

Interacting within Virtual Worlds

(based on talks by Greg Welch and Mark Mine)

Presentation Overview

- Working in a virtual world
- Interaction principles
- Interaction examples

Why VR in the First Place?

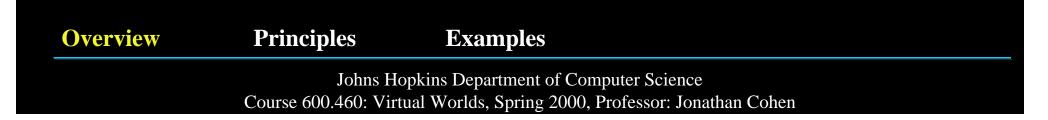
- Direct perception and *manipulation* of threedimensional virtual-objects
- Intuitive view specification via head-tracking

—Decouples view-point specification

—Kinetic depth effect (Hans Wallach)

Immersion within the virtual space

Immersive Virtual Environments


- Head-mounted display
- Tracking System
- Image Generator
- Additional sensory feedback
 - -Haptic displays
 - -2D or 3D localized sound

Overview	Principles	Examples	
		pkins Department of Computer Science al Worlds, Spring 2000, Professor: Jonathan Cohen	

Technological challenges

- Display resolution/field-of-view
- Real-time tracking
- Real-time image generation
- Ergonomic Issues

Less Obvious Factors

- The precise manipulation of virtual objects is hard!
 - —Lack of haptic feedback
 - -Limited input information
 - —Limited precision
- IVEs lack a unifying framework for integration
 - —Not the real world
 - —Not for WIMPs
 - »(Window, Icons, Menus, Pointing devices)

Overview	Principles	Examples	
		opkins Department of Computer Science ual Worlds, Spring 2000, Professor: Jonathan Cohen	

What can you do?...

Pick the right application!

• Best suited for visualization of, *and* interaction with:

-Complex three-dimensional data

-Models of what is, or could be

Overview

Principles

Examples

Compensate for the Limitations

- A relatively new medium—treat it as such
- Take advantage of natural forms of interaction
- Explore the "supernatural"
- Minimize user energy
- Use what you have, e.g.,

 - —your own body sense...

Overview	Principles	Examples
		opkins Department of Computer Science ual Worlds, Spring 2000, Professor: Jonathan Cohen

Proprioception & Body-Relative Interaction

- Take advantage of a person's body sense
 - -Physical real-world frame of reference
 - -More direct and precise sense of control
 - —"eyes off" interaction
- Three forms of body-relative interaction (Mine, 97)
 - **—Direct manipulation**
 - -Physical mnemonics
 - —Gestural actions

		•		
	ve	°V1	61	\mathbf{N}
$\mathbf{}$				· ·

Principles

Examples

Principles

Overview

Principles

Examples

How do we interact with virtual environments?

Basic forms of interaction with a virtual environment:

 User movement
 Object selection & manipulation
 Menus/Widgets/Controls

Overview

Principles

Examples

What can we use to implement these forms of interaction?

- Direct user interaction
- Props and controls
 - -Physical
 - —Virtual

Overview

Principles

Examples

Direct User Interaction

Specify type of interaction and its parameters through:

- Head/hand (feet...) pose (position and orientation)
- Relative position and orientations of head/hands
- Gestures

Tradeoffs (Direct User Interaction)

- Most effective when the relationship between the action of the user and the result in the virtual environment is intuitive
- Accurate precise interaction limited by:
 - -Lack of haptic feedback
 - —Tracking noise, or geometric sensitivity
 - —Limited input device design

Props and Controls

- Physical
 - -General: buttons, dials, sliders, joysticks
 - —Specific: steering wheels, fire extinguisher

Examples

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Virtual

Overview

-Almost anything goes

Principles

Tradeoffs (Props and Controls)

- Physical
 - -Haptic feedback, precise control
 - -Can get "lost", may not facilitate natural interaction, requires the real device
- Virtual

—Flexible, reconfigurable, can simulate anything

—Difficult to interact with w/o haptic feedback

OverviewPrinciplesExamplesJohns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Movement: why is it difficult? What can we do about it?

