
Graphics Performance OptimisationGraphics Performance Optimisation
John Spitzer

Director of European Developer Technology

Overview

Understand the stages of the graphics pipeline

Cherchez la bottleneck

Once found, either eliminate or balance

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

Vertices Pixels

Simplified Graphics Pipeline

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound

Possible Pipeline Bottlenecks

CPU/Bus
Bound

Battle Plan for Better Performance

Locate the bottleneck(s)

Eliminate the bottleneck (if possible)
Decrease workload of
the bottlenecked stage

Otherwise, make it look better
Balance pipeline by increasing
workload of the non-bottlenecked
stages

Bottleneck Identification

Run App Vary FB FPS
varies?

FB
limited

Vary texture
size/filtering

FPS
varies?

Vary
resolution

FPS
varies?

Texture
limited

Vary
fragment

instructions

FPS
varies?

Vary
vertex

instructions

FPS
varies?

Transform
limited

Vary
vertex size/
AGP rate

FPS
varies?

Transfer
limited

Fragment
limited

Raster
limited

CPU
limited

Yes

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound

CPU Bottlenecks

CPU/Bus
Bound

CPU Bottlenecks

Application limited (most games are in some way)

Driver or API limited
too many state changes (bad batching)
using non-accelerated paths

Use VTune (Intel performance analyzer)
caveat: truly GPU-limited games hard to
distinguish from pathological use of API

Consolidate Small Batches

Each vertex buffer/array preferably has thousands of
vertices or more

Draw as many triangles per call as possible

~50K DIPs/s COMPLETELY saturate 1.5GHz Pentium 4
50fps means 1,000 DIPs/frame!
Up to you whether drawing 1K tri/frame or 1M tri/frame

Batch Consolidation Strategies

Use degenerate triangles to join strips together
Hardware culls zero-area triangles very quickly

Use texture pages

Use a vertex shader to batch instanced geometry
VS2.0 and VP30 have 256 constant 4D vectors

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound

Geometry Transfer Bottlenecks

CPU/Bus
Bound

Vertex data problems
size issues (just under or over 32 bytes)
non-native types (e.g. double, packed byte
normals)

Using the wrong API calls
Immediate mode, non-accelerated vertex arrays
Non-indexed primitives (e.g. glDrawArrays,
DrawPrimitive)

AGP misconfigured or aperture set too small

Geometry Transfer Bottlenecks

Optimising Geometry Transfer: OpenGL

Static geometry – display lists okay, but
ARB_vertex_buffer_object is better

Dynamic geometry - use ARB_vertex_buffer_object
vertex size ideally multiples of 32 bytes (compress or
pad)
access vertices in sequential (cache friendly) pattern
always use indexed primitives (i.e. glDrawElements)
16 bit indices can be faster than 32 bit

Optimising Geometry Transfer: Direct3D

Static geometry:
Create a write-only vertex buffer and only write to it once

Dynamic geometry:
Create a dynamic vertex buffer
Lock with DISCARD at start of frame

Then append with NOOVERWRITE until full
Use NOOVERWRITE more often than DISCARD

Each DISCARD takes either more time or more memory
So NOOVERWRITE should be most common

Never use no flags

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound

Geometry Transform Bottlenecks

CPU/Bus
Bound

Geometry Transform Bottlenecks

Too many vertices

Too much computation per vertex

Vertex cache inefficiency

Too Many Vertices

Favor triangle strips/fans over lists (fewer vertices)

Use levels of detail (but beware of CPU overhead)

Use bump maps to fake geometric detail

Too Much Vertex Computation:
Fixed Function

Avoid superflous work
>3 lights (saturation occurs quickly)
local lights/viewer, unless really necessary
unused texgen or non-identity texture matrices

Consider commuting to vertex program if (and
only if) good shortcut exists

example: texture matrix only needs to be 2x2
not recommended for optimizing fixed
function lighting

Too Much Vertex Computation:
Vertex Programs

Move per-object calculations to CPU, save results as
constants

Leverage full spectrum of instruction set (LIT, DST,
SIN,...)

