Sorting, Sets, and Selection

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Divide and Conquer Algorithms

1. Divide large problem into several similar,
but smaller sub-problems

2. Solve each sub-problem (recursively)
3. Combineresultsto solve original problem

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Merge-sort

Input: unsorted sequence
Output: sorted sequence
1. If input sizeis 1, return

2. Split sequence of size n into two sequences
of size n/2 according to position

3. Recursively call merge sort on sub-
sequences

4. Merge two sorted sequences into one
sorted sequence

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Merging Sorted Sequences

While neither sequence is empty
Comparefirst element in each sequence

Remove smallest and insert into output

Insert all remaining elementsinto output

O(n) running time

n issum of two sequencelengths

Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Analyzing Merge Sort

Number of levelsin recursion treeis O(logn)

Each element appears in one sequence per
level

Total work doneislinear at each call (i.e.
O(2) work per element

Therefore, total work is
n*O(logn) = O(nlogn)

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Recurrence Relations

Express total running time asarecursive
function

Converting to closed form solution gives
running time

» see“Master Method” in appendix A

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Recurrence relation for merge-
sort

T(n) = a n<=1
2T(n/2) +cn n>1
T(n) = 2*(2T(n/4) + c(n/2)) + cn
=4T(n/4) +2cn
= 2T(n/2) +icn
Recursion stops when n=2' (i=logn)
T(n) = 2°9"T(1) + c*nlogn
=a*n + c*nlogn
= O(nlogn)

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Quick-sort

Input: unsorted sequence
Output: sorted sequence
1. If input sizeis 1, return
2. Choose pivot element (perhaps last element)
3. Create sub-sequencesL, E, and G
« lessthan, equal to, or greater than pivot element
3. Recursively call quick-sort on L and G
4. Merge 3 sorted sequences into one sorted
sequence
 Trivial concatenation

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Worst-case Analysis

Possibly choose “bad” pivot at every call
¢ L or GhassizeO (or very small)
*Gorl hassizen-1

Recursion has depth n

« O(n) work at each recursion level

Total work is O(n?)

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Randomized Quick-sort

Choose arandom element as pivot at each step

Define “good” pivot as one which has neither
partition lessthan n/4 or greater than 3/4 n
* 50% chanceof picking good partition
* Expect recursion height to be 2 timesthe height
resulting from picking all good partitions
If all pivots are good, find recursion depth, d
n*(8/4)¢=1 ® n=(4/3)¢ ® d=log,,n
Expect depth is 2 *log,5n
O(n) work per level: O(nlogn) total expected
work

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Lower Bound on Comparison-
based Sorting

Heap-sort, merge-sort, quick-sort all
O(nlogn)

Isit possible to do better?

Prove a“lower bound” on certain types of
sorting

* sortsbased on comparing two eements

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Comparison Sort Decision Tree

Each internal node is comparison operation

« branch oneway for true, the other for false

Each external nodes is a unique per mutation of
input
« number of permutationsisn! = n(n-1)(n-2)...(2)(1)
« height of decision treeis
log(n!) >=log(n/2)"2 = n/2* log(n/2) ® W(nlogn)

« Sort istraversing path from root to leaf = W(nlogn)

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Bucket-Sort

Sort certain inputs without comparing
elements
* Assumeelementshaveinteger keysin range
[ON-1]
* Create bucket (sequence) for each possiblekey
* Drop each element into proper bucket
* Mergebucketsin correct order
O(n + N) : number of elements plus number
of buckets

Workswell if N is o(nlogn)

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Radix-Sort

Multi-pass bucket-sort keys with d components
« Sort by key in lexicographical (dictionary) order
First sort over last key, then next to last, etc.
Uses N buckets instead of N9 buckets
Running time O(d(n+N))
Only efficient if dis O(logn)
« (especially if thereareduplicate keys)

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Comparing various sorts

Insertion sort: O(n+k)

* Good for small listsand nearly sorted lists
Merge-sort: O(nlogn)

« Timeéefficient, but hard torun “in place”

« Good for external memory sorting
Quick-sort (randomized): expected O(nlogn)

« very fast in practice, but occasionally O(r?)
Heap-sort: O(nlogn)

« Always pretty fast
Bucket/radix sort: good if d*(n+N) is

o(nlogn)

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Selection

Find the kth greatest item in a sequence
» Can wedo it faster than sorting?
—Clearly yesfor k=1 or k=n
»Alsointimek*n for someconstant k
—Not so clear for k =n/2

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Decrease and Conquer

Like divide and conquer, but for searching
» Hopefully do not need to search all subgroups

« E.g. binary search isdecrease and conquer

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Randomized Quick Select

If sequence length is 1, return the element

Asin quick sort, pick a random pivot

Partition sequenceinto <, =, > subsequences
¢ If “=" containskth element, return pivot

« Recur seinto subseguence (< or >) containing
kth element

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Analysis of Quick Select

“Good pivot”
« Partitionsinto subsequencesof size<3/4n
* 50% of dementsaregood pivots
« Expected number of ementstotryis2

T(n) <=T(3/4n) + 2bn
<=T((3/4)2n) + 2bn(1 + 3/4)

<=2bn
= O(n) expected time

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Set ADT

Set: container of distinct elements
* No duplicates
« Noexplicit ordering or keysnecessary
Operations
« Union
AEB: all lementsin either A or B
* Intersection
ACB: all dementsin both A and B
« Difference
A- B: al elementsin A but not B

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Implementation Difficulty

Performing methods requires finding
duplicates and applying method-specific
logic

« Finding duplicatesis hard without some sort of
order

« Impose order by defining compar ator for
members

—Almost any type of comparator will do as
long asit isconsistent (i.e. identifies
duplicates, and a<b impliesb>a)

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Implementing Sets as Sorted
Sequences

Each set sorted according to the compar ator

Operations may be perform as variants of
merge operation (similar to merge sort)

« Union: insert all dementsinto output set, but
duplicatesonly once

« Intersection: insert only duplicates (but each
only once)

« Difference: insert all elementsfrom set A
unlessduplicated in set B

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Analysis of Set ADT

Each operation involves only a single pass of
the merge algorithm

Worst casetime: O(n)
Insert may be donein O(n) via Union

Remove may be donein O(n) via Difference

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

