
1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Vectors, Lists, and SequencesVectors, Lists, and Sequences

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sequence TypesSequence Types

Sequence: collection of elements organized in a Sequence: collection of elements organized in a 
specified orderspecified order
•• allows random access by rank or positionallows random access by rank or position

Stack: sequence that can be accessed in LIFO Stack: sequence that can be accessed in LIFO 
fashionfashion

Queue: sequence that can be accessed in FIFO Queue: sequence that can be accessed in FIFO 
fashionfashion

DequeDeque: sequence accessed by added to or removing : sequence accessed by added to or removing 
from either endfrom either end

Vector: sequence with random access by rankVector: sequence with random access by rank
List: sequence with random access by positionList: sequence with random access by position

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Places in a SequencePlaces in a Sequence

RankRank

•• Place specified by number of places before the Place specified by number of places before the 
place in questionplace in question

•• Abstraction of the concept of array indexAbstraction of the concept of array index

PositionPosition

•• Place specified by which place precedes and Place specified by which place precedes and 
which place follows the place in questionwhich place follows the place in question

•• Abstraction of the concept of (doubly) linked Abstraction of the concept of (doubly) linked 
list nodelist node

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Vector ADTVector ADT

elemAtRank(elemAtRank(rr) : return element at specified rank) : return element at specified rank

replaceAtRank(replaceAtRank(rr,,ee) : replace element at specified ) : replace element at specified 
rank with new elementrank with new element

•• provided for efficiencyprovided for efficiency

insertAtRank(insertAtRank(rr,,ee) : insert new element at specified ) : insert new element at specified 
rankrank

•• existing places at that rank or higher are incrementedexisting places at that rank or higher are incremented

removeAtRank(removeAtRank(rr) : remove element at specified ) : remove element at specified 
rankrank

•• places following that rank are decrementedplaces following that rank are decremented

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

ArrayArray--based Vector Implementationbased Vector Implementation

insertAtRank(rinsertAtRank(r, e) {, e) {
if (size == A.length)if (size == A.length)

throw new throw new VectorFullVectorFull();();
for (for (intint i=sizei=size--1; i>=r; i1; i>=r; i----))A[i+1]= A[i];A[i+1]= A[i];
A[r]= e;A[r]= e;
size++;size++;

}}removeAtRank(rremoveAtRank(r) {) {
Object e = A[r];Object e = A[r];
for (for (intint i=r; i<sizei=r; i<size--1; i++)1; i++)

A[i] = A[i+1];A[i] = A[i+1];
sizesize----;;}}

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

AnalysisAnalysis

elemAtRankelemAtRank: : OO(1)(1)

replaceAtRankreplaceAtRank: : OO(1)(1)

insertAtRankinsertAtRank:: OO((nn))

removeAtRankremoveAtRank:: OO((nn))

Note: insert and remove are Note: insert and remove are OO(1) at end(1) at end

•• may make may make OO(1) at start with index wrapping, (1) at start with index wrapping, 
as in queueas in queue



2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Extendable (dynamic) Array Extendable (dynamic) Array 
ImplementationImplementation

Grow array as necessaryGrow array as necessary

•• Allocate new, larger arrayAllocate new, larger array

•• Copy old elements to new arrayCopy old elements to new array

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Stack push() with Dynamic ArrayStack push() with Dynamic Array

public void push(Object public void push(Object objobj) {) {
if (size() == S.length) {if (size() == S.length) {

Object[] A = new Object[S.length+1];Object[] A = new Object[S.length+1];
for (for (intint i=0; i<S.length; i++)i=0; i<S.length; i++)

A[i] = S[i];A[i] = S[i];
S = A;S = A;

}}
S[++topIndexS[++topIndex] = ] = objobj;;

}}

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Efficient Stack push() with Efficient Stack push() with 
Dynamic ArrayDynamic Array

public void push(Object public void push(Object objobj) {) {
if (size() == S.length) {if (size() == S.length) {

Object[] A = new Object[S.lengthObject[] A = new Object[S.length*2*2];];
for (for (intint i=0; i<S.length; i++)i=0; i<S.length; i++)

A[i] = S[i];A[i] = S[i];
S = A;S = A;

}}
S[++topIndexS[++topIndex] = ] = objobj;;

}}
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

AmortizationAmortization

Useful analysis toolUseful analysis tool

When some calls are more expensive than When some calls are more expensive than 
others, average out the costs over the total others, average out the costs over the total 
number of callsnumber of calls

•• After every n calls to push, 1 call takes After every n calls to push, 1 call takes OO((nn) ) 
instead of instead of OO(1)(1)

•• Averaged out over n calls, each call is still Averaged out over n calls, each call is still OO(1)(1)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Formal Amortization AnalysisFormal Amortization Analysis
Assume each push( ) costs $1 in compute timeAssume each push( ) costs $1 in compute time
Overcharge these push( ) operationsOvercharge these push( ) operations

•• charge $3 eachcharge $3 each
•• store $2 in the bank for each operationstore $2 in the bank for each operation

Now when the extend happens, use money Now when the extend happens, use money 
from the bank to pay for the copy from the bank to pay for the copy 
operationsoperations

We pay for all We pay for all nn operations using a constant operations using a constant 
cost for each operationcost for each operation
•• implies implies OO((nn) total cost, or average of ) total cost, or average of OO(1) per (1) per 

operationoperation
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis with SummationsAnalysis with Summations

Work done in “extend” for Work done in “extend” for nn pushes:pushes:

1+2+4+8+…+1+2+4+8+…+nn

==

= 2= 2loglogn+1n+1 –– 1 = 2 * 21 = 2 * 2loglognn –– 1 1 

= 2= 2nn –– 1 = 1 = OO((nn) for ) for nn pushespushes

∑
=

n

i

i
log

0

2

(this is a base 2 
number with logn + 1 
bits, all set to 1)



