

History of Virtual Reality

(based on a talk by Greg Welch)

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Trends & Milestones

Displays (head-mounted)

- video only, CG overlay, CG only, mixed video
- CRT vs. LCD

Tracking

- magnetic, mechanical, ultrasonic, optical
- local vs. wide area

Haptics

- vibration, 2D fields, 6D fields
- Large vs. small working volume and forces

Systems, Applications

- Aerospace, surveillance
- Scientific, research
- Entertainment, telepresence, etc.

Visually Coupled Systems

Aerospace and Defense Requirements

- Cost-effective and safe training
- Put heads-up-display (HUD) in pilot's view

Other Applications

- Off-boresight weapons aiming
- Steerable night vision aids

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Sensorama (1956)

Morton Heilig

• cinematographer/director of documentaries

Motorcycle simulator - all senses

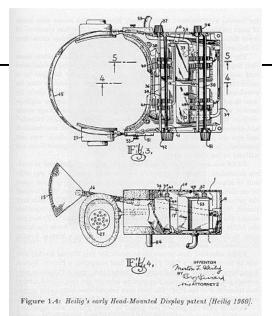
- visual (city scenes)
- sound (engine, city sounds)
- vibration (engine)
- smell (exhaust, food)

(not a big commercial success)

from Virtual Reality Technology, Burdea & Coiffet

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Heilig's HMD (1960)


"Simulation Mask"

- 3D photographic slides
- WFOV optics with focus control
- Stereo sound
- Smell

From Heilig's 1960 patent

from Virtual Reality Technology, Burdea & Coiffet

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Philco Headsight TV Surveillance System (1961)

Comeau & Bryan

Components

- Remote closed-circuit TV
- HMD

Custom magnetic tracking

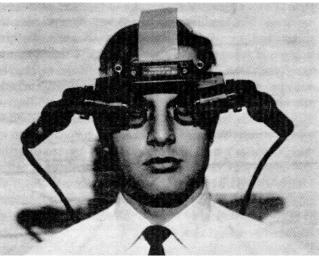
• measured head orientation

Head-sight camera linkage

Suggested HMD resolution matching

• match display to eye's resolution

Ivan Sutherland and The Ultimate Display (1965)



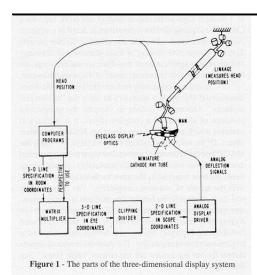
- Suggested HMD as a a window into a virtual world
- Inspired many of the great achievers in interactive computer graphics

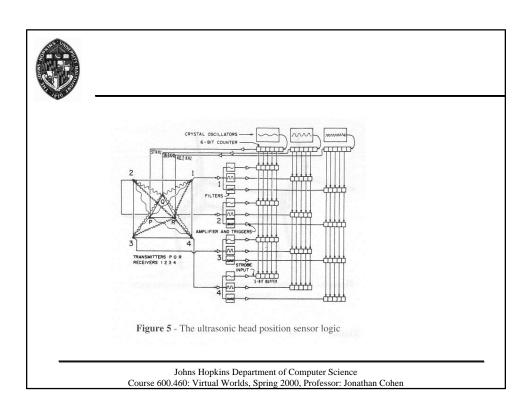
Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

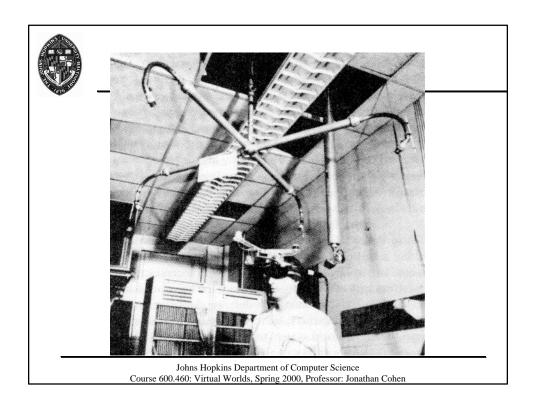
Sutherland's HMD (1968)

First HMD driven by computer graphics

Wireframe images superimposed on world


Sutherland's Tracking Systems


Tracked both position and orientation Developed two separate systems


- Mechanical heavier
- Ultrasonic more subject to accumulated errors

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

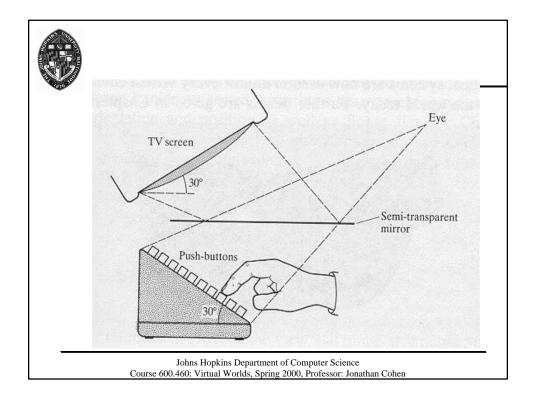
UNC Haptic Systems (1967-1980's)

