R S T e — ﬁ
I’B-’ﬂ " ’.. 1'—" 1!"‘"‘. "
«faT &

HVIDIA.

Graphics Performance Optimisation

John Spitzer
Director of European Developer Technology

- —"_- T

Overview

< Understand the stages of the graphics pipeline
< Cherchez la bottleneck

. Once found, either eliminate or balance

Simplified Graphics Pipeline

Geometry Geometry . Fragment Frame
Rasterizer
Storage Processor Processor buffer

Vertices

Texture
Storage +
Filtering

Pixels

Possible Pipeline Bottlenecks

CPU transfer transform raster texture fragment frame
. . buffer

Geometry Geometry Rasterizer Fragment Frame

Storage Processor Processor buffer

Texture
Storage +
Filtering

CPU/Bus

Bound Vertex Bound

Battle Plan for Better Performance

< Locate the bottleneck(s) Lm

< Eliminate the bottleneck (if possible)
< Decrease workload of '_m
the bottlenecked stage B B B Em /

< Otherwise, make it look better

<~ Balance pipeline by increasing
workload of the non-bottlenecked

stages P
#VIDIG.

£

Bottleneck ldentification

FB
limited

Vary FB

Vary texture Texture
sizelfiltering limited

Fragment

limited
Vary Yes Vary
: fragment
resolution . .
instructions

Raster
limited

Vary
vertex
instructions

Transform
limited

T T S e e S

ver:/ea;gize/ Transfer
limited =
AGP rate @ﬂ

BVIDIA.

CPU Bottlenecks

transfer transform raster texture fragment frame
buffer

| |
| |
L] L]
Geometry Geometry . Fragment Frame
Rasterizer
Storage Processor Processor buffer

Texture
Storage +
Filtering

Vertex Bound

CPU Bottlenecks

< Application limited (most games are in some way)

< Driver or API limited
-~ too many state changes (bad batching)
<~ using non-accelerated paths

< Use VTune (Intel performance analyzer)

< caveat: truly GPU-limited games hard to
distinguish from pathological use of API

<

BVIDIA.

Consolidate Small Batches

- Each vertex buffer/array preferably has thousands of
vertices or more

<~ Draw as many triangles per call as possible

« ~50K DIPs/s COMPLETELY saturate 1.5GHz Pentium 4
< 50fps means 1,000 DIPs/frame!
< Up to you whether drawing 1K tri/frame or 1M tri/frame

BVIDIA.

Batch Consolidation Strategies

< Use degenerate triangles to join strips together
-~ Hardware culls zero-area triangles very quickly

< Use texture pages

<~ Use a vertex shader to batch instanced geometry
< VS2.0 and VP30 have 256 constant 4D vectors <€+

BVIDIA.

Geometry Transfer Bottlenecks

CPU transfer transform raster texture fragment frame
buffer

‘ | |
| |
L] L]
Geometry Geometry : Fragment Frame
Rasterizer
Storage Processor Processor buffer

Texture
Storage +
Filtering

CPU/Bus
Bound

Vertex Bound

Geometry Transfer Bottlenecks

< Vertex data problems
< size issues (just under or over 32 bytes)

< non-native types (e.g. double, packed byte
normals)

< Using the wrong API calls
< Immediate mode, non-accelerated vertex arrays

< Non-indexed primitives (e.g. glDrawArrays,
DrawPrimitive)

- AGP misconfigured or aperture set too small

<

BVIDIA.

Optimising Geometry Transfer: OpenGL

- Static geometry — display lists okay, but
ARB_ vertex_ buffer_object is better

< Dynamic geometry - use ARB_vertex_buffer_object

< vertex size ideally multiples of 32 bytes (compress or
pad)

~ access vertices in sequential (cache friendly) pattern

<~ always use indexed primitives (i.e. glDrawElements)
< 16 bit indices can be faster than 32 bit

<

BVIDIA.

Optimising Geometry Transfer: Direct3D

< Static geometry:
- Create a write-only vertex buffer and only write to it once

< Dynamic geometry:

- Create a dynamic vertex buffer

- Lock with DISCARD at start of frame
< Then append with NOOVERWRITE until full

< Use NOOVERWRITE more often than DISCARD
- Each DISCARD takes either more time or more memory
< S0 NOOVERWRITE should be most common

< Never use no flags

@{,

BVIDIA.

