Virtual Reality in Medicine

16-17 March 2000 Johns Hopkins University

Terry S. Yoo, HPCC Office National Library of Medicine, NIH

Data

- Image generation from clinical data.
- Obligation to representing the truth.
- Precision, accuracy, repeatability.
- Where does it come from?

X-ray Computed Tomography (CT)

- Also known as CAT Scan.
- Tomographic cross-sectional imaging
- Typically uses relatively high energy X-rays (120-140 kVp) filtered to include the high energy part of the spectrum.
- Fan beams and thin slices (collimation!).
- A detector array is placed opposite a tube that revolves around the patient.
- The cross-section is reconstructed from the projections.

"Third Generation" CT Technology

- Revolving array of detectors.
- Revolving X-ray tube.
- Moving bed allows multiple slices.
- Cabling harness usually limited the rotation of the detector array and tube to 180° to 360°

"Fourth Generation" CT Technology

- Fixed array of detectors.
- Revolving X-ray tube.
- Can be constructed using slip-rings, allowing continuous tube rotation.
- Simultaneous patient motion and continuous tube revolution enables helical CT scanning (also called spiral CT).

Spiral Computed Tomography

- AKA Helical CT
- The table is moved simultaneously with gantry rotation and X-ray exposure
- Helical data is interpolated to form conventional projections
- An entire volume is scanned in 30 seconds
- Equivalent to 30 individual slices
- Ideal for organs that move during respiration

MRI

- Magnetic
- Resonance
- Relaxation
 - a.k.a. Nuclear Magnetic Resonance
 - A big magnet, a microwave oven, a radio antenna, and a fast computer.

MRI

- Acquire any plane or an entire volume
- Images generally 512x512 or 256x256 pixels
- Voxels as small as 0.5x0.5x2 mm, but variable
- Sometimes gaps in between slices
- 5-10 minutes for one sequence
- No absolute scale for the signal (10 bits)

Assembly diagram of a 1.5 T cryostat vessel (Toshiba)

View of a 1.5 T diagnostic MRI magnet (GE Medical)

Magnet Safety - (courtesy of GE Medical Systems)

The Visible Human Project Data

- Multiple modalities
 - MRI
 - X-ray CT
 - Photographic cryosections
- Unique study in anatomy
- High spatial resolution
- Male: 17 GB, Female: 50+ GB

CT

Cryosection

MRI - PD

MRI - T1

MRI - T2

Visible Human Data Acquisition

Medicine in Virtual Reality

- CAD
- Telemedicine
 - filerooms
 - image storage/retrieval
 - -EMR
 - remote diagnosis/ treatment.

Medicine in Virtual Reality (continued)

- Training / education
- Surgical Planning
- Computer assisted therapy
- Image guided therapy
- Treatment (e.g., mental health)

Visualization / Education

Visualization / Education

Simulation / Training

Simulation - Univ. of Colorado

Haptic Training Simulator - Univ. of Colorado

Computer Assisted Therapy

Augmented Reality - BWH

Augmented Reality - Harvard BWH

Image Guided Therapy

Treatment - Georgia Tech

Simulation vs. Interaction

Simulation vs. Interaction

Model Size: 1-100 Million Triangles

Virtual Reality - It Almost Works

- Swimming due to lag
- Limited precision
 - Poor registration with real world
- Limited model complexity
- Bad ergonomics

Hardware Required for VR

- Image Generation: Speed, textures
 - PixelFlow (1995) 20 M textured, shaded tri/sec
 - SGI (1998) 13-100 M textured, shaded tri/sec
- Image Delivery: See-through, resolution, wide angle
 - Virtual Research V8
- Tracking: Lag, range, lag, precision

– UNC optical ceiling tracker — 5.5 m x 7.5 m

640 x 480 Pixel, stereo, HMD

Required Hardware (continued)

- Networking Speed, usefulness models
 Vistanet testbed for 1 Ghz fibre application
- Haptics: Fidelity, speed, flexibility
 - Sensable 1999: Phantom 6-degree-of-freedom arm, electrical, 1 mm.