Haptic/kinesthetic display system 6D force fields of molecular structures Progression

- Grope I, simple fields, particle feedback
- Grope II, 1978, children's building blocks
- Grope III, late 80's, Argonne Remote Manipulator (ARM)

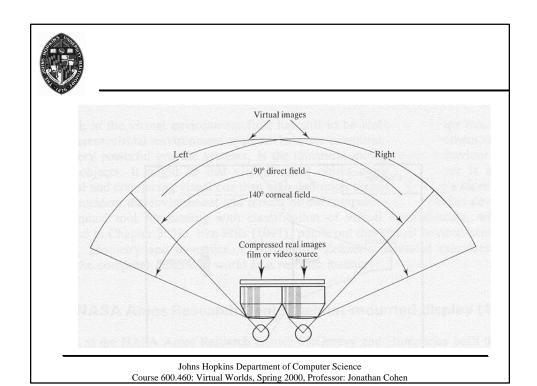
Sarcos arm

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen


Molecular docking with the Argonne Remote Manipulator (ARM)

Knowlton's Virtual Pushbuttons (1975)

Partially-silvered mirror over keyboard Programmable labels Tactile feedback (real thing!)


LEEP Optics (1975)

Large Expanse, Extra Perspective (LEEP)
Eric Howlett (Pop-Optix Labs)
Originally for 3D still photo viewing
Lenses correct for camera distortion

- Display optics matched to camera optics
- Often uncorrected distortion for CG images

Reported to have great realism for still images

90° direct FOV, 140° corneal FOV

The DataGlove (1981-1982)

Precurser, Sayre Glove (U of IL, ORD, 1977, National Endowment for the Arts grant)

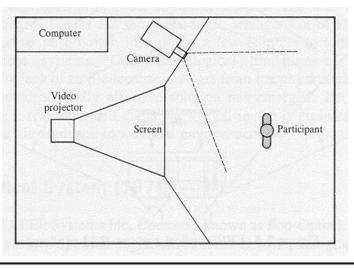
1982 Thomas Zimmerman patented lightbased bend sensors

VPL: Zimmerman, Jaron Lanier and Scott Fisher (all met at Atari Research Labs Sunnyvale, CA)

Lanier added 6 DOF tracking

Featured in Scientific American in 1987

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen


Krueger's Videoplace (1983)

Graphics and gesture recognition
University of Connecticut, 1970s
VideoDesk

- camera captures gestures
- relays to remote collaborator
- gestures control graphics
- paint, draw, menu selection

Videoplace

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

Bishop's Self-Tracker Dissertation (1984)

Passive tracking in large, unstructured environments

Custom VLSI optical sensors with smarts

Linear array

Cube w/ multiple sensors

Difficult problem, step back and try ceiling

NASA Ames HMD (1981-1984)

McGreevy and Humphries

- First implemented immersive HMDs
- LCD "Watchman" displays

Led to VIEW, led by Scott Fisher

• (next slide)

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

NASA Ames VIEW or VIVID (1985)

Virtual Interface Environment Workstation

- Polhemus tracker
- LEEP-based HMD
- 3D audio, Crystal River's Convolvotron
- Gesture recognition w/ VPL DataGlove
- BOOM-mounted CRT (Sterling Software)
- Remote Camera (Fake Space)

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

USAF Super Cockpit (1985)

Wright Patterson Air Force Base
Visual, auditory, tactile
Head, eye, speech, and hand input
Designed to deal with problem of pilot information overload

• Flight controls and tasks too complicated

Research only

• big system, not safe for ejecting

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

VPL Research (1985)

Jaron Lanier, Jean-Jacques Grimaud

- Lanier came up with term "virtual reality" Funding from NASA and Thomson-CSF
- Tunung nom 1715/1 and 1 nombon-est
- DataGlove, EyePhone, AudioSphere

Provided framework for complete systems

- Components could be added piece-meal
- Software infrastructure assisted in the creation of VR applications
 - —"Reality Built for Two" RB2

British Aerospace (1987-1990's)

Virtual Cockpit (1987)

Virtual Environment Configurable Training Aids (VECTA)

- Fully immersive HMD
- Inability to see hands disturbing

Real and Virtual Environment Configurable Training Aids (RAVECTA)

- Video see-through HMD
- Blue screening (chroma keying) of outdoor environment

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

W Industries (1990's)

Dr. Jon Waldron

Virtuality System

UK Entertainment market

Location-based entertainment

High volume use means dealing with human factors and safety issues

Johns Hopkins Department of Computer Science Course 600.460: Virtual Worlds, Spring 2000, Professor: Jonathan Cohen

UNC Ceiling Tracker (1991-now)

Wide-area optical tracking system

"Navigation by the stars"

- Infrared LEDs mounted in ceiling of room
- CCD cameras mounted on HMD

Rigid frame replaced by standard ceiling tiles

• auto-calibration

6 cameras shrunk into single small unit