

Illumination Models

Johns Hopkins Department of Computer Science

Things to Model

Light sources

- What color, intensity, lines through space Reflection of light off surfaces
 - · How much light reflected in each direction
 - -How are color and intensity changed

Johns Hopkins Department of Computer Science

Real Lights

Real lights are complicated

- · Sun light, iridescent bulbs, fluorescent bulbs
- Different spectra in different directions
 - probably time-varying as well, but we don't perceive much of that

Johns Hopkins Department of Computer Science Course 600.456: Rendering Techniques, Professor: Jonathan Coh

Simpler Light Models

- Point lights
- Directional lights
- Spot (Warn) lights
- Area lights (not really so simple)

Johns Hopkins Department of Computer Science e 600.456: Rendering Techniques, Professor: Jonathan Cohe

Real Reflection

Again, pretty complicated

- May be described by bidirection reflectance distribution function (BRDF)
- BRDF is 5D function
 - -2D for incoming light direction
 - -2D for outgoing light direction
 - —1D for wavelength of light

Johns Hopkins Department of Computer Science Jourse 600.456: Rendering Techniques, Professor: Jonathan Coher

Simpler Reflection Models

Phong illumination

Cook and Torrance illumination

Johns Hopkins Department of Computer Science Course 600.456; Rendering Techniques, Professor; Jonathan Coher

Phong Illumination

Empirically divides reflection into 3 components

- Ambient
- Diffuse (Lambertian)
- Specular

Johns Hopkins Department of Computer Science

Ambient Light

Independent of location of viewer, location of light, and curvature of surface

$$I = I_a k_a$$

- Ia is intensity of ambient light
- · ka is ambient coefficient of surface

Note: this is a total hack, of course

Johns Hopkins Department of Computer Science

Diffuse Reflection

Component of reflection due to even scattering of light by uniform, rough surfaces

Depends on direction of light and surface normal

$$I_d = I_p(L.N)$$

• In is intensity of point light

Johns Hopkins Department of Computer Science Course 600.456: Rendering Techniques, Professor: Jonathan Col

Important Note

When we write:

(N.L)

we often really mean:

- The latter computes 1-sided lighting
- For 2-sided lighting, use:

abs(N.L)

Johns Hopkins Department of Computer Science ourse 600.456: Rendering Techniques, Professor: Jonathan Coher

Diffuse Reflection Examples

Fig. 16.3 Spheres shaded using a diffuse-reflection model (Eq. 16.4). For all spheres, $I_{\rm s}=1.0$. From left to right, $K_{\rm d}=0.4,0.55,0.7,0.85,1.0$. (By David Kurlander, Columbia

spheres, $l_a = l_p = 1.0$, $k_d = 0.4$. From left to right, $k_a = 0.0$, 0.15, 0.30, 0.45, 0.60. (By

Divide Kurlander, Columbia University.)
From Foley, vanDam, Feiner, and Hughes, Computer Graphics:
Principles and Practice, 2nd edition, page 725

Johns Hopkins Department of Computer Science

Specular Reflection

Component of reflection due to mirror-like reflection off shiny surface

Depends on perfect reflection direction, viewer direction, and surface normal

$$I_s = I_n(R.V)^{I_s}$$

• n is specular exponent, determining falloff rate

Johns Hopkins Department of Computer Science ourse 600.456; Rendering Techniques, Professor; Jonathan Cohen

Phong Illumination Example

Fig. 16.10 Spheres shaded using Phong's illumination model (Eq. 16.14) and different values of k_i and ρ . For all spheres, $l_s = l_o = 1.0$, $k_s = 0.1$, $k_s = 0.45$. From left to right, $\rho = 3.0$, 5.0, 10.0, 2.7.0, 200.0, From top to bottom, $k_s = 0.1$, 0.25, 0.5. (By David Strippers Lipscont)

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 730

Johns Hopkins Department of Computer Science

Illumination with Color

Surface reflection coefficients and light intensity may vary by wavelength

For RGB color

- · Light intensity specified for R, G, and B
- · Surface reflection coefficients also for R, G, B
- · Compute reflected color for R, G, and B

Johns Hopkins Department of Computer Science

Cook and Torrance Illumination

Replace specular component with more physically accurate model

$\rho_s = F_{\lambda} DG/\pi [(N.V)(N.L)]$

- F_{λ} is Fresnel term, which accounts for change of highlight color with respect to angle of incidence
- D is microfacet distribution term, for more accurate measurement specular reflection off tiny microfacets
- G is geometry term, which models selfshadowing effects

Johns Hopkins Department of Computer Science Course 600.456: Rendering Techniques, Professor: Jonathan Cohe

Phong vs. Cook/Torrance Example

(a) Phong model (b) Torrance-Sparrow

From Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, 2nd edition, page 768

Fig. 16.44 Comparison of Phong and Torrance–Sparrow illumination models for light at a 70° angle of incidence. (By J. Blinn [BLIN77a], courtesy of the University of Utah.)

Johns Hopkins Department of Computer Science se 600.456; Rendering Techniques, Professor: Jonathan Cohen