- We usually don't move about freely in 3D
- Constrain motion as appropriate
 - **—Translation only**
 - -Sliding only
 - —Terrain following
 - -River metaphor

OverviewPrinciplesExamplesJohns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Typical Methods (Movement)

To move around we need to specify a direction and a speed. Straightforward methods include:

- Walk in place or within a limited volume
- Use an appropriate, intuitive physical device

—Bike, treadmill, wheelchair, steering wheel and accelerator, etc.

Joysticks or mice

Overview Principles Examples Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Flying

Most often used method of movement is flying. Direction can be indicated by:

- Pointing
- Crosshairs
- Gaze-directed
- Two-handed (later)

Speed Control

Speed can be:

- Constant or accelerating over time
 - **—**Proper rate of acceleration
 - -Cap on speed
- Related to head/hand/chest-to-hand distance

—Linear

—Zones: decelerate, constant, accelerate

Overview

Principles

Examples

Novel Methods of Movement

Innovative techniques that lack real world equivalents:

- Scaled-world grab
- Orbital mode
- Worlds-in-Miniature (WIM)
- Dynamic scaling

Object Selection

We want to be able to select a specific object or objects to interact with in a VE.

There are usually three stages to selection:

- User indicates which object is to be selected
- VE system indicates what object it thinks the user wants selected
- The user confirms the selection

Indicating Which Object

The most difficult part of selection is providing the means for easy and accurate indication of the desired object.

- Voice commands or menus
- Grabbing locally or in a World-in-Miniature
- Action at a distance (AAAD)

—laser beam or spotlight

Manipulating an Object

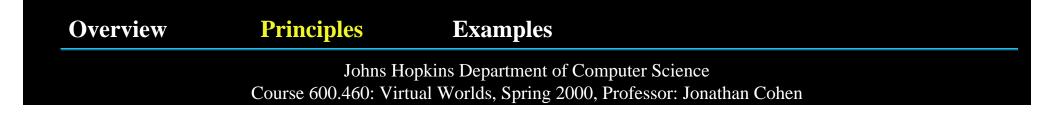
We want to be able to efficiently and intuitively manipulate objects in the VE. Among other things, we want to change an object's:

- position
- orientation and center of rotation
- scale and center of scaling

These are all often done with direct interaction.

Overview

Principles


Examples

Considerations (Manipulation)

Although it is intuitive, accurate, and efficient, direct manipulation of objects is still very difficult. Designers must consider:

- Lack of haptic feedback
- Objects outside of reach or view
- Lack of precision (tracking data noise, whole hand input, etc.)

Two-Handed Manipulation

VE systems often track and use only one hand, but we are finding that two can be useful.

- Scaling
 - —Intuitive and proprioceptive
- Rotation

-How we rotate large objects in the real world

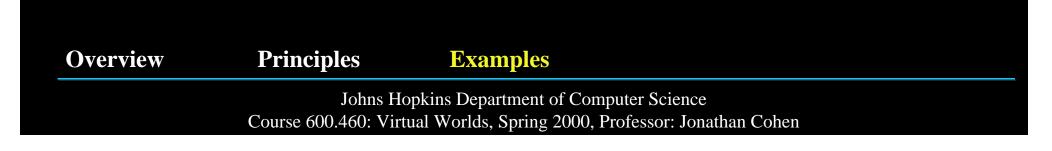
-Constrained manipulation via widgets

 Overview
 Principles
 Examples

 Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Menus and Widgets

Menus and widgets allow us to perform complex functions and select between alternatives.


In designing these tools we should consider:

- Lessons from 2D menus
- Menu dimensionality vs. interaction task
- Menu and widget placement
- Technology limitations

Direct Manipulation

Distance and Body-Relative

Action-at-a-Distance (Brown & others)

- Purpose: Remotely manipulate objects using a "laser beam" for selection/interaction
 - —Interaction without movement
 - -Hand or object centered
 - —Optimal for motions *perpendicular to beam*
 - »other requires grab/drop sequences
 - —Inherent ambiguity in position specification
 - —Amplifies tracking system noise

