Markovian causal
models. In Proceedings of the Twventy-First National Con-
ference on Artificial Intelligence (AAAI-06). AAAI Press,
Palo Alto, 2006.

[15]

[16]

[17]

I. Shpitser and E. J. Tchetgen Tchetgen. Causal infer-
ence with a graphical hierarchy of interventions. Annals
of Statistics, 44(6):2433-2466, 2016.

J. Tian. Identifying dynamic sequential plans. In Proceed-
ings of the Twenty-Fourth Conference Annual Conference
on Uncertainty in Artificial Intelligence (UAI-08), pages
554-561, Corvallis, Oregon, 2008. AUAI Press.

J. Tian and J. Pearl. On the testable implications of
causal models with hidden variables. In Proceedings of
the Eighteenth Conference on Uncertainty in Artificial In-
telligence (UAI-02), volume 18, pages 519-527. AUAI
Press, Corvallis, Oregon, 2002.



	INTRODUCTION
	PRELIMINARIES
	EDGE-SPECIFIC POLICIES
	IDENTIFICATION IN HIDDEN VARIABLE DAG MODELS
	ON COMPLETENESS
	CONCLUSION

