Vectors, Lists, and Sequences

Sequence Types

Sequence: collection of elements organized in a
specified order

« allows random access by rank or position

Stack: sequence that can be accessed in LIFO
fashion

Queue: sequence that can be accessed in FIFO
fashion

Deque: sequence accessed by added to or removing
from either end

Vector: sequence with random access by rank
List: sequence with random access by position

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Places in a Sequence

Rank

* Place specified by number of places before the
place in question

* Abstraction of the concept of array index

Position

* Place specified by which place precedes and
which place follows the place in question

» Abstraction of the concept of (doubly) linked
list node

Vector ADT

elemAtRank(r) : return element at specified rank

replaceAtRank(r,e) : replace element at specified
rank with new element

* provided for efficiency

insertAtRank(r,e) : insert new element at specified
rank

« existing places at that rank or higher are incremented

removeAtRank(r) : remove element at specified
rank

« places following that rank are decremented

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Array-based Vector Implementation

insertAtRank (r, e) {
if (size == A.length)
throw new VectorFull() ;
for (int i=size-1; i>=r; i--)
A[i+l]= A[i];
Alr]= e;
size++;

removeAtRank (r) {
Object e = AJ[r];
for (int i=r; i<size-1l; i++)
A[i] = A[i+1];
size--;

}

Analysis
elemAtRank: oQd)
replaceAtRank: oQ)
insertAtRank: O(n)

removeAtRank: O(n)

Note: insert and remove are O(1) at end

* may make O(1) at start with index wrapping,
as in queue

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




Extendable (dynamic) Array
Implementation

Grow array as necessary
* Allocate new, larger array

* Copy old elements to new array

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Stack push() with Dynamic Array

public void push(Object obj) {

if (size() == S.length) {
Object[] A = new Object[S.length+l];
for (int i=0; i<S.length; i++)

A[i] = S[i];

S =A4;

}

S[++topIndex] = obj;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Efficient Stack push() with
Dynamic Array

public void push(Object obj) {

if (size() == S.length) {
Object[] A = new Object[S.length*2];
for (int i=0; i<S.length; i++)

A[i] = S[i];

S =A;

}

S[++topIndex] = obj;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Amortization

Useful analysis tool

When some calls are more expensive than
others, average out the costs over the total
number of calls

* After every n calls to push, 1 call takes O(n)
instead of O(1)

» Averaged out over n calls, each call is still O(1)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Formal Amortization Analysis

" Assume each push() costs $1 in compute time

Overcharge these push( ) operations
« charge $3 each
« store $2 in the bank for each operation

Now when the extend happens, use money
from the bank to pay for the copy
operations

We pay for all n operations using a constant
cost for each operation

« implies O(n) total cost, or average of O(1) per
operation

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis with Summations

Work done in “extend” for n pushes:

(this is a base 2
+2+4+8+...+ ‘
1 1% :;4 8 n number with logn + 1
= 2! bits, all set to 1)
i=0
= zllognﬂ —1=2* Zlogn -1

=2n —1=0(n) for n pushes

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




Vector Insert with Dynamic Array

public void insertAtRank(int r, Object e) {
if (size == a.length) {

Object b[] = new Object[a.length*2];
for (int i=0; i<size; i++)

b[i] = al[i];

a =b;

}

for (int i=size-1; i>=r; i--)

a[i+l] = a[i];
a[r] = e; size++;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis of Insert with
Extendable Array

For general insert (at any rank), still O(n)
For insert at last position, still O(1)
» Naive analysis might yield O(n)

* Amortized analysis reveals O(1)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

List ADT

size( ), isEmpty( ), isFirst(p), isLast(p)

first/last( ): Return first/last position

before/after(p) : Return preceding/following position

replaceElement(p,e) : Set the element for a position

swapElements(p,q) : Exchange elements for two
positions

insertBefore/After(p,e) : Create new position
before/after p containing element e

remove(p) : Remove the position p and the element it
contains

insertFirst, insertLast(e) : Create new position at
start/end of list and set its element

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What'’s a position, again?

interface Position {

public Object element() ;

May be implemented as singly- or doubly-linked list
node, array element, etc.

List containing the position must have some way of
locating the position before and after a given
position

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Doubly Linked List
Implementation

public class MyList implements List {
protected int numElts=0;
protected DLNode header=new Node (null,null,null);
protected DLNode trailer = new Node (header, null,
null) ;
public Position insertBefore(Position p, Object e)
{
numElts++;
DLNode nd = (DLNode)p;
DLNode newNode=new DLNode (nd.getPrev(), nd, e);
nd.getPrev () . setNext (newNode) ;
nd.setPrev (newNode) ;
return newNode;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis

All methods of List using doubly linked list
are O(1)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




Sequence ADT

Supports ADT of vector and list
Plus:
» atRank(r) : Converts a rank to a position

» rankOf(p) : Converts a position to a rank

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sequence Interface

interface Sequence extends List, Vector {
public Position atRank(int rank);

public int rankOf(Position position);

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implementing with DL List

All methods from List interface are O(1)

atRank( ) and rankOf( )?
* Both O(n)

Perform Vector methods by first finding
Position at proper rank, then doing insert,
delete, etc.

« Finding position is O(n), though the actual
insert/delete is only O(1)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implementing with Array

atRank() ?
< 0(1)
rankOf()?

* At each position, store element plus array
index

+0(1)
Insert/remove atRank/Before/After?

« all O(n)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Comparison
Operation Array List
size, isSEmpty oQ1) oQ1)
first, last, before, after oQ) o)
insertFirst, insertLast o®1) o®1)
replaceElement,swapElement O(1) o)
insertAfter, insertBefore Oon) > 0Q)
remove omn)y > 0Q)
atRank, rankOf, elemAtRankO(1) < O(n)
replaceAtRank o1l) < O
insertAtRank, remvAtRank O(n) O(n)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




