Search Trees

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What are search trees?

Allow efficient searching of ordered data
Implement Ordered Dictionary ADT

Provide flexible mechanism for storing and
retrieving data

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Binary Search Tree

Each node stores a key-element pair

key(leftsubtree) <= key(node) <= key(rightsubtree)

Trees in Goodrich/Tamassia store elements only at
internal nodes

* I generally store elements at all nodes

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Tree Search

TreeSearch (k, node) {
if ((k < key(node)) &&
(leftChild(node) '= null))

return TreeSearch(k, leftchild(node)) ;
else if (k > key(node)) &&

(rightchild(node) != null))

return TreeSearch(k, rightchild(node)) ;
else
return node; }

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis of TreeSearch

At each node, perform O(1) work

Maximum nodes visited is /, the height of
tree

Total running time is thus O(h)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Inserting into Binary Tree

Call TreeSearch on root to find appropriate
parent node

« Call again using a child if key already exists
Parent node will be external

Insert element as new child of parent

Also takes O(h)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Removing from Binary Tree

) Call TreeSearch to locate node for removal
If node is external, just remove node
If node has one child, replace node with child

If node has two children

 Find smallest element greater than node (will
have 0 or 1 children)

* Replace element with that node

Again, O(h)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

AVL Trees

Binary search trees which maintain O(logn)
height

Maintain height balance property
» Heights of children differ by at most 1

* Local property to maintain, but guarantees
global property of overall height

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analyzing AVL height

n(h) : minimum nodes for AVL tree of height h
Base conditions
n(0)=1; n(1)=2
Recurrance relation
n(h) = 1 + n(h-1) + n(h-2) > 2*n(h-2)
n(h) > 2#n(h-2) > 4*n(h-4) > 8*n(h-6), etc.
n(h) > 2i*n(h-2i)
Set i to achieve base condition
h-2i=1 > i=(h-1)/2
n(h) > 20-D/2#p(1) = 20-D2%2 = 2(-12141
Bounding h
« logn(h) > (h-1)/2 + 1
* h <2(logn(h) - 1) + 1 = 2logn(h) -1 = O(logn)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Inserting with balanced height

Insert node into binary search tree as usual

* Increases height of some nodes along path to
root

Walk up towards root

« If unbalanced height is found, restructure
unbalanced region with rotation operation

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Balanced Tree

3
2

® 'p‘.\o

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insert (case 1)

34

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Rotate Left” ...

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Rotate Left” ...

@o

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Rotate Left” - Balanced!

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insert (case 2)

Unbalanced
node

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Rotate Right”. ..

BONE
@ ® %

0

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Rotate Right”. ..

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Rotate Right” - Balanced!

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insert (case 3)

Unbalanced
node

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Double Rotation Right-Left” - Right . . .

3 150)

1
0 0 @ 0 @

Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

“Double Rotation Right-Left” - Right. ..

) ;
O 1
@@

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Double Rotation Right-Left” - Right . . .done!

Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

“Double Rotation Right-Left” - Left. ..

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Double Rotation Right-Left” - Left. ..

“Double Rotation Right-Left” - Balanced!

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Restructure Procedure

Consider the first unbalanced node
encountered (walking upward) and its two
descendants along that path

Sort them in increasing order and label as a,
b, and ¢

Place b as the parent of @ and ¢ where the
unbalanced node was

Hook up the (up to) 4 subtrees as the
appropriate children of a and ¢

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analyzing Insert

Upward traversal with height recomputation
takes O(h) = O(logn)

Restructure takes O(1)

The restructure always reduces the height of
the unbalanced node

* So only one restructure is necessary

Total time: O(logn) + O(1) = O(logn)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Remove Algorithm

Perform removal as with binary search tree

* May decrease height of some nodes on path to
the root

Walk upwards to the root

« If unbalanced height is found, restructure
unbalanced region with rotation operation

Remove is also O(logn)

* But multiple restructure operations may be
necessary along the way

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Multi-way Search Trees

Each node may store multiple key-element
pairs

Node with d children (d-node) stores d-1 key-
element pairs

Children have keys that fall either before
smallest parent key, after largest parent key,
or between two parent keys

(for this section, let’s use convention of external
nodes storing no element, as in book)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Example Multi-way Search Tree

External node between each pair of keys and before/after
(n-1) +1+1 = n+1 external nodes

Johns Hopkins Department of Computer Science

Multi-way Tree Searching

Basically same as for binary tree
1. Start at root
2. Find appropriate child path to go down
3. Traverse to child

4. Repeat 1-3 until found or reach external

Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Multi-way Search Analysis

Number of nodes traversed is up to &

Work at each node is function of d

* O(logd) if structure storing keys provides
efficient search, otherwise O(d)

Total worst case time
* O(hlogd,,,) or O(hd,,,..)
« Ifd,,, is bounded by small constant, just O(/)

Johns Hopkins Department of Computer Science

(2,4) Trees

Efficient multi-way search trees
* O(logn) height
Maintain two properties:
1. Size property: nodes have at most 4 children

2. Depth property: All external nodes have same
depth (i.e. all at the same level)

Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

(2,4) Tree Height Analysis

Lower bound on h
n(h) <= 4" : max children per node is 4
external nodes = n+1
ntl <=4" = h>=log(nt+1)/2
Upper bound on h
At least 2 nodes at depth 1, 4 at depth 2, etc.
At least 29 nodes at depth d
At least 2P external nodes
2h <=np+1 = h <=log(n+1)
h = @(logn) = search is O(logn)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Inserting into (2,4) Tree

1. Search for position in deepest internal
node

2. Insert into position
3. If # elements > 3, do a split operation
* Split node into 2 nodes
* Push 1 element up to parent
—Create new root if no parent

—If parent overflows, split parent

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Simple Insertion (no overflow)

Insert 15

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insertion with Overflow

Course 600.226: Data Structures, Professor: Jonathan Cohen

Insert with Cascading Split

Course 600.226: Data Structures, Professor: Jonathan Cohen

Removing from (2,4) Tree

1. Search for element
2. Remove element
3. If element’s child is internal

* Swap next larger element into hole (so we’ve
removed element above an external)

4. If node has no elements
If an adjacent sibling has > 1 element
Perform transfer (kind of rotation)
Else

Perform fusion (can cascade upward)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Simple Removal

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Removal with Swap

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Removal with Transfer

GICX

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Removal with Fusion

Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Performance

Insertion

* Find is O(logn)

» Each split is O(1); only O(logn) splits necessary
Remove

» Each transfer/fusion is O(1); only O(logn)
necessary

External Memory Searching

Memory Hierarchy

External Memory

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Types of External Memory

Hard disk
Floppy disk
Compact disc
Tape

Distributed/networked memory

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Primary Motivation

External memory access much slower than
internal memory access

* orders of magnitude slower
* need to minimize /0 Complexity

« can afford slightly more work on data in
memory in exchange for lower I/O complexity

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Application Areas

Searching
Sorting

Data Processing
Data Mining

Data Exploration

Disk Blocks

Data is read one block at a time
« pack as much into a block as possible

* minimize number of block reads necessary

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

I1/0 Efficient Dictionaries

Balanced tree structures

* Typically O(log,n) transfers for query or
update

* Want to reduce height by constant factor as
much as possible

* Can be reduced to O(loggn) = O(log,n/log,B)

—B is number of nodes per block

(a,b) Trees

Generalization of (2,4) trees

Size property: internal node has at least a
children and at most b children

.2 <=a<=(b+1)12

Depth property: all external nodes have same
depth

Height of (a,b) tree is Q2 (logn/logb) and
O(logn/loga)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

B-Trees

Choose a and b to be O(B)
Height is now O(logzn)
I/O complexity for search is O(loggn)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