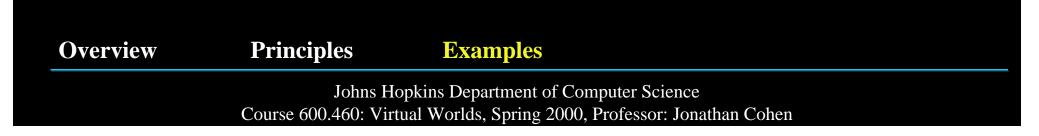
Overview	Principles	Examples	
		pkins Department of Computer Science ual Worlds, Spring 2000, Professor: Jonathan Cohen	

Video

Bowman and Hodges, "An Evaluation of Techniques for Grabbing and Manipulating Remote Objects in Immersive Virtual Environments," *Proceedings of 1997 Symposium on Interactive 3D Graphics.*

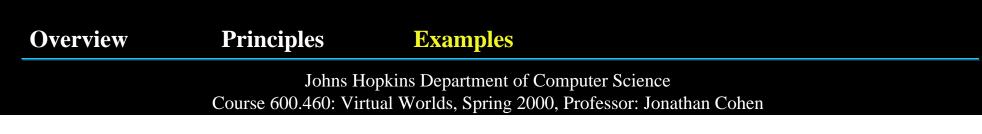
Overview

Principles


Examples

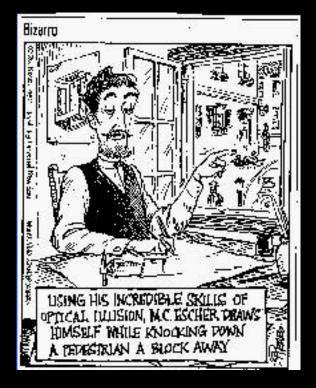
Working Within Arms Reach: Automatic Scaling

Use for object manipulation and navigation


- -Takes advantage of proprioception
- —More direct mapping between hand motion and object motion
- -Stronger stereo & head-motion parallax cues
- —Finer angular resolution

Worlds-in-Miniature (UVA)

- Purpose: Move objects in immersive world by manipulating miniature representations
 - -Brings virtual objects within reach
 - —Gross motion of objects through virtual space
 - -Multiple, simultaneous representations
 - **—Does not solve problem of precise positioning**
 - —Does not solve problems of visibility
- Combine with orbital mode for greater power


Orbital Mode (Chung)

- Head-pose interaction control
- Rapid orbital motion about a single object or groups of objects
 - -Object of interest remains in front of the user
 - —Head rotation causes the view to orbit about the object of interest
 - -No real-world analog yet highly effective

Overview	Principles	Examples
		opkins Department of Computer Science tual Worlds, Spring 2000, Professor: Jonathan Cohen

Using Perspective

Overview

Principles

Examples

Overview

Image Plane Interaction (UVA, Brown, UNC)

- User interacts with 2D projections of 3D objects
- Multiple applications
 - -object selection and manipulation
 - -navigation/motion

