Understanding Microquanta Process Scheduling for Cloud Applications

Erfan Sharafzadeh, Alireza Sanaee, Peng Huang, Gianni Antichi, Soudeh Ghorbani

December 2022

The Need for Low Latency in Data Centers

- The call for μs-scale and nsscale processing
- Emerging userspace networking runtimes
- Thread-dispatch and interrupt handling are culprits!

Process Scheduling Involved Everywhere!

Conventional Linux Schedulers Falling Short

• Running **RocksDB**benchmark on a single
machine under three
process schedulers

Microquanta holds a middle-ground but raises its own issues!

Non-skewed
workloads can benefit
from Realtime
scheduling by
minimizing the
interference!

Non-preemptive realtime scheduling is unfit for skewed workloads due to **HoL blocking!**

Introducing Three Representative Schedulers

Microquanta Scheduling

- Per-CPU FIFO queues
- Microsecond-scale scheduling between processes
- Tunable CPU
 allocation via
 Runtime and Period
 Parameters

Impact of Microquanta Parameter Setting on Application Performance

Microquanta and Fast Load-Balancing

- 500 benchmark threads pinned to core #1 -> Released on 10th second
- The schedulers start distributing threads

Application Performance Comparison

The Future of Process Scheduling

- Linux process scheduling is challenged by skewed workloads
- Parameter-based scheduling faces tuning issues
- Design space of process schedulers
 - Schedulers that can **learn and adapt** to workload changes
 - Schedulers that are **tied to applications logic**
 - Kernel-bypass runtimes (Shinjuku, Caladan)
 - Userspace thread-management (Arachne)
 - In-application scheduling (Ghost, Peafowl)

Microquanta Kernel Repository: https://github.com/erfan111/linux_uquanta

Contact: erfan@cs.jhu.edu