

Transformations for Virtual Worlds

(based on a talk by Greg Welch)

Coordinate System Transformations

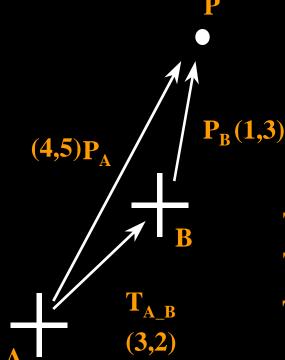
What is a transformation?

• The instantaneous relationship between a pair of coordinate systems.

—Defines the relative position, orientation and scale of two coordinate systems

• Notation: T_{A_B} is the transformation *from* coordinate system B *to* coordinate system A

Simple 2D Example



$$P_A = T_{A_B} \cdot P_B$$

(4,5) = (3,2) • (1,3)

 T_{A_B} converts points in B to points in A T_{A_B} measures the position of B's origin in A The vector runs from A to B

Properties of Coordinate System Transformations

• Used to convert the coordinates of a point specified in one coordinate system to another.

$$\mathbf{P}_{\mathbf{A}} = \mathbf{T}_{\mathbf{A}_\mathbf{B}} \bullet \mathbf{P}_{\mathbf{B}}$$

• Can be *inverted*

Inverse of
$$T_{A_B} = T_{B_A}$$

Properties of Coordinate System Transformations

• Can be *composed* to compute the relationship between several coordinate systems

$$\mathbf{T}_{\mathbf{A}_\mathbf{C}} = \mathbf{T}_{\mathbf{A}_\mathbf{B}} \bullet \mathbf{T}_{\mathbf{B}_\mathbf{C}}$$

-Note: Nice property of subscript cancellation

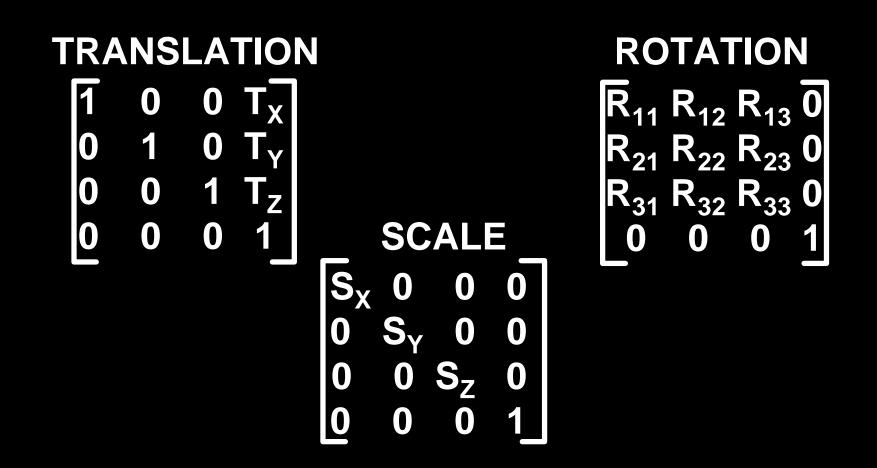
Example:

T_{Shoulder_Hand} = **T**_{Shoulder_Elbow} • **T**_{Elbow_Hand}

Transformation Representations

- Can be represented by a 4x4 Transformation Matrix
- Alternately can use the VQS notation
 - –Represent transformation as a Vector (translation), Quaternion (rotation), and a (uniform) Scaling factor

Transformation Matrices



VQS Notation

TRANSLATION: $V = (T_X, T_Y, T_Z)$

ROTATION: $Q = (Q_X, Q_Y, Q_Z, Q_W)$

SCALE: S = S_{UNIFORM}

Transformations: Why Quaternions?