Geometry Transform Bottlenecks

CPU transfer transform raster texture fragment frame
buffer

‘ | |
| |
L] L]
Geometry Geometry . Fragment Frame
Rasterizer
Storage Processor Processor buffer

Texture
Storage +
Filtering

CPU/Bus
Bound

Vertex Bound

Geometry Transform Bottlenecks

< Too many vertices
< Too much computation per vertex

<« Vertex cache inefficiency

<

BVIDIA.

Too Many Vertices

< Favor triangle strips/fans over lists (fewer vertices)

- Use levels of detall (but beware of CPU overhead)

< Use bump maps to fake geometric detail

BVIDIA.

Too Much Vertex Computation:
Fixed Function

< Avoid superflous work
< >3 lights (saturation occurs quickly)
< local lights/viewer, unless really necessary
< unused texgen or non-identity texture matrices

-~ Consider commuting to vertex program if (and
only if) good shortcut exists

< example: texture matrix only needs to be 2x2

< not recommended for optimizing fixed
function lighting

BVIDIA.

Too Much Vertex Computation:
Vertex Programs

-~ Move per-object calculations to CPU, save results as
constants

< Leverage full spectrum of instruction set (LIT, DST,
SIN,...)

- Leverage swizzle and mask operators to minimize MOVs

- Consider using shader levels of detail

BVIDIA.

Vertex Cache Inefficiency
< Always use indexed primitives on high-poly models

- Re-order vertices to be sequential in use (e.qg.
NVTriStrip)

< Favor triangle fans/strips over lists

<=)

BVIDIA.

Rasterization Bottlenecks

CPU transfer transform raster texture fragment frame

| : . buffer
Geometry Geometry Rasterizer Fragment Frame
Storage Processor Processor buffer

Texture
Storage +
Filtering

CPU/Bus

Bound Vertex Bound

Rasterization

< Rarely the bottleneck (exception: stencil shadow
volumes)

<~ Speed influenced primarily by size of triangles
< Also, by number of vertex attributes to be interpolated
< Be sure to maximize depth culling efficiency

BVIDIA.

Maximize Depth Culling Efficiency

Always clear depth at the beginning of each frame
- clear with stencil, if stencil buffer exists
- feel free to combine with color clear, if applicable
. Coarsely sort objects front to back
. Don’t switch the direction of the depth test mid-frame
~ Constrain near and far planes to geometry visible in frame

« Use scissor to minimize superfluous fragment generation for
stencil shadow volumes

< Avoid polygon offset unless you really need it
< NVIDIA advice
< use depth bounds test for stencil shadow volumes

f

BVIDIA.

Texture Bottlenecks

CPU transfer transform raster texture fragment frame

| : . buffer
Geometry Geometry Rasterizer Fragment Frame
Storage Processor Processor buffer

Texture
Storage +
Filtering

CPU/Bus

Bound Vertex Bound

Texture Bottlenecks

< Running out of texture memory

. Poor texture cache utilization

< Excessive texture filtering

<

BVIDIA.

Conserving Texture Memory

. Texture resolutions should be only as big as needed

. Avoid expensive internal formats
- New GPUs allow floating point 4xfp16 and 4xfp32 formats

<~ Compress textures:
- Collapse monochrome channels into alpha

- Use 16-bit color depth when possible (environment maps
and shadow maps)

< Use DXT compression

BVIDIA.

Poor Texture Cache Utilization

< Localize texture accesses
< beware of dependent texturing
< beware of non-power of 2 textures
< ALWAYS use mipmapping
< use trilinear/aniso only when necessary (more later!)

<~ Avoid negative LOD bias to sharpen
< texture caches are tuned for standard LODs
< sharpening usually causes aliasing in the distance
< opt for anisotropic filtering over sharpening <

BVIDIA.

