
Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

The Pixel-Planes Family of
Graphics Architectures

The Pixel-Planes Family ofThe Pixel-Planes Family of
Graphics ArchitecturesGraphics Architectures

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pixel-Planes TechnologyPixel-Planes TechnologyPixel-Planes Technology

Processor Enhanced Memory

• processor and associated memory on same chip

SIMD operation

• Each pixel has an associated processor

• Perform rasterization in parallel for each
primitive

Expression evaluation hardware

• Allows efficient evaluation of quadratic or
linear expression for all processors

Processor Enhanced MemoryProcessor Enhanced Memory

•• processor and associated memory on same chipprocessor and associated memory on same chip

SIMD operationSIMD operation

•• Each pixel has an associated processorEach pixel has an associated processor

•• Perform rasterization in parallel for eachPerform rasterization in parallel for each
primitiveprimitive

Expression evaluation hardwareExpression evaluation hardware

•• Allows efficient evaluation of quadratic orAllows efficient evaluation of quadratic or
linear expression for all processorslinear expression for all processors

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Rendering a Triangle with
Pixel-Planes
Rendering a Triangle withRendering a Triangle with
Pixel-PlanesPixel-Planes

Disable pixel processors outside the triangle

Disable pixels with Z closer than triangle

Compute interpolated R,G,B for each pixel

Compute interpolated Nx, Ny, Nz

Compute interpolated U,V for each pixel

Later: perform shading calculations for all
pixels

Disable pixel processors outside the triangleDisable pixel processors outside the triangle

Disable pixels with Z closer than triangleDisable pixels with Z closer than triangle

Compute interpolated R,G,B for each pixelCompute interpolated R,G,B for each pixel

Compute interpolatedCompute interpolated Nx Nx,, Ny Ny,, Nz Nz

Compute interpolated U,V for each pixelCompute interpolated U,V for each pixel

Later:Later: perform shading calculations for all perform shading calculations for all
pixelspixels

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Disabling pixels outside triangleDisabling pixels outside triangleDisabling pixels outside triangle

set enable enable = edge1

enable = edge2 enable = edge2

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Linear ExpressionsLinear ExpressionsLinear Expressions

Each edge expressed as linear expression

• Ax + By + C

Enable bit gets true or false based on sign of
result at each pixel

Depth test computes depth value at each pixel
using LE and compares to current depth
value

Each color, normal, texture coordinate
component also evaluated as LE

Each edge expressed as linear expressionEach edge expressed as linear expression

•• Ax + By + CAx + By + C

Enable bit gets true or false based on sign ofEnable bit gets true or false based on sign of
result at each pixelresult at each pixel

Depth test computes depth value at each pixelDepth test computes depth value at each pixel
using LE and compares to current depthusing LE and compares to current depth
valuevalue

Each color, normal, texture coordinateEach color, normal, texture coordinate
component also evaluated as LEcomponent also evaluated as LE

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pixel-Planes 5:
A Sort Middle Graphics

Architecture

Pixel-Planes 5:Pixel-Planes 5:
A Sort Middle GraphicsA Sort Middle Graphics

ArchitectureArchitecture

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pixel-Planes 5 Design CriteriaPixel-Planes 5 Design CriteriaPixel-Planes 5 Design Criteria

Performance
• Render over 1 M Phong-shaded triangles per

second (eventually achieved over 2 M)

—Demonstrated in 1991

Generality
• No specialized hardware for triangles only

• Allow non-triangle-based applications

—Curved surfaces, volume rendering,
constructive solid geometry, etc.

• Enable research in new algorithms for
rendering, shading, etc.

PerformancePerformance
•• Render over 1 M Phong-shaded triangles perRender over 1 M Phong-shaded triangles per

second (eventually achieved over 2 M)second (eventually achieved over 2 M)

——Demonstrated in 1991Demonstrated in 1991

GeneralityGenerality
•• No specialized hardware for triangles onlyNo specialized hardware for triangles only

•• Allow non-triangle-based applicationsAllow non-triangle-based applications

——Curved surfaces, volume rendering,Curved surfaces, volume rendering,
constructive solid geometry, etc.constructive solid geometry, etc.