- Allow simple interpolation
- More compact
- Angle and axis of rotation easy to extract
- More efficient (composing and inverting)
- More tractable mathematically than matrices or Euler angles

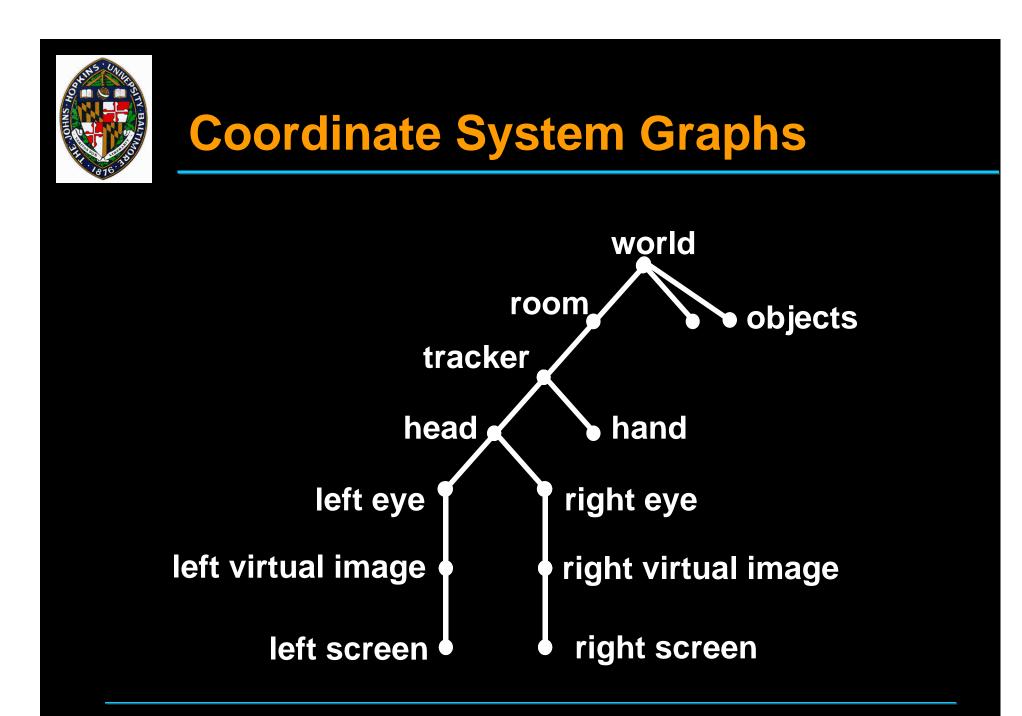
VQS Transform from P to P'

$p' = [v, q, s] \cdot p = s (q * p * q^{-1}) + v$

(where p is treated as a quaternion with zero scalar component, and the result has a zero scalar component so can be treated as a vector.)

Coordinate System Graphs

- Graphical representation of the coordinate systems in a virtual world and their relationship
- Nodes represent coordinate systems
- Edges represent transformations



Coordinate System Graphs: How do I use them?

Can be used to determine the transformations involved in converting between coordinate systems.

Example: Finding world coord of head space point

$$P_{World} = T_{World_Head} \bullet P_{Head}$$
$$T_{World_Head} = T_{World_Room} \bullet T_{Room_Tracker} \bullet T_{Tracker_Head}$$
$$P_{World} = T_{World_Room} \bullet T_{Room_Tracker} \bullet T_{Tracker_Head} \bullet P_{Head}$$

Coordinate System Graphs and Virtual World Interactions

• Can be used to determine the transformations involved in any virtual world interaction

-Specifying Actions With Invariants

• Based on *frame-to-frame invariants*

A relation between a set of transformations in the current frame and a set from the previous frame

Specifying Virtual World Interactions

- Coordinate system hierarchy and frame-toframe invariants can be used to specify many forms of virtual world interaction:
 - —Grabbing
 - —Flying
 - -Scaling