Haptic devices by Sensable

Latency

- Frame rates are not latency.
- Delays are measured from end-to-end.
- Affects simulator sickness.
- Rates:
 - IBR (Siggraph 99): minimum JND = 7 msec.
 - Haptics: minimum JND = 1 msec.

Precision

- Accuracy required in medicine: 1 mm?
- Computational precision? Error?
- Outcomes? Evaluation?

Augmented Reality Ultrasound circa 1991

Latency - some approaches

- Mechanical tracking
- Commercial hardware.

Precision - an Approach

- Video registration
- Predictive tracking
- Mechanical tracking

Virtual Reality in Medicine

Terry S. Yoo, HPCC Office National Library of Medicine, NIH

Designing a Digital Surgical Simulator for Interventional MRI

> Terry S. Yoo, HPCC Office National Library of Medicine, NIH

Acknowledgements

- Penny Rheingans, CSEE Dept.
 Univ. of Maryland Baltimore County
- University of Mississippi Medical Center
 - Dr. S. Crawford, Dr. B. Harrison, Dr. G.
 Dhillon.
- University of Mississippi Computer Science
 A. Rodden, C. Bland, B. Fox

Support

- The Institute for Technology Development
- Sun Microsystems
- GE Medical Systems

Minimally Invasive Surgery

- Surgery through small openings.
- Reduced trauma.
- Reduced chances for infection.
- Shortened recovery times.
- Shortened stays in ICU.
- Consider minimally invasive knee surgery

Interventional MRI

- Simultaneous imaging and surgery with MRI technology.
- Immediate 3D verification of procedure success.
- Does not use ionizing radiation (x-rays).
- Better for patient and practitioner.
- Latest advance for physics in medicine.

NMR and Medicine: MRI

- A non-invasive cross-sectional imaging modality.
- Does not employ ionizing radiation.
- Good soft-tissue definition.
- Advances in functional MRI allow imaging of physiology as well as anatomy.
- EPI techniques enable heat imaging.

Limitations of Conventional MRI Scanning Equipment

- Superconducting magnets
 - -10,000 Gauss = 1 Tesla
 - Earth's magnetic field = 0.5 Gauss
- Cryogen chambers required.
- Limited access to patient during procedures.
- Claustrophobia inducing environment.

Pros in MRI

- Non-ionizing radiation
- Good imaging characterisitics.
- Operates in acoustically opaque regions of the body.
- Good soft-tissue definition.
- New advances in functional MRI allow imaging of physiology as well as anatomy.

Cons in MRI

- Projectile or "missile effect."
- Requires liquid helium.
- Radiofrequency and strong magnetic fields create concerns for patients with pacemakers or other instruments.
- Image artifacts introduced by steel plates or other magnetically susceptible prostheses. (also scalpels, clamps, ...)

Three Interventional Designs

- Philips Conventional magnet
 - Long patient table, One end: Angiography suite
 - Conventional 1.5T MRI system
- Siemens Low Field magnet
 - Swing arm table, angiography suite
 - 0.35T Open Fixed Field MRI system
- GE Medium Field surgical magnet.

Philips: Hybrid System

- Full Angiography suite (catheters).
- Higher field strength.
 - Use spin echo not gradient echo sequences
 - Higher susceptibility except when biopsy along the B_0 direction.
- Restricted access to patients in the bore.
- U Minnesota, and UCSF (planned).

U. Minnesota Reports

- 15-20 minutes for an intraoperative scan
- Diagnostic Tissue Rate.
 - IMR 80/80 cases (100%)
 - Frame stereotaxy 129/134 cases (96%).
- Infection.
 - -IMR = 1/80 (1.25%)
 - OR = 2%

U. Minnesota Reports Brain Biopsy

	IMR	Conventional OR
Length of Stay	3.3 Days	6.4 days
Cost/Charge Ratio	71.77%	74.10%
	Cost reduction IMR	32%
	Charge Reduction	29.60%

• Occasionally discharge biopsy same day

U. Minnesota Reports Retreat Tumor Resection Rate

Adults	IMR	Conventional OR
Primary	0%	18%
Recurrent	7%	45%
Pediatric		
Primary	0%	32%
Recurrent	33%	50%

GE Design: Open Magnet

- Based on Nb-Sn compounds No cryogens required.
- Open configurations permit a variety of scanning orientations.
- Patient access allows interventional procedures surgery.
- Less confining environment offers patients alternatives.

