
1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sorting, Sets, and SelectionSorting, Sets, and Selection

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Divide and Conquer AlgorithmsDivide and Conquer Algorithms

1. Divide large problem into several similar, 1. Divide large problem into several similar,
but smaller subbut smaller sub--problemsproblems

2. Solve each sub2. Solve each sub--problem (recursively)problem (recursively)

3. Combine results to solve original problem3. Combine results to solve original problem

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

MergeMerge--sortsort

Input: unsorted sequenceInput: unsorted sequence

Output: sorted sequenceOutput: sorted sequence
1. If input size is 1, return1. If input size is 1, return

2. Split sequence of size n into two sequences 2. Split sequence of size n into two sequences
of size n/2 according to positionof size n/2 according to position

3. Recursively call merge sort on sub3. Recursively call merge sort on sub--
sequencessequences

4. Merge two sorted sequences into one 4. Merge two sorted sequences into one
sorted sequencesorted sequence

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Merging Sorted SequencesMerging Sorted Sequences

While neither sequence is emptyWhile neither sequence is empty

Compare first element in each sequenceCompare first element in each sequence

Remove smallest and insert into outputRemove smallest and insert into output

Insert all remaining elements into outputInsert all remaining elements into output

O(n) running timeO(n) running time

n is sum of two sequence lengthsn is sum of two sequence lengths

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analyzing Merge SortAnalyzing Merge Sort

Number of levels in recursion tree is O(Number of levels in recursion tree is O(lognlogn))

Each element appears in one sequence per Each element appears in one sequence per
levellevel

Total work done is linear at each call (i.e. Total work done is linear at each call (i.e.
O(1) work per elementO(1) work per element

Therefore, total work is Therefore, total work is
n*O(n*O(lognlogn) = O() = O(nlognnlogn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Recurrence RelationsRecurrence Relations

Express total running time as a recursive Express total running time as a recursive
functionfunction

Converting to closed form solution gives Converting to closed form solution gives
running timerunning time

•• see “Master Method” in appendix Asee “Master Method” in appendix A

2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Recurrence relation for mergeRecurrence relation for merge--
sortsort

T(n) = T(n) = aa n<=1n<=1
2T(n/2) + 2T(n/2) + cncn n>1n>1

T(n) = 2*(2T(n/4) + c(n/2)) + T(n) = 2*(2T(n/4) + c(n/2)) + cncn
= 4T(n/4) +2cn= 4T(n/4) +2cn
= 2= 2iiT(n/2T(n/2ii) +) + icnicn

Recursion stops when n=2Recursion stops when n=2ii (i=(i=lognlogn))
T(n) = 2T(n) = 2lognlognT(1) + c*T(1) + c*nlognnlogn

= a*n + c*= a*n + c*nlognnlogn
= O(= O(nlognnlogn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

QuickQuick--sortsort

Input: unsorted sequenceInput: unsorted sequence
Output: sorted sequenceOutput: sorted sequence
1. If input size is 1, return1. If input size is 1, return
2. Choose 2. Choose pivotpivot element (perhaps last element)element (perhaps last element)
3. Create sub3. Create sub--sequences L, E, and Gsequences L, E, and G

•• less than, equal to, or greater than pivot elementless than, equal to, or greater than pivot element
3. Recursively call quick3. Recursively call quick--sort on L and Gsort on L and G
4. Merge 3 sorted sequences into one sorted 4. Merge 3 sorted sequences into one sorted

sequencesequence
•• Trivial concatenationTrivial concatenation

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

WorstWorst--case Analysiscase Analysis

Possibly choose “bad” pivot at every callPossibly choose “bad” pivot at every call

•• L or G has size 0 (or very small)L or G has size 0 (or very small)

•• G or L has size nG or L has size n--11

Recursion has depth nRecursion has depth n

•• OO((nn) work at each recursion level) work at each recursion level

Total work is Total work is OO((nn22))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Randomized QuickRandomized Quick--sortsort

