
Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

The Pixel-Planes Family of
Graphics Architectures

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pixel-Planes Technology

Processor Enhanced Memory

• processor and associated memory on same chip

SIMD operation

• Each pixel has an associated processor

• Perform rasterization in parallel for each
primitive

Expression evaluation hardware

• Allows efficient evaluation of quadratic or
linear expression for all processors

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Rendering a Triangle with
Pixel-Planes

Disable pixel processors outside the triangle

Disable pixels with Z closer than triangle

Compute interpolated R,G,B for each pixel

Compute interpolated Nx, Ny, Nz

Compute interpolated U,V for each pixel

Later: perform shading calculations for all
pixels

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Disabling pixels outside triangle

set enable enable = edge1

enable = edge2 enable = edge2

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Linear Expressions

Each edge expressed as linear expression

• Ax + By + C

Enable bit gets true or false based on sign of
result at each pixel

Depth test computes depth value at each pixel
using LE and compares to current depth
value

Each color, normal, texture coordinate
component also evaluated as LE

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pixel-Planes 5:
A Sort Middle Graphics

Architecture

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pixel-Planes 5 Design Criteria
Performance

• Render over 1 M Phong-shaded triangles per
second (eventually achieved over 2 M)

—Demonstrated in 1991

Generality
• No specialized hardware for triangles only
• Allow non-triangle-based applications

—Curved surfaces, volume rendering,
constructive solid geometry, etc.

• Enable research in new algorithms for
rendering, shading, etc.

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pixel-Planes 5 Renderer

128x128 SIMD array per renderer board

• 16,384 processors

20 renderer boards (approx.) in full system

• Over 300,000 processors!

Memory

• 208 bits of local memory per processor

• 4,096 bits of off-chip backing store per
processor

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Pxpl5 Renderer Board

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Overall System

HIF

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Screen Subdivision (Pxpl5)

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Graphics Processors

General purpose processors (Intel i860)

Primitives assigned “randomly”

For each primitive

• Transform

• Generate renderer commands

• “Binitize”

Send bins to appropriate renderers after
complete database traversal

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Renderers

Assigned to one screen region at a time

Perform commands from each GP for that
region

Copy resulting colors to backing store

• eventually copied from Renderer to Frame
Buffer

Begin working on next assigned region

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Dynamic Renderer Allocation

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Deferred Shading

Store parameter values for each pixel while a
region is being rasterized

After all primitives rasterized, perform
lighting/shading

Shading performed once for entire region

• independent of number of primitives in region

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Programming Levels

PPHIGS

• Dominant graphics API at the time (before
OpenGL)

Rendering Control

• Knows about synchronizing GPs

ROS (ring operating system)

• Allows basic communications between GPs

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Types of Applications

Standard triangle/sphere graphics using
PPHIGS API

• some procedural shading

Volume Rendering

CSG

Julia set

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

PixelFlow: A Sort-Last Parallel
Graphics Machine

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Two-Rack PixelFlow Machine

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Design Criteria

Tens of millions of triangles/sec throughput

Linearly scalable performance

Programmable shading

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

PixelFlow Architecture

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Image Composition

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

PixelFlow Board
Boards have same hardware components

• 2 PA-RISC processors
—transform, generate SIMD commands

• Shared processor memory
• 128x64 SIMD Array (8-bit ALU)

—perform pixel operations
• Texture Memory (64 MB per board)

—not cost effective?
Board function chosen by application

• Renderer
• Shader
• Frame buffer (requires daughter card)

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Board Diagram

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Actual PixelFlow Board

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Renderer Board

Operates on subset of geometry
PA-RISC

• Stores display lists of static geometry
• Transforms geometry
• Generates/binitizes SIMD commands

EMC (Enhanced Memory Chip)
• Enable primitives pixels

—including setting Z
• Set shader id
• Load/interpolate parameters

—colors, normals, texcoords
—other arbitrary shader parameters

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Shader Board

Operates on one particular screen region
PA-RISC

• Generate/cache shading commands for EMCs
• Loop through shader functions

—Pre-light, light, post-light

EMCs
• Perform shading computation

—Image texture lookup
—Lighting
—Programmable shading operations

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Image Composition

One region at a time on renderer boards

Composite each region, sending to one
shader board

Shading boards send results to frame buffer

Composition network

• 100 Gbit/sec bandwidth

• Bidirectional signaling hardware

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Compositor Operating Modes

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Programmable Shading

Procedural shading

High-level language for programming

• Modified RenderMan language

Shading compiler generates C-code for
storing EMC commands on PA-RISC

 256 bytes of local memory per pixel

 (show Olano SIGGRAPH 98 video)

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

API

Modified OpenGL

Added support for programmable shading

Added frame synchronization commands

Restrictions apply

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

OpenGL on PixelFlow

Application runs on host machine

Global state changes broadcast to all boards

• lights, matrices, etc.

Primitives (glBegin/glEnd blocks) distributed
round-robin among renderer boards

Textures loaded/replicated across all shader
boards

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

OpenGL Extensions

Load/instance shader function
Set current shader

glMaterial extended to arbitrary shader
parameters
• global attribute state stores arbitrary

parameters as well as built-ins (color, coord,
etc.)

• named shader parameters may be shared
among different shader functions

Frame synchronization commands

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

OpenGL Restrictions

No global state changes within glBegin/glEnd

• changes within glBegin/glEnd sent to a single
Renderer, not broadcast

Cannot read back frame buffer during frame

• Frame buffer not complete until composited
and shaded at end of frame

Primitive ordering not currently guaranteed

• bad for geometry-based decals (e.g. runway
stripes)

Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Commercialization

Pixel-Flow originally developed in
collaboration with Division and later
Hewlett Packard

• Visualize PxFl product dropped by HP just
before production

PC card product developed by PixelFusion

• Products due to ship 2nd quarter 2000