Excessive Texture Filtering

< Use trilinear filtering only when needed
< trilinear filtering can cut fillrate in half
< typically, only diffuse maps truly benefit
< light maps are too low resolution to benefit
< environment maps are distorted anyway

< Similarly use anisotropic filtering judiciously
<~ even more expensive than trilinear

< not useful for environment maps (again,
distortion) <

BVIDIA.

Fragment Bottlenecks

CPU transfer transform raster texture fragment frame

| : . buffer
Geometry Geometry Rasterizer Fragment Frame
Storage Processor Processor buffer

Texture
Storage +
Filtering

CPU/Bus

Bound Vertex Bound

Fragment Bottlenecks

<~ Too many fragments
<~ Too much computation per fragment

< Unnecessary fragment operations

<=)

BVIDIA.

Too Many Fragments

- Follow prior advice for maximizing depth culling
efficiency

- Consider using a depth-only first pass

<~ shade only the visible fragments in subsequent
pass(es)

< Improve fragment throughput at the expense of
additional vertex burden (only use for frames
employing complex shaders)

<

BVIDIA.

Too Much Fragment Computation

- Use a mix of texture and math instructions (they often
run in parallel)

-~ Move constant per-triangle calculations to vertex
program, send data as texture coordinates

< Do similar with values that can be linear interpolated
(e.g. fresnel)

- Consider using shader levels of detall

- Use lowest pixel shader version you can BVIDIA.

GeForceFX-specific Optimisations

- Use even numbers of texture instructions

- Use ps_2 aprofilein HLSL

< Use even numbers of blending (math) instructions

< Use normalization cubemaps to efficiently normalize
vectors

- Leverage full spectrum of instruction set (LIT, DST,
SIN,...)

- Leverage swizzle and mask operators to minimize MOVs
< Minimize temporary storage

< Use 16-bit registers where applicable (most cases)

<~ Use all components in each (swizzling is free)

<

BVIDIA.

Framebuffer Bottlenecks

CPU transfer transform raster texture fragment frame

| . . buffer
Geometry Geometry Rasterizer Fragment Frame
Storage Processor Processor buffer

Texture
Storage +
Filtering

CPU/Bus

Bound Vertex Bound

Minimizing Framebuffer Traffic

Collapse multiple passes with longer shaders (not always a win)
Turn off Z writes for transparent objects and multipass
Question the use of floating point frame buffers

Use 16-bit Z depth if you can get away with it

Reduce number and size of render-to-texture targets

- Cube maps and shadow maps can be of small resolution
and at 16-bit color depth and still look good

< Try turning cube-maps into hemisphere maps for
reflections instead

Can be smaller than an equivalent cube map
Fewer render target switches

< Reuse render target textures to reduce memory footprint
- Do not mask off only some color channels unless really nece@y

BVIDIA.

f

f

f

f

f

Finally... Use Occlusion Query

< Use occlusion query to minimize useless rendering
< It's cheap and easy!

<~ Examples:
< multi-pass rendering
< rough visibility determination (lens flare, portals)

. Caveats:
< need time for query to process
< can add fillrate overhead

<

BVIDIA.

Tools: NVPerfHUD

< Drivers now support NVPerfHUD

< Overlay that shows vital various statistics as the
application runs

~ Top graph shows :

< Number of API calls — Draw*Prim*, render states,
texture states, shader states

< Memory allocated — AGP and video
- Bottom graph shows :
< GPU Ildle — Graphics HW not processing anything

< Driver Time — Driver doing work (state and resource
management, shader compilation)

< Driver Idle — Driver waiting for GPU to finish @}:’;
2 Frame Time — Milliseconds per frame time BVIDIA.

‘3 PointSprites: Using particle effects

Memory allocated:

I
AAAMAAAR A MAMAMAASAN SRS A

*Frame time *GPU idle

Conclusion

- Complex, programmable GPUs have many potential
bottlenecks

- Rarely is there but one bottleneck in a game

<~ Understand what you are bound by in various
sections of the scene

- The skybox is probably texture limited

< The skinned, dot3 characters are probably transfer or
transform limited

- Exploit imbalances to get things for free BVIDIA.

Questions, comments, feedback?

< John Spitzer, spit@nvidia.com

@

BVIDIA.