Specifying Actions With Invariants

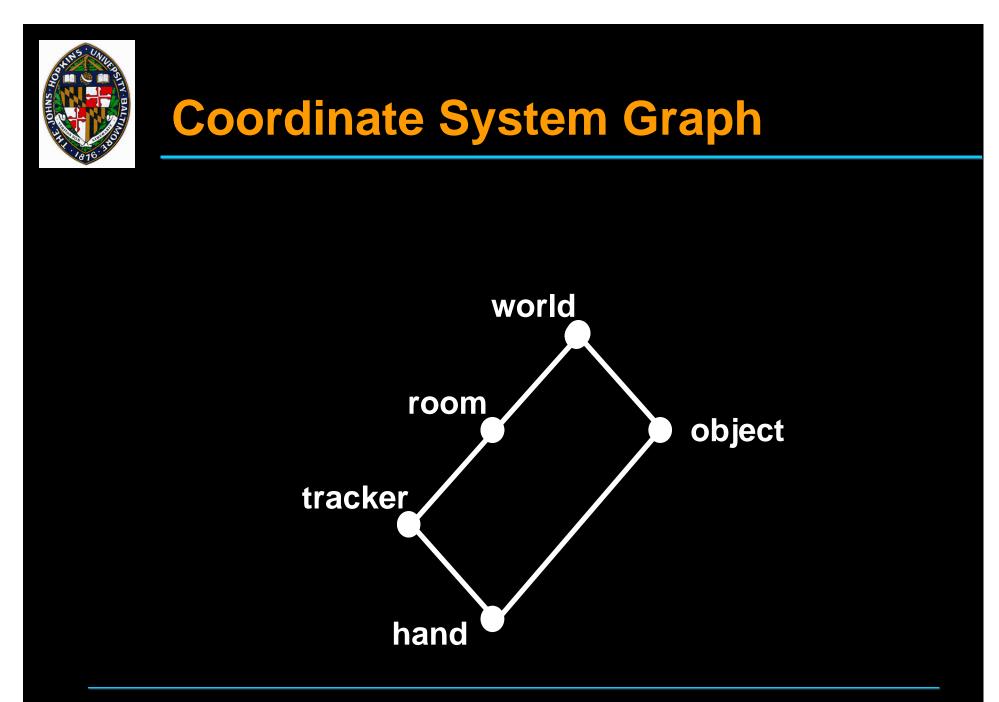
Example: Grabbing a Virtual Object

- Objective: Keep an object "fixed" to the user's hand
- Frame-to-frame invariant:

 $T^{n+1}_{Object_Hand} = T^n_{Object_Hand}$

Result: Updated object position

 $T^{n+1}_{World_Object}$



Specifying Actions With Invariants

• Use coordinate system graph to expand:

$$T_{Object_Hand} = T_{Object_World} \bullet T_{World_Room} \bullet \\ T_{Room_Tracker} \bullet T_{Tracker_Hand}$$

• Substitute:

 $\begin{array}{c} T^2_{Object_World} \bullet T^2_{World_Room} \bullet T^2_{Room_Tracker} \bullet T^2_{Tracker_Hand} = \\ T^1_{Object_World} \bullet T^1_{World_Room} \bullet T^1_{Room_Tracker} \bullet T^1_{Tracker_Hand} \end{array}$

Specifying Actions With Invariants

• Solve:

$$\begin{array}{l} T^2_{Object_World} &= T^1_{Object_World} \bullet T^1_{World_Room} \bullet \\ T^1_{Room_Tracker} \bullet T^1_{Tracker_Hand} \bullet \\ T^2_{Hand_Tracker} \bullet T^2_{Tracker_Room} \bullet \\ T^2_{Room_World} \end{array}$$

• Invert T²_{Object_World} to obtain T²_{World_Object}

Other Common Operations

Flying

• Modify T_{world_room}

Scale world/user

- Also modify T_{world_room}
- Often scale about hand or head

Scale object

Scale about hand or about centroid

Where do I learn more?

- Computer graphics texts (e.g. Foley, vanDam, Feiner, and Hughes)
 - -probably on reserve at MSE for Kumar's Computer Graphics class
- 1994 Paper by Robinett and Holloway

-READ IT!

- Paper on quaternions by Shoemake and Chou
- Quaternion/transformation support provided by quatlib

References

- Foley, J., A. van Dam, S. Feiner, J. Hughes (1990).
 Computer Graphics: Principles and Practice (2nd ed.).
 Addison-Wesley Publishing Co., Reading MA.
- Robinett, W., R. Holloway (1992). Implementation of flying, scaling, and grabbing in virtual worlds, ACM Symposium on Interactive 3D Graphics, Cambridge MA, March
- Shoemake, K. (1985). Animating rotations using quaternion curves, Computer Graphics: Proc. of SIGGRAPH '85.
- Chou, J. (1992). Quaternion Kinematic and Dynamic Differential Equations, *IEEE Transactions on Robotics* and Automation, Vol. 8, No. 1, Feb. 1992.