

Global Illumination

Johns Hopkins Department of Computer Science

Local vs. Global Illumination

Local

- Direct illumination of surfaces by light sources
- e.g. Phong and Cook/Torrence illumination

Global

- all light/surface interactions for entire environment
- Recursive ray tracing and radiosity compute this partially...

Johns Hopkins Department of Computer Science

Rendering Equation

$$I(x,x') = g(x,x') \left[\varepsilon(x,x') + \int_{S} \rho(x,x',x'') I(x',x'') dx'' \right]$$

I: illumination at first point from second
g: geometry term for visibility and distance
ε: emitted light from second point to first
ρ: reflectivity of light from x" to x via x
Note that the equation is recursive

Johns Hopkins Department of Computer Science ourse 600.456: Rendering Techniques, Professor: Jonathan Col

Ray Tracing

Modifies reflectivity term

- Computes specular interreflections among surfaces
- Computes diffuse and specular reflections between light sources and surfaces

Typically integrates using point sampling of direction space

Johns Hopkins Department of Computer Science se 600.456: Rendering Techniques, Professor: Jonathan Coher

Radiosity

Also modifies reflectivity term

• Computes diffuse interreflections among surfaces (light sources not distinguished)

Integrates by quantizing surface points and summing

Johns Hopkins Department of Computer Science

Light Transport in Ray Tracing and Radiosity

Ray Tracing

 Handles specular-to-specular and diffuse-tospecular

Radiosity

· Handles diffuse-to-diffuse

Johns Hopkins Department of Computer Science

Things easily missed: mirrors

Specular-to-diffuse

 Ray tracing unlikely to discover illumination reflected off mirror onto table

From Watt and Watt, Advanced Animation and Rendering Techniques

Johns Hopkins Department of Computer Science Course 600.456; Rendering Techniques, Professor: Jonathan Cohe

Backward ray tracing

Trace lots of rays from light sources to see where they go

- Store illumination maps with diffuse surfaces
- Easier to "follow the light" than to "find the light"
- Gets expensive! (in the general case)

Can be made efficient for special cases

Johns Hopkins Department of Computer Science

Path Tracing

Similar to distribution ray tracing

Applies Monte Carlo sampling to estimate integral

Traces a single path for each eye ray (only a single ray spawned at each surface intersection)

Johns Hopkins Department of Computer Science Course 600.456: Rendering Techniques, Professor: Jonathan Coher

Two-Pass Radiosity/Ray Tracing

First pass: radiosity

• Compute extended form factors and diffuse illumination

Second pass: ray tracing

- Perform standard ray tracing
- Diffuse component of illumination radiosity solution rather than just local illumination

Note: still doesn't handle light reflected specularly and later diffusely

Johns Hopkins Department of Computer Science
Course 600.456: Rendering Techniques, Professor: Jonathan

Two-Pass Examples

From Foley, van Dam, et al., *Computer Graphics:* Principles and Practice

Johns Hopkins Department of Computer Science 600.456: Rendering Techniques, Professor: Jonathan Co