Principles

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Examples

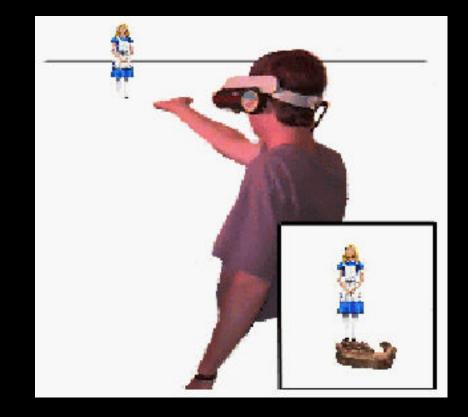
The "Head Crusher" Technique


Overview

Principles

Examples

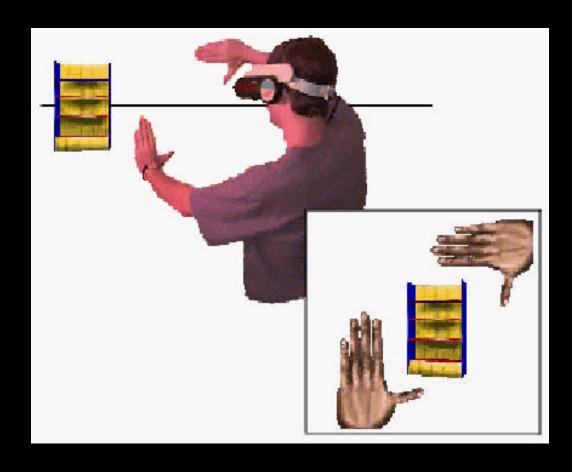
The "Sticky Finger" Technique


Overview

Principles

Examples

The "Lifting Palm" Technique


Overview

Principles

Examples

The "Framing Hands" Technique

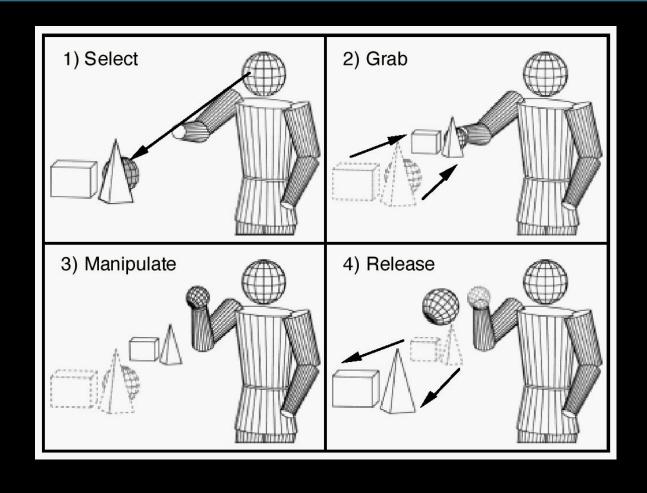
Overview

Principles

Examples

Video

Pierce, Forsberg, et al., "Image Plane Interaction Techniques in 3D Immersive Environments," *Proceedings of 1997 Symposium on Interactive 3D Graphics.*


Overview

Principles

Examples

Scaled World Grab (Mine)

Principles

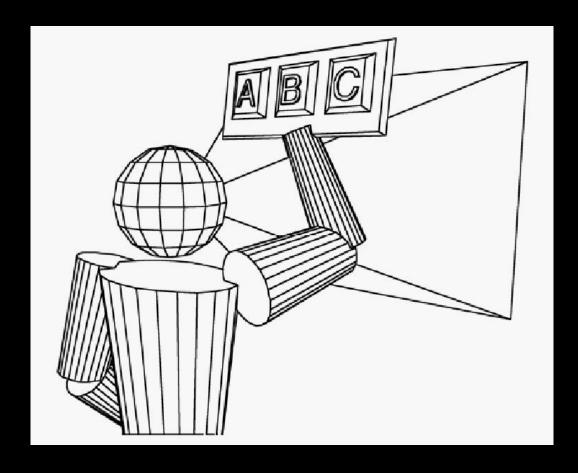
Examples

Interactive Numbers (Mine)

- Alphanumeric input difficult in VE
 - -Chord keyboards: hard to learn and retain
 - -Virtual keyboards: lack haptic feedback
 - -Speech recognition: almost works
- Technique for numeric input from within
- Doubles up on control-panel space usage
- Susceptible to tracking-system noise

Overview	Principles	Examples	
Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen			

Physical Mneumonics

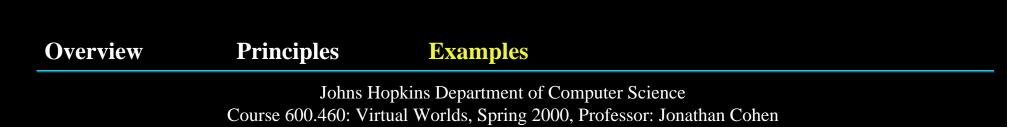

Overview

Principles

Examples

Pull-Down Menus (Mine)

Overview

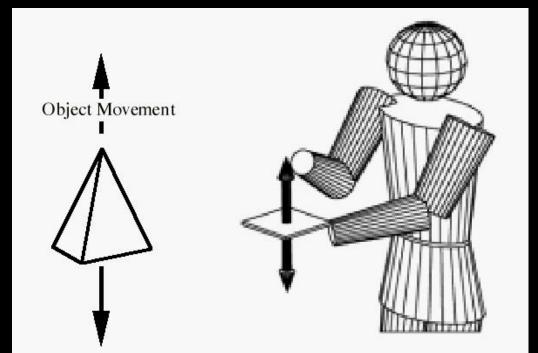

Principles

Examples

Pull-Down Menus (continued)