•• Enable research in new algorithms forEnable research in new algorithms for
rendering, shading, etc.rendering, shading, etc.

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pixel-Planes 5 RendererPixel-Planes 5Pixel-Planes 5 Renderer Renderer

128x128 SIMD array per renderer board

• 16,384 processors

20 renderer boards (approx.) in full system

• Over 300,000 processors!

Memory

• 208 bits of local memory per processor

• 4,096 bits of off-chip backing store per
processor

128x128 SIMD array per128x128 SIMD array per renderer renderer board board

•• 16,384 processors16,384 processors

2020 renderer renderer boards (boards (approxapprox.) in full system.) in full system

•• Over 300,000 processors!Over 300,000 processors!

MemoryMemory

•• 208 bits of local memory per processor208 bits of local memory per processor

•• 4,096 bits of off-chip backing store per4,096 bits of off-chip backing store per
processorprocessor

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pxpl5 Renderer BoardPxpl5Pxpl5 Renderer Renderer Board Board

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Overall SystemOverall SystemOverall System

HIF

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Screen Subdivision (Pxpl5)Screen Subdivision (Pxpl5)Screen Subdivision (Pxpl5)

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Graphics ProcessorsGraphics ProcessorsGraphics Processors

General purpose processors (Intel i860)

Primitives assigned “randomly”

For each primitive

• Transform

• Generate renderer commands

• “Binitize”

Send bins to appropriate renderers after
complete database traversal

General purpose processors (Intel i860)General purpose processors (Intel i860)

Primitives assigned “randomly”Primitives assigned “randomly”

For each primitiveFor each primitive

•• TransformTransform

•• GenerateGenerate renderer renderer commands commands

•• ““BinitizeBinitize””

Send bins to appropriateSend bins to appropriate renderers renderers after after
complete database traversalcomplete database traversal

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

RenderersRenderersRenderers

Assigned to one screen region at a time

Perform commands from each GP for that
region

Copy resulting colors to backing store

• eventually copied from Renderer to Frame
Buffer

Begin working on next assigned region

Assigned to one screen region at a timeAssigned to one screen region at a time

Perform commands from each GP for thatPerform commands from each GP for that
regionregion

Copy resulting colors to backing storeCopy resulting colors to backing store

•• eventually copied fromeventually copied from Renderer Renderer to Frame to Frame
BufferBuffer

Begin working on next assigned regionBegin working on next assigned region

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Dynamic Renderer AllocationDynamicDynamic Renderer Renderer Allocation Allocation

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Deferred ShadingDeferred ShadingDeferred Shading

Store parameter values for each pixel while a
region is being rasterized

After all primitives rasterized, perform
lighting/shading

Shading performed once for entire region

• independent of number of primitives in region

Store parameter values for each pixel while aStore parameter values for each pixel while a
region is beingregion is being rasterized rasterized

After all primitivesAfter all primitives rasterized rasterized, perform, perform
lighting/shadinglighting/shading

Shading performed once for entire regionShading performed once for entire region

•• independent of number of primitives in regionindependent of number of primitives in region

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Programming LevelsProgramming LevelsProgramming Levels

PPHIGS

• Dominant graphics API at the time (before
OpenGL)

Rendering Control

• Knows about synchronizing GPs

ROS (ring operating system)

• Allows basic communications between GPs

PPHIGSPPHIGS

•• Dominant graphics API at the time (beforeDominant graphics API at the time (before
OpenGL)OpenGL)

Rendering ControlRendering Control

•• Knows about synchronizing GPsKnows about synchronizing GPs

ROS (ring operating system)ROS (ring operating system)

•• Allows basic communications between GPsAllows basic communications between GPs

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Types of ApplicationsTypes of ApplicationsTypes of Applications

Standard triangle/sphere graphics using
PPHIGS API

• some procedural shading

Volume Rendering

CSG

Julia set

Standard triangle/sphere graphics usingStandard triangle/sphere graphics using
PPHIGS APIPPHIGS API

•• some procedural shadingsome procedural shading

Volume RenderingVolume Rendering

CSGCSG

Julia setJulia set

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

PixelFlow: A Sort-Last Parallel
Graphics Machine

PixelFlow: A Sort-Last ParallelPixelFlow: A Sort-Last Parallel
Graphics MachineGraphics Machine