Choose a random element as pivot at each stepChoose a random element as pivot at each step
Define “good” pivot as one which has neither Define “good” pivot as one which has neither

partition less than n/4 or greater than 3/4 npartition less than n/4 or greater than 3/4 n
•• 50% chance of picking good partition50% chance of picking good partition
•• Expect recursion height to be 2 times the height Expect recursion height to be 2 times the height

resulting from picking all good partitionsresulting from picking all good partitions
If all pivots are good, find recursion depth, If all pivots are good, find recursion depth, dd

nn*(3/4)*(3/4)d d = 1 = 1 →→ n n = (4/3)= (4/3)dd →→ d d = log= log4/34/3nn
Expect depth is 2 *logExpect depth is 2 *log4/34/3nn
OO((nn) work per level:) work per level: OO((nnloglognn) total expected) total expected

workwork

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Lower Bound on ComparisonLower Bound on Comparison--
based Sortingbased Sorting

HeapHeap--sort, mergesort, merge--sort, quicksort, quick--sort all sort all
OO((nnloglognn))

Is it possible to do better?Is it possible to do better?

Prove a “lower bound” on certain types of Prove a “lower bound” on certain types of
sortingsorting

•• sorts based on comparing two elementssorts based on comparing two elements

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Comparison Sort Decision TreeComparison Sort Decision Tree

Each internal node is comparison operationEach internal node is comparison operation

•• branch one way for true, the other for falsebranch one way for true, the other for false

Each external nodes is a unique permutation of Each external nodes is a unique permutation of
inputinput

•• number of permutations is n! = n(nnumber of permutations is n! = n(n--1)(n1)(n--2)...(2)(1)2)...(2)(1)

•• height of decision tree isheight of decision tree is
log(n!) >= log(n/2)log(n!) >= log(n/2)n/2n/2 = n/2 * log(n/2) = n/2 * log(n/2) →→ ΩΩ((nnloglognn))

•• Sort is traversing path from root to leaf = Sort is traversing path from root to leaf = ΩΩ ((nnloglognn))

3

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

BucketBucket--SortSort

Sort certain inputs without comparing Sort certain inputs without comparing
elementselements
•• Assume elements have integer keys in range Assume elements have integer keys in range

[0,N[0,N--1]1]
•• Create bucket (sequence) for each possible keyCreate bucket (sequence) for each possible key
•• Drop each element into proper bucketDrop each element into proper bucket
•• Merge buckets in correct orderMerge buckets in correct order

OO(n + N) : number of elements plus number (n + N) : number of elements plus number
of bucketsof buckets

Works well if Works well if N N is is oo((nnloglognn))
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

RadixRadix--SortSort

MultiMulti--pass bucketpass bucket--sort keys with sort keys with dd componentscomponents

•• Sort by key in lexicographical (dictionary) orderSort by key in lexicographical (dictionary) order

First sort over last key, then next to last, etc.First sort over last key, then next to last, etc.

Uses N buckets instead of Uses N buckets instead of NNdd bucketsbuckets

Running time Running time OO((dd((nn++NN))))

Only efficient if Only efficient if dd is is OO((loglognn))

•• (especially if there are duplicate keys)(especially if there are duplicate keys)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Comparing various sortsComparing various sorts

Insertion sort: Insertion sort: OO(n+k)(n+k)
•• Good for small lists and nearly sorted listsGood for small lists and nearly sorted lists

MergeMerge--sort: sort: OO((nlognnlogn))
•• Time efficient, but hard to run “in place”Time efficient, but hard to run “in place”
•• Good for external memory sortingGood for external memory sorting

QuickQuick--sort (randomized): expected sort (randomized): expected OO((nnloglognn))
•• very fast in practice, but occasionally very fast in practice, but occasionally OO(n(n22))

HeapHeap--sort: sort: OO((nlognnlogn))
•• Always pretty fastAlways pretty fast

Bucket/radix sort: good if d*(n+N) is Bucket/radix sort: good if d*(n+N) is
oo((nlognnlogn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

SelectionSelection

Find the Find the kkth th greatest item in a sequencegreatest item in a sequence

•• Can we do it faster than sorting?Can we do it faster than sorting?