- No need for a dedicated menu button
- No ongoing scene occlusion
- Uses a common operation (grab) for activation
- Menus are easy to find/remember
- Experimental success with 3
 - —up left, center, and right

Interactive Numbers (Mine)


- Alphanumeric input difficult in VE
 - -Chord keyboards: hard to learn and retain
 - -Virtual keyboards: lack haptic feedback
- Technique for numeric input from within
- Doubles up on control-panel space usage
- Susceptible to tracking-system noise

Overview	Principles	Examples	
Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen			

Hand-Held Widgets

- Simplifies interaction
- Remote control
- Visual clutter
- Obscuration
- Greater cognitive distance

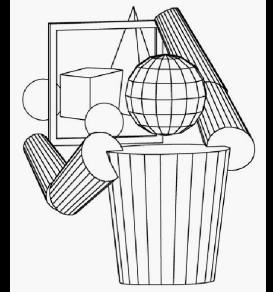
Overview	Principles	Examples	
Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen			

The Lego[™] Interface Toolkit (Brown)

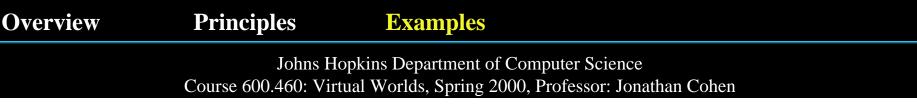
- Inspired by UVA, ILM, and Henson Productions
- Rotational, linear, and push-button sensors
- Applied to air flow simulations for NASA's Space Shuttle

Gestural Actions

Overview

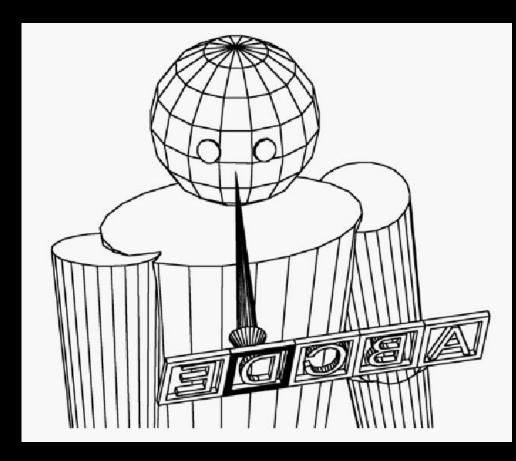

Principles

Examples



Head-Butt Zoom (Mine)

- Head-pose interaction control
- Users frequently switched between close-up detailed views and pulled-back global views.
- Augment intuitive gesture of leaning forward for a closer view.



• Hands free interaction.

Look-At Menus (Mine)

Overview

Principles

Examples

Video

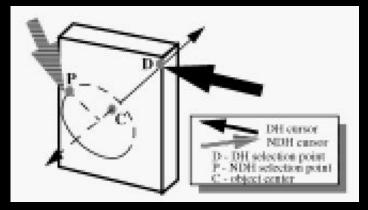
Mine, Brooks, and Sequin, "Moving Objects in Space: Exploiting Proprioception in Virtual Environment Interaction," *Proceedings of SIGGRAPH 97*.

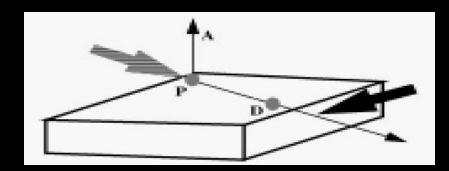
Overview

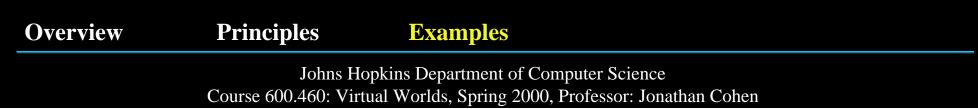
Principles

Examples

Two-Handed Interaction


- Intuitive form of interaction
 - -Dominant hand (DH) & non-DH (NDH)
- Proprioceptive feedback!
 - -Hand orientation
 - -Hand separation
 - -Relative hand position
- "1/2 the steps" of one-handed interaction


