Priority Queues

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What is a Priority Queue?

Stores prioritized elements
* No notion of storing at particular position
Returns elements in priority order

* Order determined by key

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What’s so different?

Stacks and Queues

* Removal order determined by order of
inserting

Sequences

« User chooses exact placement when inserting
and explicitly chooses removal order

Priority Queue
* Order determined by key

* Key may be part of element data or separate

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What’s it good for?

Order of returned elements is not FIFO or
LIFO (as in queue or stack)

Random access not necessary (as in
sequence) or desirable

Examples
* Plane landings managed by air traffic control
* Processes scheduled by CPU
* College admissions process for students

—What are some of the criteria?

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

College Admissions Key

Student submits:

* Personal data (geography, is parent alum?,
activities?)

* Transcript
* Essays
*» Standardized test scores
* Recommendations
Admissions agent:
* Each datum converted to number

» Formula converts to single numeric key

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Student selection process

Simple scheme
* Collect applications until due date
* Sort by keys
» Take top k students
More realistic
* Prioritize applications as they come in
» Accept some top students ASAP
» Maybe even change data/key as you go

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Priority Queue ADT

insertltem(k,e): insert element e with key k

extractMin(): return element with minimum
key and remove from queue

minElement(): return (look at) min element
minKey(): return minimum key
size(): return number of elements

isEmpty(): size == 0?

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Keys, Comparitors and Total Orders

Key type needs comparison operator (returns
boolean) with following properties:

* Reflexive: k <k

* Antisymmetric:
(k1 <k2) && (k2 <kl) » kl = k2

* Transitive:
(k1 £k2) && (k2 £k3) »> k1 <k3

These properties guarantee consistent, fotal
ordering

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Abstracting Comparitors

Allows for different types of comparison
« e.g. Numeric vs. lexicographic (for strings)
Several approaches possible

* Build PQ object to know about specific key
type and comparison

* Build key object to know about comparison

 Build separate comparitor object for each type
of comparison

Book argues for #3, but I also recommend #2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implementing PQ with
Unsorted Sequence

Each call to insertItem(k, e) uses insertLast()
to store in Sequence

* O(1) time

Each call to extractMin() traverses the entire
sequence to find the minimum, then
removes element

* O(n) time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implementing PQ with
Sorted Sequence

Each call to insertItem(k, e) traverses sorted
sequence to find correct position, then does
insert

* O(n) worst case
Each call to extractMin() does removeFirst()

* O(I) time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sorting Using a PQ

Elements begin in arbitrary order in a
sequence

Move elements from sequence into PQ

Extract elements from PQ and reinsert into
sequence in priority order

Analysis depends on implementation choices

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analyzing Queue Efficiency
for Sorting

N insertElement() operations followed by N
extractMin() operations

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Selection Sort

PQ sorting using unsorted sequence

Insert all # items in input order

Extract by selecting min item n times

Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Insertion Sort

PQ sorting using sorted sequence

Sequentially insert items into sequence in
sorted order

Extract items easily from sorted sequence

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sort Analysis

Sel. Sort Ins. Sort

foreach element, E,;, in S O(n)

i=n-1 i=n-1
PQ.insert (E;) i)500(1) E;,O(i)
while !PQ.empty () O(n)
i=n-1 i=n-1
PQ.extractMin () E'O(i) % o)

O(n) +Z0(1) + 20() = O(n) + O(n) + On?) = O(1)
i=0 i=0

Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap

) Binary tree-based data structure

» Complete in the sense that it fills up levels as
completely as possible

» Height of tree is O(logn)
Stores elements with keys
All nodes satisfy the heap property:

* The key value at a node is less than or equal to
the key value of the node’s children

Allows insertltem() and extractMin() in

__O(logn) time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap Example

Y roToN

Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

PQ Quiz Show!

Heap, or Not A Heap?

(no paper necessary)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

S

Heap, or Not a Heap?

SRoYorcTol

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap, or Not a Heap?

oo @

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap, or Not a Heap?

@5 36

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap, or Not a Heap?

é©®@ oo

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Inserting into Heap

Create new node as “last” element

Insert key/element into new node

Bubble node upward until heap property is
satisfied

while (!'isRoot(node) &&

(node.key < node.parent.key))

swap (node, parent)

(just pseudocode - can’t do it exactly like this in Java)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap Insert Example

S DEE

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bubble Upward

S S DE e

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bubble Upward

D SDE D

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bubble Upward

S D E D

Johns Hopkins Department of Computer Science

Heap Insert Analysis

New node always inserted at lowest level

Node bubbles upward
* up to root in worst case

* path length to root is O(logn)

Total time for insert is O(logn)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Course 600.226: Data Structures, Professor: Jonathan Cohen

Extracting from Heap

Copy element from root node
Copy element/key from last node to root node
Delete last node

Bubble root node downward until heap
property satisfied

while (!isExternal (node) &&
(node.key > node.smallestChild.key))

swap (node, node.smallestChild)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap Extract Example

S S DE®

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Copy Extracted Element

S S DE®

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Move last node to root

FSEpcRc

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bubble Downward

@D

Johns Hopkins Department of Computer Science

Bubble Downward

PO

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Course 600.226: Data Structures, Professor: Jonathan Cohen

Y TN

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap Extract Analysis

Again, each swap takes constant time

Maximum swaps is path length from root to
leaf

— Total work is logr * O(1) = O(logn)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sort Analysis

Heap Sort
foreach element, E,, in S O(n))
PQ.insert (E;) IE):O(logz)
while !'PQ.empty () O(n)
PQ.extractMin () ijé;b(logi)

) +2i§;¢')(|og0 < 0@) +2 £0(ogn)
= 0(n) + 2n*0(logn) = O(nlogn)

(showing @ (nlogn) is a bit harder)
Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

In-class Exercise

What does the heap look like after the
following sequence of insertions:

5 30 2 15 7 45 20 6 18

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