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Two-Rack PixelFlow MachineTwo-Rack PixelFlow MachineTwo-Rack PixelFlow Machine

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Design CriteriaDesign CriteriaDesign Criteria

Tens of millions of triangles/sec throughput

Linearly scalable performance

Programmable shading

Tens of millions of triangles/sec throughputTens of millions of triangles/sec throughput

Linearly scalable performanceLinearly scalable performance

Programmable shadingProgrammable shading

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

PixelFlow ArchitecturePixelFlow ArchitecturePixelFlow Architecture

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Image CompositionImage CompositionImage Composition

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

PixelFlow BoardPixelFlow BoardPixelFlow Board
Boards have same hardware components

• 2 PA-RISC processors
—transform, generate SIMD commands

• Shared processor memory
• 128x64 SIMD Array (8-bit ALU)

—perform pixel operations
• Texture Memory (64 MB per board)

—not cost effective?
Board function chosen by application

• Renderer
• Shader
• Frame buffer (requires daughter card)

Boards have same hardware componentsBoards have same hardware components
•• 2 PA-RISC processors2 PA-RISC processors

——transform, generate SIMD commandstransform, generate SIMD commands
•• Shared processor memoryShared processor memory
•• 128x64 SIMD Array (8-bit ALU)128x64 SIMD Array (8-bit ALU)

——perform pixel operationsperform pixel operations
•• Texture Memory (64 MB per board)Texture Memory (64 MB per board)

——not cost effective?not cost effective?
Board function chosen by applicationBoard function chosen by application

•• RendererRenderer
•• ShaderShader
•• Frame buffer (requires daughter card)Frame buffer (requires daughter card)

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Board DiagramBoard DiagramBoard Diagram

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Actual PixelFlow BoardActual PixelFlow BoardActual PixelFlow Board

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Renderer BoardRendererRenderer Board Board

Operates on subset of geometry
PA-RISC

• Stores display lists of static geometry
• Transforms geometry
• Generates/binitizes SIMD commands

EMC (Enhanced Memory Chip)
• Enable primitives pixels

—including setting Z
• Set shader id
• Load/interpolate parameters

—colors, normals, texcoords
—other arbitrary shader parameters

Operates on subset of geometryOperates on subset of geometry
PA-RISCPA-RISC

•• Stores display lists of static geometryStores display lists of static geometry
•• Transforms geometryTransforms geometry
•• Generates/Generates/binitizesbinitizes SIMD commands SIMD commands

EMC (Enhanced Memory Chip)EMC (Enhanced Memory Chip)
•• Enable primitives pixelsEnable primitives pixels

——including setting Zincluding setting Z
•• SetSet shader shader id id
•• Load/interpolate parametersLoad/interpolate parameters

——colors, normals,colors, normals, texcoords texcoords
——other arbitraryother arbitrary shader shader parameters parameters

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Shader BoardShaderShader Board Board

Operates on one particular screen region
PA-RISC

• Generate/cache shading commands for EMCs
• Loop through shader functions

—Pre-light, light, post-light

EMCs
• Perform shading computation

—Image texture lookup
—Lighting
—Programmable shading operations

Operates on one particular screen regionOperates on one particular screen region
PA-RISCPA-RISC

•• Generate/cache shading commands forGenerate/cache shading commands for EMCs EMCs
•• Loop throughLoop through shader shader functions functions

——Pre-light, light, post-lightPre-light, light, post-light

EMCsEMCs
•• Perform shading computationPerform shading computation

——Image texture lookupImage texture lookup
——LightingLighting
——Programmable shading operationsProgrammable shading operations

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Image CompositionImage CompositionImage Composition

One region at a time on renderer boards

Composite each region, sending to one
shader board

Shading boards send results to frame buffer

Composition network

• 100 Gbit/sec bandwidth

• Bidirectional signaling hardware

One region at a time onOne region at a time on renderer renderer boards boards

Composite each region, sending to oneComposite each region, sending to one
shadershader board board

Shading boards send results to frame bufferShading boards send results to frame buffer

Composition networkComposition network

•• 100100 Gbit Gbit/sec bandwidth/sec bandwidth

•• BidirectionalBidirectional signaling hardware signaling hardware

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Compositor Operating ModesCompositor Operating ModesCompositor Operating Modes

