
Texture compression with adaptive block partitions
Leonid Levkovich-Maslyuk

The Keldysh Inst. of Appl. Math.,
4, Miusskaya Sq.,

Moscow, Russia,125047
(7-095)-250-78-56

levkovl@spp.keldysh.ru

Pavel Kalyuzhny Alexander Zhirkov
Lomonosov Moscow State University Lomonosov Moscow State University
Russia, Moscow, GSP119899, MSU, Russia, Moscow, GSP119899, MSU,

Computer Science Faculty Computer Science Faculty
(7-095)-939-01-90 (7-095)-939-01-90

kaluzhny@graphics.cs.msu.su zh@graphics.cs.msu.su

ABSTRACT
We present image compression method based on block
palletizing. Image block is partitioned into four subsets, and each
subset is palletized by 2 or 4 colors from the quasioptimal local
palette, constructed for the whole block. Index map for the whole
block, being the union of index maps for subsets, is thus only 1 or
2 bits deep, while the local palette may consist of 8 or even 16
colors. The local palette has a specific geometrical configuration
in RGB color space, determined by only 2 colors. These two
colors are stored explicitly, and the rest are reconstructed at the
decompression stage. Compressed block consists, essentially, of
the index map, palette description and partition description. This
format allows fast access to randomly chosen pixels, and high
reconstruction quality for compression ratios from 8 to 12, which
is useful for texture storage in 3D graphics applications where
real-time decompression is crucial.

Keywords
Texture compression, image compression, fast rendering, local
palletizing

1. OUTLINE OF THE METHOD
To avoid complex geometrical computations, it is common to use
textures in 3D real-time graphics. In this context, textures are
appropriate images (e.g., photos of a building facade) that are
'glued' upon a 3D 'wire frames'. Texture compression methods
oriented at this class of applications must allow fast access to
arbitrary chosen texels (pixels of the texture image). Mostly for
this reason, virtually all texture compression techniques are block-
based. For example, the well known S3TC algorithm [1] uses 4-
by-4 image blocks, and the compressed block consists of a local
palette (four colors) and the index map. The index map is a 4.by-4
array of 2-bit words, each word being index of the palette color
replacing the original color of the corresponding pixel. Substantial
idea behind S3TC is to represent the local palette as a line
segment in RGB color space, optimally approximating total of 16

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM Multimedia 2000 Los Angeles CA USA
Copyright ACM 2000 1-58113-198..4/00/10...$5.00

colors in the block. Only the endpoints of this segment are stored,
while the other 2 colors are reconstructed at decompression stage.
This allows to achieve compression ratio 6 for true color images
with 24 bit color depth.

We suggest a different compression method, based on two main
ideas. The first idea is to use more complex palette geometries
than line segment, in order to represent more colors, closer
adapting the palette to the original color distribution in the block.
However, as the number of colors increase, the index map is
becoming too largo because indices must contain more bits. This
makes compression ratio impractically low.

The second idea allows to cope with this problem. R is
independent palletizing of block subsets by small (2 or 4 colors)
"subpalettes" of the palette for the whole block. For example, 8-
color palette would normally require 3 bit indices. But if a
subpalette of 2 colors is used for each subset, index map is only 1
bit deep, i.e. becomes 3 times smaller.

However, in this ease one has to store additional information:
subpalettes description and partition description. Subpalettes can
be specified by fixing an order of the palette entries, so that the
first two entries are the first subpalette, e.t.c. For example, in case
of the 8-color palette and four 2-color subpalettes we need a string
of eight 3-bit words. Another way is to specify a small number of
fixed subsets of the palette as possible subpalettes. Both
approaches were implemented in our algorithms.

Since it is impossible to compactly represent an arbitrary block
partition, we used a fixed collection (dictionary) of partitions. In
this case, partition is specified by its index in the dictionary. We
worked with 8-by-8 blocks, and partitioned them into 4 subsets. R
turned out that even this very restricted collection of 256 'typical'
partitions allowed to obtain good reconstruction quality. In this
case partition is specified by 8-bit word.

Compression of each block is performed in 2 steps. At the first
step, a quasioptimal palette for the whole block is constructed. At
the second step, an optimal partition together with an appropriate
collection of subpalettes is determined so that the total block
distortion is minimal. Thus, the compressed block consists of:
index of the selected partition; palette description; subpalettes
description; index map.

Decompression of a texel is performed by: determination of the
containing block (trivial calculation), reconstruction of the palette
(essentially, a sequence of linear interpolations and equally simple
operations), finding the partition subset containing the texel

401

(simple masking operation), and output of the palette entry
according to the index map.

Now let us consider some important details of the algorithms
based on this approach.