Leverage swizzle and mask operators to minimize MOVs

Consider using shader levels of detail

Vertex Cache Inefficiency

Always use indexed primitives on high-poly models

Re-order vertices to be sequential in use (e.g.
NVTriStrip)

Favor triangle fans/strips over lists

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound

Rasterization Bottlenecks

CPU/Bus
Bound

Rasterization

Rarely the bottleneck (exception: stencil shadow
volumes)

Speed influenced primarily by size of triangles

Also, by number of vertex attributes to be interpolated

Be sure to maximize depth culling efficiency

Maximize Depth Culling Efficiency

Always clear depth at the beginning of each frame
clear with stencil, if stencil buffer exists
feel free to combine with color clear, if applicable

Coarsely sort objects front to back
Don’t switch the direction of the depth test mid-frame
Constrain near and far planes to geometry visible in frame
Use scissor to minimize superfluous fragment generation for
stencil shadow volumes
Avoid polygon offset unless you really need it
NVIDIA advice

use depth bounds test for stencil shadow volumes

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound

Texture Bottlenecks

CPU/Bus
Bound

Texture Bottlenecks

Running out of texture memory

Poor texture cache utilization

Excessive texture filtering

Conserving Texture Memory

Texture resolutions should be only as big as needed

Avoid expensive internal formats
New GPUs allow floating point 4xfp16 and 4xfp32 formats

Compress textures:
Collapse monochrome channels into alpha
Use 16-bit color depth when possible (environment maps
and shadow maps)
Use DXT compression

Poor Texture Cache Utilization

Localize texture accesses
beware of dependent texturing
beware of non-power of 2 textures
ALWAYS use mipmapping
use trilinear/aniso only when necessary (more later!)

Avoid negative LOD bias to sharpen
texture caches are tuned for standard LODs
sharpening usually causes aliasing in the distance
opt for anisotropic filtering over sharpening

Excessive Texture Filtering

Use trilinear filtering only when needed
trilinear filtering can cut fillrate in half
typically, only diffuse maps truly benefit
light maps are too low resolution to benefit
environment maps are distorted anyway

Similarly use anisotropic filtering judiciously
even more expensive than trilinear
not useful for environment maps (again,
distortion)

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound

Fragment Bottlenecks

CPU/Bus
Bound

Fragment Bottlenecks

Too many fragments

Too much computation per fragment

Unnecessary fragment operations

Follow prior advice for maximizing depth culling
efficiency

Consider using a depth-only first pass
shade only the visible fragments in subsequent
pass(es)
improve fragment throughput at the expense of
additional vertex burden (only use for frames
employing complex shaders)

Too Many Fragments

Use a mix of texture and math instructions (they often
run in parallel)

Move constant per-triangle calculations to vertex
program, send data as texture coordinates

Do similar with values that can be linear interpolated
(e.g. fresnel)

Consider using shader levels of detail

Use lowest pixel shader version you can

Too Much Fragment Computation

GeForceFX-specific Optimisations

Use even numbers of texture instructions
Use even numbers of blending (math) instructions
Use normalization cubemaps to efficiently normalize
vectors
Leverage full spectrum of instruction set (LIT, DST,
SIN,...)
Leverage swizzle and mask operators to minimize MOVs
Minimize temporary storage

Use 16-bit registers where applicable (most cases)
Use all components in each (swizzling is free)

Use ps_2_a profile in HLSL

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound

Framebuffer Bottlenecks

CPU/Bus
Bound

Collapse multiple passes with longer shaders (not always a win)
Turn off Z writes for transparent objects and multipass
Question the use of floating point frame buffers
Use 16-bit Z depth if you can get away with it
Reduce number and size of render-to-texture targets

Cube maps and shadow maps can be of small resolution
and at 16-bit color depth and still look good
Try turning cube-maps into hemisphere maps for
reflections instead

Can be smaller than an equivalent cube map
Fewer render target switches

Reuse render target textures to reduce memory footprint
Do not mask off only some color channels unless really necessary

Minimizing Framebuffer Traffic

Finally... Use Occlusion Query
Use occlusion query to minimize useless rendering

It’s cheap and easy!

Examples:
multi-pass rendering
rough visibility determination (lens flare, portals)

Caveats:
need time for query to process
can add fillrate overhead

Tools: NVPerfHUD
Drivers now support NVPerfHUD
Overlay that shows vital various statistics as the
application runs
Top graph shows :

Number of API calls – Draw*Prim*, render states,
texture states, shader states
Memory allocated – AGP and video

Bottom graph shows :
GPU Idle – Graphics HW not processing anything
Driver Time – Driver doing work (state and resource
management, shader compilation)
Driver Idle – Driver waiting for GPU to finish
Frame Time – Milliseconds per frame time

NVPerfHUD - Screenshot

Conclusion

Complex, programmable GPUs have many potential
bottlenecks

Rarely is there but one bottleneck in a game

Understand what you are bound by in various
sections of the scene

The skybox is probably texture limited
The skinned, dot3 characters are probably transfer or
transform limited

Exploit imbalances to get things for free

Questions, comments, feedback?

John Spitzer, spit@nvidia.com