3

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Vector Insert with Dynamic ArrayVector Insert with Dynamic Array

public void public void insertAtRank(intinsertAtRank(int r, Object e){r, Object e){
if (size == a.length) {if (size == a.length) {

Object b[] = new Object[a.length*2];Object b[] = new Object[a.length*2];
for (for (intint i=0; i<size; i++)i=0; i<size; i++)

b[i] = a[i];b[i] = a[i];
a = b;a = b;

}}
for (for (intint i=sizei=size--1; i>=r; i1; i>=r; i----))

a[i+1] = a[i];a[i+1] = a[i];
a[r] = e; size++;a[r] = e; size++;

}}
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis of Insert with Analysis of Insert with 
Extendable ArrayExtendable Array

For general insert (at any rank), still For general insert (at any rank), still OO((nn))

For insert at last position, still For insert at last position, still OO(1)(1)

•• Naïve analysis might yield Naïve analysis might yield OO((nn))

•• Amortized analysis reveals Amortized analysis reveals OO(1)(1)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

List ADTList ADT

size( ), size( ), isEmptyisEmpty( ), ( ), isFirst(isFirst(pp), ), isLast(isLast(pp))
first/last( ): Return first/last positionfirst/last( ): Return first/last position
before/after(before/after(pp) : Return preceding/following position) : Return preceding/following position
replaceElement(replaceElement(pp,,ee) : Set the element for a position) : Set the element for a position
swapElements(swapElements(pp,,qq) : Exchange elements for two ) : Exchange elements for two 

positionspositions
insertBefore/After(insertBefore/After(p,ep,e) : Create new position ) : Create new position 

before/after before/after pp containing element containing element ee
remove(remove(pp) : Remove the position ) : Remove the position pp and the element it and the element it 

containscontains
insertFirstinsertFirst, , insertLast(insertLast(ee) : Create new position at ) : Create new position at 

start/end of list and set its elementstart/end of list and set its element
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

What’s a position, again?What’s a position, again?

interface Position {interface Position {
public Object element();public Object element();

}}

May be implemented as singlyMay be implemented as singly-- or doublyor doubly--linked list linked list 
node, array element, etc.node, array element, etc.

List containing the position must have some way of List containing the position must have some way of 
locating the position before and after a given locating the position before and after a given 
positionposition

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Doubly Linked List Doubly Linked List 
ImplementationImplementation

public class public class MyListMyList implements List {implements List {
protected protected intint numEltsnumElts=0;=0;
protected protected DLNodeDLNode header=new Node(null,null,null);header=new Node(null,null,null);
protected protected DLNodeDLNode trailer = new Node(header, null, trailer = new Node(header, null, 

null);null);
public Position public Position insertBefore(PositioninsertBefore(Position p, Object e) p, Object e) 
{{

numEltsnumElts++;++;
DLNodeDLNode ndnd = (= (DLNode)pDLNode)p;;
DLNodeDLNode newNodenewNode=new =new DLNode(nd.getPrevDLNode(nd.getPrev(), (), ndnd, e);, e);
nd.getPrev().setNext(newNodend.getPrev().setNext(newNode););
nd.setPrev(newNodend.setPrev(newNode););
return return newNodenewNode;;

}}
}}

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

AnalysisAnalysis

All methods of List using doubly linked list All methods of List using doubly linked list 
are are OO(1)(1)



4

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sequence ADTSequence ADT

Supports ADT of vector and listSupports ADT of vector and list

Plus:Plus:

•• atRank(atRank(rr) : Converts a rank to a position) : Converts a rank to a position

•• rankOf(rankOf(pp) : Converts a position to a rank) : Converts a position to a rank

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sequence InterfaceSequence Interface

interface Sequence extends List, Vector {interface Sequence extends List, Vector {

public Position public Position atRank(intatRank(int rank);rank);

public public intint rankOf(PositionrankOf(Position position);position);

}}

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implementing with DL ListImplementing with DL List

All methods from List interface are All methods from List interface are OO(1)(1)

atRankatRank( ) and ( ) and rankOfrankOf( )?( )?

•• Both Both OO((nn))

Perform Vector methods by first finding  Perform Vector methods by first finding  
Position at proper rank, then doing insert, Position at proper rank, then doing insert, 
delete, etc.delete, etc.

•• Finding position is Finding position is OO((nn), though the actual ), though the actual 
insert/delete is only insert/delete is only OO(1)(1)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implementing with Array Implementing with Array 

atRankatRank( ) ?( ) ?

•• OO(1)(1)

rankOfrankOf( )?( )?

•• At each position, store element plus array At each position, store element plus array 
indexindex

•• OO(1)(1)

Insert/remove Insert/remove atRankatRank/Before/After?/Before/After?

•• all all OO((nn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

ComparisonComparison

OperationOperation ArrayArray ListList
size, size, isEmptyisEmpty OO(1)(1) OO(1)(1)
first, last, before, afterfirst, last, before, after OO(1)(1) OO(1)(1)
insertFirstinsertFirst, , insertLastinsertLast OO(1)(1) OO(1)(1)
replaceElement,swapElementreplaceElement,swapElement OO(1)(1) OO(1)(1)
insertAfterinsertAfter, , insertBeforeinsertBefore OO((nn)) OO(1)(1)
removeremove OO((nn)) OO(1)(1)
atRankatRank, , rankOfrankOf, , elemAtRankelemAtRankOO(1)(1) OO((nn))
replaceAtRankreplaceAtRank OO(1)(1) OO((nn))
insertAtRankinsertAtRank, , remvAtRankremvAtRank OO((nn)) OO((nn))

>>
>>
<<
<<


