Light and Color

Frequency Spectrum

Spectrum describes firequency distribution of a light source

关

blue green yel. red

Definitions

Hue: quality that distinguishes one color family from another (i.e. red, yellow, green, blue, etc.)
Chroma: degree of color's departure from greyscale

Value/Lightness: quality distinguishing light from dark colors

More definitions

Achromatic light: literally light without chroma, or greyscale light

- fairly uniform frequency distribution

Monochromatic light: light which has all intensity near a single frequency

Color Mixture - Subtractive

Applies when mixing pigments and dyes

- Each substance absorbs certain frequencies
- Combining substances absorbs the union of these frequencies
- Resulting refilected light is intersection of colors refilected by each

Subtractive Mixture Example

from Gerald Murch, "Color Displays and Color Science", in Color and the Computer, H. John Durrett, ed., page 10.

Color Mixture - Additive

Applies to mixing of luminescent colors, such as color CRT and LCD displays, etc.

- Color refers to actual frequency spectrum of light
- Combining lights adds their frequency spectra

Additive Color Example

3 Types of retinal cones

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 577

Efficient Color Computations in Computer Graphics

Represent frequency spectrum as discrete set of samples

- Typically 3 samples: red, green, and blue
- Monitors also use samples corresponding to different phosphors
- Eye also has 3 samples (types of cones)

Does not imply that three samples for initial and intermediate produce accurate computations

Color Space Gamut

Color gamut: subspace of visible colors

No system of mixing colors from fixed number of primaries can represent all visible colors

from Gerald Murch, "Color Displays and Color Science", in Color and the Computer, H. John Durrett, ed., page 13.

Color Spaces - RGB cube

From Alan Watt, 3D Computer
Graphics, 2nd edition, p. 416

Shortcomings:

- perceptually non-linear
- non-intuitive for human specification

Color Spaces - HSV hexacone

From Alan Watt, 3D Computer Graphics, 2nd edition, p. 419

Still not perceptually linear
Axes correspond to more intuitive perceptual qualities

- Selection similar to artist color mixing
- choose hue of base pigment, add white, add black
Derived from projections of RGB cube

HLS double hexacone

Similar to HSV hexacone

Pulls white to make the apex of upper cone

- Gives white and black similar geometric representation

L (lightness) is similar to V , but the primaries occur at $\mathrm{L}=0.5$ (for HSV, $\mathrm{V}=1$ for primaries)

CIIE Color Space

Employs 3 artificial primaries: $\mathbf{X}, \mathbf{Y}, \mathbb{Z}$

- Mathematical abstractions, not physically realivable
- Allow supersaturation

Larger than visible spectrum
Standard for representing colors and converting between spaces

CIE Space and Device Gamuts

Chromaticity Diagram

from Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, plates II. 1 and II. 2

Gamma Correction

Exponential function converts from deviceindependent RGB space to device-dependent RGB

- Gamma is exponent
- Every monitor is dififerent
- Monitor color intensities are non-linear with respect to phosphor excitation levels

Gamma Correction Test Image

Visually test linearity of intensities

A verage intensity of inner square should match intensity of outer square