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Programmable ShadingProgrammable ShadingProgrammable Shading

Procedural shading

High-level language for programming

• Modified RenderMan language

Shading compiler generates C-code for
storing EMC commands on PA-RISC

 256 bytes of local memory per pixel

 (show Olano SIGGRAPH 98 video)

ProceduralProcedural shading shading

High-level language for programmingHigh-level language for programming

•• ModifiedModified RenderMan RenderMan language language

Shading compiler generates C-code forShading compiler generates C-code for
storing EMC commands on PA-RISCstoring EMC commands on PA-RISC

 256 bytes of local memory per pixel 256 bytes of local memory per pixel

 (show Olano SIGGRAPH 98 video) (show Olano SIGGRAPH 98 video)

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

APIAPIAPI

Modified OpenGL

Added support for programmable shading

Added frame synchronization commands

Restrictions apply

Modified OpenGLModified OpenGL

Added support for programmable shadingAdded support for programmable shading

Added frame synchronization commandsAdded frame synchronization commands

Restrictions applyRestrictions apply

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

OpenGL on PixelFlowOpenGL on PixelFlowOpenGL on PixelFlow

Application runs on host machine

Global state changes broadcast to all boards

• lights, matrices, etc.

Primitives (glBegin/glEnd blocks) distributed
round-robin among renderer boards

Textures loaded/replicated across all shader
boards

Application runs on host machineApplication runs on host machine

Global state changes broadcast to all boardsGlobal state changes broadcast to all boards

•• lights, matrices, etc.lights, matrices, etc.

Primitives (Primitives (glBeginglBegin//glEndglEnd blocks) distributed blocks) distributed
round-robin amonground-robin among renderer renderer boards boards

Textures loaded/replicated across allTextures loaded/replicated across all shader shader
boardsboards

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

OpenGL ExtensionsOpenGL ExtensionsOpenGL Extensions

Load/instance shader function
Set current shader
glMaterial extended to arbitrary shader

parameters
• global attribute state stores arbitrary

parameters as well as built-ins (color, coord,
etc.)

• named shader parameters may be shared
among different shader functions

Frame synchronization commands

Load/instanceLoad/instance shader shader function function

Set currentSet current shader shader

glMaterialglMaterial extended to arbitrary extended to arbitrary shader shader
parametersparameters
•• global attribute state stores arbitraryglobal attribute state stores arbitrary

parameters as well as built-ins (color,parameters as well as built-ins (color, coord coord,,
etc.)etc.)

•• namednamed shader shader parameters may be shared parameters may be shared
among differentamong different shader shader functions functions

Frame synchronization commandsFrame synchronization commands

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

OpenGL RestrictionsOpenGL RestrictionsOpenGL Restrictions

No global state changes within glBegin/glEnd

• changes within glBegin/glEnd sent to a single
Renderer, not broadcast

Cannot read back frame buffer during frame

• Frame buffer not complete until composited
and shaded at end of frame

Primitive ordering not currently guaranteed

• bad for geometry-based decals (e.g. runway
stripes)

No global state changes withinNo global state changes within glBegin glBegin//glEndglEnd

•• changes withinchanges within glBegin glBegin//glEndglEnd sent to a single sent to a single
RendererRenderer, not broadcast, not broadcast

Cannot read back frame buffer during frameCannot read back frame buffer during frame

•• Frame buffer not complete untilFrame buffer not complete until composited composited
and shaded at end of frameand shaded at end of frame

Primitive ordering not currently guaranteedPrimitive ordering not currently guaranteed

•• bad for geometry-based decals (e.g. runwaybad for geometry-based decals (e.g. runway
stripes)stripes)

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

CommercializationCommercializationCommercialization

Pixel-Flow originally developed inPixel-Flow originally developed in
collaboration with Division and latercollaboration with Division and later
Hewlett PackardHewlett Packard

•• Visualize Visualize PxFlPxFl product dropped by HP just product dropped by HP just
before productionbefore production

PC card product developed by PC card product developed by PixelFusionPixelFusion

•• Products due to ship 2nd quarter 2000Products due to ship 2nd quarter 2000