2. DETAILS OF THE ALGORITHMS
2.1 Palettes geometry
We implemented two aigorithms, (denote them AI2 and A8), with
compression ratios 12 and 8, respectively. A12 uses 8-color
palette for the block, and 2-color subpaiette for each of the four
block subsets. A8 uses 16-color palette for the block, and 4-color
subpaiette for each of its four subsets. Both algorithms use the
same dictionary of 256 block partitions.

Figure 1 shows the palette geometries for A8 and A12.

O

@

Figure 1. A8 0eft) and A12 (r iOt) palette

For A8 palette, white circles are the base colors that are stored.
They are vertices of a tetrahedron in RGB color space. Sets of
points shown by green, red, blue and white circles, each form a 4-
color subpaiette. Each subset of the chosen partition is pailetized
by one of these subpalettes. The A12 palette consists of two
segments (four points on each) in the color space RGB. One of the
two segments is shown in light-brown in Fig.1. Starting point of
each segment is stored in RGB(4,5,3) format. The endpoint has
the same (U,V) components (in the standard YUV color space),
but its Y-component is different, and is defined by a 4-bit munber
(Y axis is shown, conventionally, in black in Fig.l). Hence, the
palette is determined by 2.(4+5+3+4)=32 bits. Subpaiettes can be
arbitrary 2-color subsets of the palette.

2.2 Examples of partitions
Block partitions are obtained by discretization of 'typical'
quadratic functions level sets. Figure 2 shows how an original 8-
by-8 pixel block (a) is compressed by A8 Co) and by A12 (c).
These pictures are examples of the partitions from the dictionary.

(a) (b) (c)

Figure 2. (a) Original image block (b) AS-compressed
block. (e) A12-compressed block

Subsets boundaries are shown in green. Fidelity of reconstruction

decreases with the increase of compression ratio, but the
informative features of the block remain visible.

2.3 Compression and decompression
processes
A12 compression and decompression flowcharts for a single block

I Original ~ue-color g-by- ~ Palletizing
8 block (8.8.24 bits)

32 bit palette
Partitions

1 2 ... 256

Palletizing of
subsets

Optimalpartition
and subpalettes

----4t

Par~on index (8 bin)
~ubpalettes descr~tton
(ordemg of pale~e
colors) ~&3bits)
~dexmap (8-8.1 bits)

t
I Compressed block

(128 bits)

Figure 3. AI2 Compression flowchart.

are shown in Figures 3 and 4, respectively.

] Basecolors Extract par~don
] decoding description

Dscr[g][$].2b

partltlons
lS" °l°r
generatmn:

"!

Index-based texel generataon: /

Bmnap[xl[Yi=Pal ilnd [2" Dscr[xi[Yl + Plauelxl[Yl i I

Figure 4. A l l Decompression flowchart.

402

3. TEST RESULTS
We have performed extensive testing of the algorithms A12 and
A8 on a collection of images of various nature, with the aid of
various distortion measures. In all cases, A8 algorithm (8 times
compression) outperformed S3TC (6 times compression). A12
(12 times compression) has shown somewhat lower reconstruction
quality than S3TC. Visual quality can be subjectively estimated as
'good' for A12 and 'excellent' for AS. PSNR values presented in
the Table 1 give a quality estimate for two test images in terms of
PSNR. "Portrait" image (Figure 5), turned out to be the most
difficult among the 'natural' images for all the three algorithms
AS, A12 and S3TC. "Lena" image was included here because of
its pop~anty.

It should be noted that for any compression method based on
reduced palette for small blocks, it is easy to construct artificial
images for which visual distortion will be very noticeable. Indeed,
any pattern composed of blocks with colors uniformly distributed
in RGB color space will suffer drastic distortioh after palletizing.
Fortunately, this is practically never the case for images one meets
in applications.

PSNR computations for RGB color images were performed for the
distortion of standard intensity Y=0.3R+0.59G +0.1 lB.

Table 1. PSNR values for the three algorithms

A12 S3TC A8
"Portrait" 28.4 32 33.6

"Lena" 35 38.95 40.9

4. CONCLUSION
A method for image compression based on palletizing of small
block subsets by subpalettes of compactly stored local palette was
developed. Two algorithms using this method have compression
ratios 12 and 8 for true color images, and allow fast random
access to distinct pixels. High quality of reconstructed images
suggests that the algorithms can be useful for texture storage in
3D graphics applications where fast decompression is important.
Ideas of the work can be further developed by optimizing the
dictionary of hiock partitions (with the aid of, for example, coding
theory techniques), and by improving palette geometry in color
space.

Figure 5. Test image "Portrait"

5. AKNOWLEDGMENTS
We are grateful to Yuri Bayakovski (Lomonosov Moscow State
University) for helpful discussions, and to Jim Hurley and
Alexander Reshetov (Intel Corporation) for their attention to the
work. The work was supported by the Intel Corporation Research
Contract.

6. REFERENCES
[1] S3TC DirectX 6.0 Standard Texture Compression, Savage

3D white papers (1998).

403