——Clearly yes for k=1 or k=nClearly yes for k=1 or k=n

»»Also in time k*n for some constant kAlso in time k*n for some constant k

——Not so clear for k = n/2Not so clear for k = n/2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Decrease and ConquerDecrease and Conquer

Like divide and conquer, but for searchingLike divide and conquer, but for searching

•• Hopefully do not need to search all subgroupsHopefully do not need to search all subgroups

•• E.g. binary search is decrease and conquerE.g. binary search is decrease and conquer

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Randomized Quick SelectRandomized Quick Select

If sequence length is 1, return the elementIf sequence length is 1, return the element

As in quick As in quick sortsort, pick a random pivot, pick a random pivot

Partition sequence into <, =, > subsequencesPartition sequence into <, =, > subsequences

•• If “=” contains If “=” contains kth kth element, return pivotelement, return pivot

•• RecurseRecurseinto subsequence (< or >) containing into subsequence (< or >) containing
kth kth elementelement

4

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis of Quick SelectAnalysis of Quick Select

““Good pivot”Good pivot”
•• Partitions into subsequences of size < 3/4 nPartitions into subsequences of size < 3/4 n
•• 50% of elements are good pivots50% of elements are good pivots
•• Expected number of elements to try is 2Expected number of elements to try is 2

T(n) <= T(3/4 n) + 2bn T(n) <= T(3/4 n) + 2bn
<= T((3/4)<= T((3/4)22 n) + 2bn(1 + 3/4)n) + 2bn(1 + 3/4)

<= 2bn <= 2bn
= = OO((nn) expected time) expected time

()∑
=

n

i

ilog 3/4

0 4
3

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Set ADTSet ADT

Set: container of distinct elementsSet: container of distinct elements
•• No duplicatesNo duplicates
•• No explicit ordering or keys necessaryNo explicit ordering or keys necessary

OperationsOperations
•• UnionUnion

AA∪∪BB: all elements in either A or B: all elements in either A or B
•• IntersectionIntersection

AA∩∩B: all elements in both A and BB: all elements in both A and B
•• DifferenceDifference

AA−−B: all elements in A but not BB: all elements in A but not B

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implementation DifficultyImplementation Difficulty

Performing methods requires finding Performing methods requires finding
duplicates and applying methodduplicates and applying method--specific specific
logiclogic

•• Finding duplicates is hard without some sort of Finding duplicates is hard without some sort of
orderorder

•• Impose order by defining comparator for Impose order by defining comparator for
membersmembers

——Almost any type of comparator will do as Almost any type of comparator will do as
long as it is consistent (i.e. identifies long as it is consistent (i.e. identifies
duplicates, and a<b implies b>a)duplicates, and a<b implies b>a)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implementing Sets as Sorted Implementing Sets as Sorted
SequencesSequences

Each set sorted according to the comparatorEach set sorted according to the comparator

Operations may be perform as variants of Operations may be perform as variants of
merge operation (similar to merge sort)merge operation (similar to merge sort)

•• Union: insert all elements into output set, but Union: insert all elements into output set, but
duplicates only onceduplicates only once

•• Intersection: insert only duplicates (but each Intersection: insert only duplicates (but each
only once)only once)

•• Difference: insert all elements from set A Difference: insert all elements from set A
unless duplicated in set Bunless duplicated in set B

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis of Set ADTAnalysis of Set ADT

Each operation involves only a single pass of Each operation involves only a single pass of
the merge algorithmthe merge algorithm

Worst case time: Worst case time: OO((nn))

Insert may be done in Insert may be done in OO((nn) via Union) via Union

Remove may be done in Remove may be done in OO((nn) via Difference) via Difference