Interventional MRI axial view

Interventional MRI overhead view

Crosssectional schematic of the open magnet

Why a Simulator?

- Rapid instrument and procedure development (outside the O.R.).
- Beyond surgical planning.
 - "No battle plan survives first contact with the enemy." -Wellington
- Develop the use of image guided therapies.
- Safety.

Light Emitting Diodes

Probe Tip

Floorplan for the new MRI/CT facility at UMMC

WARNING MAGNETIC FIELD

THE FIELD OF THIS MAGNET ATTRACTS OBJECTS Containing Iron, Steel, Nickel or Cobalt. Such objects must <u>not</u> be brought into this Area. <u>Large</u> objects cannot be restrained.

PERSONS WITH IMPLANTS OR PROSTHETIC Devices should <u>not</u> enter this area. Pacemakers may be disabled.

DATA ON CREDIT CARDS AND MAGNETIC STORAGE Media can be erased. Watches, cameras, and instruments can be damaged.

Visualization Issues

- Exact GUI reconstruction
- Texture reflects radiologic data
- Surface rendering for anatomical references
- Dynamic (near-real-time) update

Early view of the Surgical Simulator laboratory.

Infrared photodiode array -

Sun Ultrasparc 2: console and simulation system

3D Tracking base unit

3D Tracking target

Software Design

- Generated GUI from SDK configuration files from GE Medical Systems.
- Leveraged existing visualization tools (VTK).
- Hand coded the serial interface to the Flashpoint[™] 5000 tracker.
- Combined texture information with 3D surface renderings.

Results

- Fast, dynamic simulation (10 fps) faster than the actual scanner (.7 fps)
- Surgeons preferred the simulator for planning. Lack of tissue dynamics limited use as a training tool.
- Anatomical references preferred for inexperienced users.
- Simulator use suggested tool modifications.

Visualization Extensions

- Physical gap simulation (not completed).
- Adapted to texture based volume rendering.
- Direct rendering to the iMRI suite.
- Integration with the PACS network.
- Fused MRI and CT data.
- Segmentation, segmentation, segmentation.

Volume Rendering

- Requires better segmentation.
- Unlike CT data, MR data has not direct mapping to density.
- Can use alternate pulse sequences to suppress dermal fat and increase contrast between white and grey matter.
 - Inversion recovery
 - Phase contrast angiography

Lessons

- Dynamic control essential.
- Discard unwanted anatomy.
- MRI data, especially those collected with surface coils represent significant challenges to most visualization systems.
- Surface geometry is less essential than high fidelity reconstruction of radiologic images.
- Segmentation is critical.

Discard Unwanted Anatomy

Original (surface)

98% decimated (shaded surface) (wireframe)

Discard Unwanted Anatomy (continued)

Original (surface)

98% decimated (wireframe)

MRI Challenges

MRI Challenges (continued)

Segmentation

- Quality of the visualization hinges on segmentation.
- Segmentation can be aided by registration of data compiled from multiple modalities.

Visible Human Toolkits (watch this space)

- A new, 3-year research initiative in segmentation and registration by the National Library of Medicine.
- Software consortium meets next week.
- Publicly available implementations of segmentation and registration algorithms.
- Open-source public software resource.
- No-cost licenses.

Summary

- Simultaneous MR imaging and surgery.
- Clinical challenge is to make it effective in medical care today.
- Engineering and clinical challenges in:
 - Materials Science
 - Antenna and instrument design
 - Pharmaceuticals

Summary (continued)

- Visualization research opportunities in:
 - Image processing.
 - Real-time data processing.
 - Dynamic interactive visualization techniques.
 - Segmentation and Registration.
 - Deformable multimodal registration.
 - Segmentation of non-homogeneous image data.