Overview	Principles	Examples		
	Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen			



2-Handed Object Transformations (Brown & SGI)

- Translate & rotate
- Scaling
- Vertex, Face, Edge editing and manipulation

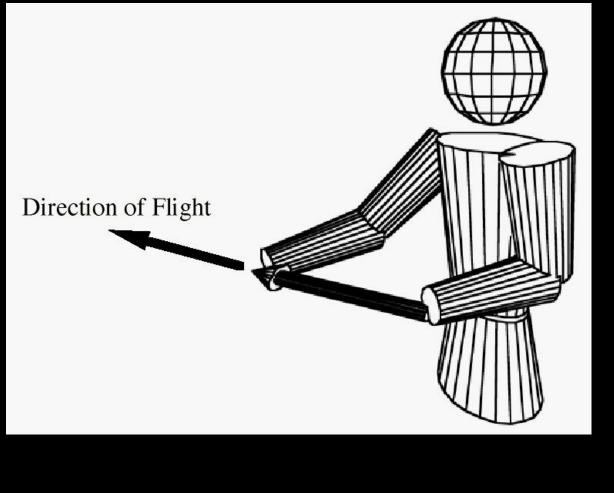
Other 2-Handed Techniques

- Camera Controls
 - -Camera and object manipulation
 - -Position, orientation, zoom
- Editing Operations
 - -Line segments, polylines
 - -Interactive shadows

-Grouping, ungrouping, duplication

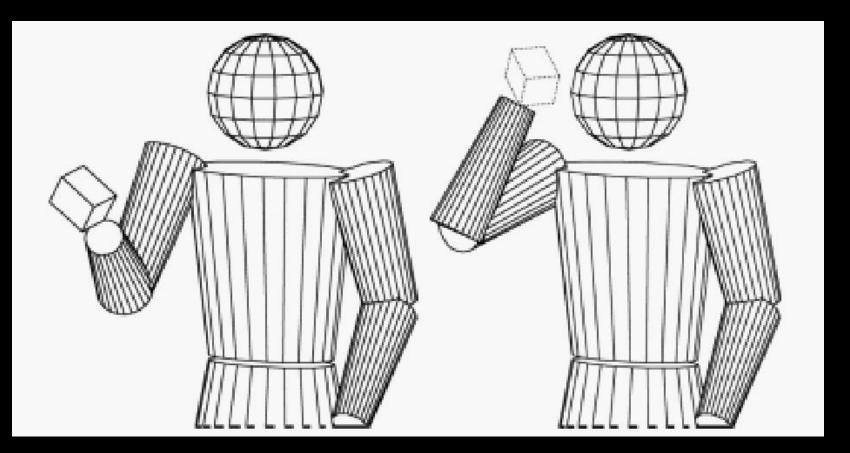
Overview

Principles


Examples

Zeleznik, Forsbert, and Strauss, "Two Pointer Input for 3D Interaction," *Proceedings of 1997 Symposium on Interactive 3D Graphics*.

Two-Handed Flying


Overview

Principles

Examples

Over-the-Shoulder Deletion (Mine)

Overview

Principles

Examples

Constrained Object Manipulation (Mine)

Overview

Principles

Examples

Constrained Object Manipulation

- Similar spirit as 2D draw constraints
- Purpose: Controlled object manipulation
 - —Allows for greater control of object manipulation
 - -Requires constrained motion modes or free motion plus object snap functions
- Object's degrees-of-freedom reduced via:

—Menu selectable interaction modes

-Widgets

Overview Principles Examples Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Tradeoffs

• Widget design complicated by:

-Affordances, cues, feedback, etc.

-Visibility and reachability big problems

—Visual clutter

Constraints must be overridable with reset

 Overview
 Principles
 Examples

 Johns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Early Versions

Based on early widget work at Brown University

Widgets co-located with objects

VR Version

Difficult to select
Difficult interaction
Non-intuitive affordances

OverviewPrinciplesExamplesJohns Hopkins Department of Computer Science
Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen