
1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Search TreesSearch Trees

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What are search trees?What are search trees?

Allow efficient searching of ordered dataAllow efficient searching of ordered data

Implement Ordered Dictionary ADTImplement Ordered Dictionary ADT

Provide flexible mechanism for storing and Provide flexible mechanism for storing and
retrieving dataretrieving data

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Binary Search TreeBinary Search Tree

Each node stores a keyEach node stores a key--element pairelement pair

key(leftsubtreekey(leftsubtree) <=) <= key(nodekey(node) <=) <= key(rightsubtreekey(rightsubtree))

Trees in Goodrich/Trees in Goodrich/TamassiaTamassia store elements only at store elements only at
internal nodesinternal nodes

•• I generally store elements at all nodesI generally store elements at all nodes

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Tree SearchTree Search

TreeSearch(kTreeSearch(k, node) {, node) {
if ((k < key(node)) && if ((k < key(node)) &&

((leftChild(nodeleftChild(node) != null))) != null))
return return TreeSearch(kTreeSearch(k, , leftchild(nodeleftchild(node));));

else if (k > key(node)) &&else if (k > key(node)) &&
((rightchild(noderightchild(node) != null))) != null))

return return TreeSearch(kTreeSearch(k, , rightchild(noderightchild(node));));
elseelse
return node; }return node; }

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis of Analysis of TreeSearchTreeSearch

At each node, perform O(1) workAt each node, perform O(1) work

Maximum nodes visited is Maximum nodes visited is hh, the height of , the height of
treetree

Total running time is thus Total running time is thus OO((hh))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Inserting into Binary TreeInserting into Binary Tree

Call Call TreeSearchTreeSearch on root to find appropriate on root to find appropriate
parent nodeparent node

•• Call again using a child if key already existsCall again using a child if key already exists

Parent node will be externalParent node will be external

Insert element as new child of parentInsert element as new child of parent

Also takes Also takes OO((hh))

2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Removing from Binary TreeRemoving from Binary Tree
Call Call TreeSearchTreeSearch to locate node for removalto locate node for removal

If node is external, just remove nodeIf node is external, just remove node

If node has one child, replace node with childIf node has one child, replace node with child

If node has two childrenIf node has two children

•• Find smallest element greater than node (will Find smallest element greater than node (will
have 0 or 1 children)have 0 or 1 children)

•• Replace element with that nodeReplace element with that node

Again, Again, OO((hh))
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

AVL TreesAVL Trees

Binary search trees which maintain Binary search trees which maintain OO(log(lognn))
heightheight

Maintain Maintain height balance propertyheight balance property
•• Heights of children differ by at most Heights of children differ by at most 11

•• Local property to maintain, but guarantees Local property to maintain, but guarantees
global property of overall heightglobal property of overall height

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analyzing AVL heightAnalyzing AVL height
n(h) : minimum nodes for AVL tree of height hn(h) : minimum nodes for AVL tree of height h
Base conditionsBase conditions

n(0) = 1; n(1) = 2n(0) = 1; n(1) = 2
RecurranceRecurrance relationrelation

n(h) = 1 + n(hn(h) = 1 + n(h--1) + n(h1) + n(h--2) > 2*n(h2) > 2*n(h--2)2)
n(h) > 2*n(hn(h) > 2*n(h--2) > 4*n(h2) > 4*n(h--4) > 8*n(h4) > 8*n(h--6), etc.6), etc.
n(h) > 2n(h) > 2ii*n(h*n(h--2i)2i)

Set i to achieve base conditionSet i to achieve base condition
hh--2i=1 2i=1 →→ i=(hi=(h--1)/21)/2
n(h) > 2n(h) > 2(h(h--1)/21)/2*n(1) = 2*n(1) = 2(h(h--1)/21)/2*2 = 2*2 = 2(h(h--1/2)+11/2)+1

Bounding hBounding h
•• logn(hlogn(h) > (h) > (h--1)/2 + 11)/2 + 1
•• h < 2(logn(h) h < 2(logn(h) -- 1) + 1 = 2logn(h) 1) + 1 = 2logn(h) --1 = 1 = OO(log(lognn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Inserting with balanced heightInserting with balanced height

Insert node into binary search tree as usualInsert node into binary search tree as usual

•• Increases height of some nodes along path to Increases height of some nodes along path to
rootroot

Walk up towards rootWalk up towards root

•• If unbalanced height is found, restructure If unbalanced height is found, restructure
unbalanced region with unbalanced region with rotationrotation operationoperation

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Balanced TreeBalanced Tree

5050
3030 7575

8080656540401515

3535 4545

00

00 00

11 00

22

11

22
33

6060 7070
00 00

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insert (case 1) Insert (case 1)

5050
3030 7575

8080656540401515

3535 4545

00

1100

11 00

22

22

33
44

4343
00

Unbalanced Unbalanced
nodenode 6060 7070

00 00

3

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Rotate Left” . . .Rotate Left” . . .

5050
3030 7575

8080656540401515

3535
4545

00

11
00

11 00

22

22

33
44

4343
00

6060 7070
00 00

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Rotate Left” . . .Rotate Left” . . .

5050

3030 7575

80806565
4040

1515 3535

454500
11

00

11 00

22
22

33

4343
00

44

6060 7070
00 00

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Rotate Left” Rotate Left” -- Balanced!Balanced!

5050

3030

7575

80806565

4040

1515 3535

4545
00

11

00

11 00

2222

11

4343
00

33

6060 7070
00 00

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insert (case 2) Insert (case 2)

5050
3030 7575

8080656540401515

3535 4545

00

0000

22 00

33

11

22
44

5353
00

Unbalanced Unbalanced
nodenode

6060 7070
11 00

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Rotate Right”. . .Rotate Right”. . .

5050
3030 7575

8080656540401515

3535 4545

00

0000

22 00

33

11

22
44

5353
00

6060 7070
11 00

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Rotate Right”. . .Rotate Right”. . .

5050
3030 7575

8080

6565
40401515

3535 4545

00

0000

22

00

33

11

22
44

5353
00

6060
7070

11
00

4

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Rotate Right” Rotate Right” -- Balanced!Balanced!

5050
3030

7575

8080

6565
40401515

3535 4545

00

0000

22

00

1111

22
33

5353
00

6060
7070

11
00

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insert (case 3)Insert (case 3)

5050
3030 7575

8080656540401515

3535 4545

00

11 00

11 00

22

22

33
44

6060 7070
00 00

3333
00

Unbalanced Unbalanced
nodenode

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Double Rotation RightDouble Rotation Right--Left” Left” -- Right . . .Right . . .

5050
3030 7575

8080656540401515

3535 4545

00

11 00

11 00

22

22

33

6060 7070
00 00

3333
00

44

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Double Rotation RightDouble Rotation Right--Left” Left” -- Right . . .Right . . .

5050
3030 7575

8080656540401515
3535

4545

00
11

00

11 00

22

22

33

6060 7070
00 00

3333
00

44

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Double Rotation RightDouble Rotation Right--Left” Left” -- Right . . .done!Right . . .done!

5050
3030 7575

80806565

4040

1515 3535

4545

00 22

00

11 00

22

11

33

6060 7070
00 00

3333
00

44

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Double Rotation RightDouble Rotation Right--Left” Left” -- Left . . .Left . . .

5050
7575

80806565
11 00

22

6060 7070
00 00

44

3030

4040

1515 3535

4545

00 22

00

11

33

3333
00

5

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Double Rotation RightDouble Rotation Right--Left” Left” -- Left . . .Left . . .

5050
7575

80806565
11 00

22

6060 7070
00 00

44

3030

4040
1515

3535

4545

00

22

00

11

33

3333
00

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Double Rotation RightDouble Rotation Right--Left” Left” -- Balanced!Balanced!

5050
7575

80806565
11 00

22

6060 7070
00 00

33

3030 4040

1515

3535

4545
00

22

00

1111

3333
00

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Restructure ProcedureRestructure Procedure

Consider the first unbalanced node Consider the first unbalanced node
encountered (walking upward) and its two encountered (walking upward) and its two
descendants along that pathdescendants along that path

Sort them in increasing order and label as Sort them in increasing order and label as aa, ,
bb, and , and cc

Place Place bb as the parent of as the parent of aa and and cc where the where the
unbalanced node wasunbalanced node was

Hook up the (up to) 4 Hook up the (up to) 4 subtreessubtrees as the as the
appropriate children of appropriate children of aa and and cc

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analyzing InsertAnalyzing Insert

Upward traversal with height Upward traversal with height recomputationrecomputation
takes takes OO((hh) =) = OO(log(lognn))

Restructure takes Restructure takes OO(1)(1)

The restructure always reduces the height of The restructure always reduces the height of
the unbalanced nodethe unbalanced node

•• So only one restructure is necessarySo only one restructure is necessary

Total time: Total time: OO(log(lognn) +) + OO(1) = (1) = OO(log(lognn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Remove AlgorithmRemove Algorithm

Perform removal as with binary search treePerform removal as with binary search tree

•• May decrease height of some nodes on path to May decrease height of some nodes on path to
the rootthe root

Walk upwards to the rootWalk upwards to the root

•• If unbalanced height is found, restructure If unbalanced height is found, restructure
unbalanced region with unbalanced region with rotationrotation operationoperation

Remove is also Remove is also OO(log(lognn))

•• But multiple restructure operations may be But multiple restructure operations may be
necessary along the waynecessary along the way

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

MultiMulti--way Search Treesway Search Trees

Each node may store multiple keyEach node may store multiple key--element element
pairspairs

Node with Node with dd children (children (dd--node) stores node) stores dd--1 key1 key--
element pairselement pairs

Children have keys that fall either before Children have keys that fall either before
smallest parent key, after largest parent key, smallest parent key, after largest parent key,
or between two parent keysor between two parent keys

(for this section, let’s use convention of external (for this section, let’s use convention of external
nodes storing no element, as in book)nodes storing no element, as in book)

6

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Example MultiExample Multi--way Search Treeway Search Tree

External node between each pair of keys and before/afterExternal node between each pair of keys and before/after
(n(n--1) + 1 + 1 = n+1 external nodes1) + 1 + 1 = n+1 external nodes

50

20 30 60 70 80

10 15 25 40 42 45 55 64 66 75 85 90

22 27

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

MultiMulti--way Tree Searchingway Tree Searching

Basically same as for binary treeBasically same as for binary tree

1. Start at root1. Start at root

2. Find appropriate child path to go down2. Find appropriate child path to go down

3. Traverse to child3. Traverse to child

4. Repeat 14. Repeat 1--3 until found or reach external3 until found or reach external

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

MultiMulti--way Search Analysisway Search Analysis

Number of nodes traversed is up to Number of nodes traversed is up to hh

Work at each node is function of Work at each node is function of dd
•• O(logO(logdd) if structure storing keys provides) if structure storing keys provides

efficient search, otherwise efficient search, otherwise OO((dd))

Total worst case timeTotal worst case time

•• OO((hhloglogddmaxmax) or) or OO((hdhdmaxmax))

•• If If ddmaxmax is bounded by small constant, just is bounded by small constant, just OO((hh))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

(2,4) Trees(2,4) Trees

Efficient multiEfficient multi--way search treesway search trees

•• OO(log(lognn) height) height

Maintain two properties:Maintain two properties:

1. Size property: nodes have at most 4 children1. Size property: nodes have at most 4 children

2. Depth property: All external nodes have same 2. Depth property: All external nodes have same
depth (i.e. all at the same depth (i.e. all at the same levellevel))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

(2,4) Tree Height Analysis(2,4) Tree Height Analysis
Lower bound on hLower bound on h

n(h) <= 4n(h) <= 4hh : max children per node is 4: max children per node is 4
external nodes = n+1# external nodes = n+1
n+1 <= 4n+1 <= 4hh ⇒⇒ h >= log(n+1) / 2h >= log(n+1) / 2

Upper bound on hUpper bound on h
At least 2 nodes at depth 1, 4 at depth 2, etc.At least 2 nodes at depth 1, 4 at depth 2, etc.

At least 2At least 2dd nodes at depth dnodes at depth d
At least 2At least 2hh external nodesexternal nodes

22hh <= n+1 <= n+1 ⇒⇒ h <= log(n+1)h <= log(n+1)
h = h = ΘΘ((loglognn)) ⇒⇒ search is search is OO(log(lognn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Inserting into (2,4) TreeInserting into (2,4) Tree

1. Search for position in deepest internal 1. Search for position in deepest internal
nodenode

2. Insert into position2. Insert into position

3. If # elements > 3, do a 3. If # elements > 3, do a splitsplit operationoperation

•• Split node into 2 nodesSplit node into 2 nodes

•• Push 1 element up to parentPush 1 element up to parent

——Create new root if no parentCreate new root if no parent

——If parent overflows, split parentIf parent overflows, split parent

7

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Simple Insertion (no overflow)Simple Insertion (no overflow)

10

5 12 14

10

5 12 14 15

Insert 15

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insertion with OverflowInsertion with Overflow

10

5 12 14 15

Insert 11 10

5 11 12 14 15

Split

10 14

5 11 12 15

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insert with Cascading SplitInsert with Cascading Split

6 8 10

5 12 14 15

Insert 11

7 9

6 8 10

5 11 12 14 157 9

Split

6 8 10 14

5 11 127 9 15

Split6 8

5 11 127 9 15

14

10

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Removing from (2,4) TreeRemoving from (2,4) Tree

1. Search for element1. Search for element
2. Remove element2. Remove element
3. If element’s child is internal3. If element’s child is internal

•• SwapSwap next larger element into hole (so we’ve next larger element into hole (so we’ve
removed element above an external)removed element above an external)

4. If node has no elements4. If node has no elements
If an adjacent sibling has > 1 elementIf an adjacent sibling has > 1 element

Perform Perform transfertransfer (kind of rotation)(kind of rotation)
ElseElse

Perform Perform fusionfusion (can cascade upward)(can cascade upward)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Simple RemovalSimple Removal

6 8 10

5 12 14 157 9

Remove 14 6 8 10

5 12 157 9

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Removal with SwapRemoval with Swap

6 8 10

5 12 14 157 9

Remove 10 6 8

5 12 14 157 9

Swap

6 8 12

5 14 157 9

8

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Removal with TransferRemoval with Transfer

6 8 10

5 12 14 157 9

Remove 9 6 8 10

5 12 14 157

Transfer
(~rotate)

6 8 12

5 14 157 10
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Removal with FusionRemoval with Fusion

6 8 10

5 12 14 157 9

Remove 7 6 8 10

5 12 14 159

Fusion

6 10

5 12 14 158 9

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

PerformancePerformance

InsertionInsertion

•• Find is Find is OO(log(lognn))

•• Each split is Each split is OO(1); only (1); only OO(logn(logn) splits necessary) splits necessary

RemoveRemove

•• Each transfer/fusion is O(1); only Each transfer/fusion is O(1); only OO(logn(logn))
necessarynecessary

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

External Memory SearchingExternal Memory Searching

Memory HierarchyMemory Hierarchy

Registers

Cache

RAM

External Memory

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Types of External MemoryTypes of External Memory

Hard diskHard disk

Floppy diskFloppy disk

Compact discCompact disc

TapeTape

Distributed/networked memoryDistributed/networked memory

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Primary MotivationPrimary Motivation

External memory access much slower than External memory access much slower than
internal memory accessinternal memory access

•• orders of magnitude slowerorders of magnitude slower

•• need to minimize need to minimize I/O ComplexityI/O Complexity

•• can afford slightly more work on data in can afford slightly more work on data in
memory in exchange for lower I/O complexitymemory in exchange for lower I/O complexity

9

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Application AreasApplication Areas

SearchingSearching

SortingSorting

Data ProcessingData Processing

Data MiningData Mining

Data ExplorationData Exploration

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Disk BlocksDisk Blocks

Data is read one block at a timeData is read one block at a time

•• pack as much into a block as possiblepack as much into a block as possible

•• minimize number of block reads necessaryminimize number of block reads necessary

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

I/O Efficient DictionariesI/O Efficient Dictionaries

Balanced tree structuresBalanced tree structures

•• Typically Typically OO(log(log22n) transfers for query or n) transfers for query or
updateupdate

•• Want to reduce height by constant factor as Want to reduce height by constant factor as
much as possiblemuch as possible

•• Can be reduced to Can be reduced to OO(log(logBBnn) =) = OO(log(log22nn/log/log22B)B)

——B is number of nodes per blockB is number of nodes per block

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

(a,b) Trees(a,b) Trees

Generalization of (2,4) treesGeneralization of (2,4) trees

Size property: internal node has at least Size property: internal node has at least aa
children and at most children and at most bb childrenchildren

•• 2 <= a <= (b+1)/22 <= a <= (b+1)/2

Depth property: all external nodes have same Depth property: all external nodes have same
depthdepth

Height of (a,b) tree is Height of (a,b) tree is Ω ((logn/logblogn/logb) and) and
O(logn/logaO(logn/loga))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

BB--TreesTrees

Choose Choose aa and and bb to be to be Θ(B)

Height is now O(logBn)

I/O complexity for search is O(logBn)

