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What is a Priority Queue?

Stores prioritized elements
* No notion of storing at particular position
Returns elements in priority order

* Order determined by key
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What’s so different?

Stacks and Queues

* Removal order determined by order of
inserting

Sequences

« User chooses exact placement when inserting
and explicitly chooses removal order

Priority Queue
* Order determined by key

* Key may be part of element data or separate
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What’s it good for?

Order of returned elements is not FIFO or
LIFO (as in queue or stack)

Random access not necessary (as in
sequence) or desirable

Examples
* Plane landings managed by air traffic control
* Processes scheduled by CPU
* College admissions process for students

—What are some of the criteria?
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College Admissions Key

Student submits:

* Personal data (geography, is parent alum?,
activities?)

* Transcript
* Essays
*» Standardized test scores
* Recommendations
Admissions agent:
* Each datum converted to number

» Formula converts to single numeric key
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Student selection process

Simple scheme
* Collect applications until due date
* Sort by keys
» Take top k students
More realistic
* Prioritize applications as they come in
» Accept some top students ASAP
» Maybe even change data/key as you go
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Priority Queue ADT

insertltem(k,e): insert element e with key k

extractMin( ): return element with minimum
key and remove from queue

minElement( ): return (look at) min element
minKey( ): return minimum key
size( ): return number of elements

isEmpty( ): size == 0?
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Keys, Comparitors and Total Orders

Key type needs comparison operator (returns
boolean) with following properties:

* Reflexive: k <k

* Antisymmetric:
(k1 <k2) && (k2 <kl) » kl = k2

* Transitive:
(k1 £k2) && (k2 £k3) »> k1 <k3

These properties guarantee consistent, fotal
ordering
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Abstracting Comparitors

Allows for different types of comparison
« e.g. Numeric vs. lexicographic (for strings)
Several approaches possible

* Build PQ object to know about specific key
type and comparison

* Build key object to know about comparison

 Build separate comparitor object for each type
of comparison

Book argues for #3, but I also recommend #2
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Implementing PQ with
Unsorted Sequence

Each call to insertItem(k, e) uses insertLast()
to store in Sequence

* O(1) time

Each call to extractMin( ) traverses the entire
sequence to find the minimum, then
removes element

* O(n) time
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Implementing PQ with
Sorted Sequence

Each call to insertItem(k, e) traverses sorted
sequence to find correct position, then does
insert

* O(n) worst case
Each call to extractMin( ) does removeFirst()

* O(I) time
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Sorting Using a PQ

Elements begin in arbitrary order in a
sequence

Move elements from sequence into PQ

Extract elements from PQ and reinsert into
sequence in priority order

Analysis depends on implementation choices
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Analyzing Queue Efficiency
for Sorting

N insertElement( ) operations followed by N
extractMin( ) operations
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Selection Sort

PQ sorting using unsorted sequence

Insert all # items in input order

Extract by selecting min item n times
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Insertion Sort

PQ sorting using sorted sequence

Sequentially insert items into sequence in
sorted order

Extract items easily from sorted sequence

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sort Analysis

Sel. Sort Ins. Sort

foreach element, E,;, in S O(n)

i=n-1 i=n-1
PQ.insert (E;) i)500(1) E;,O(i)
while !PQ.empty () O(n)
i=n-1 i=n-1
PQ.extractMin () E'O(i) % o)

O(n) +Z0(1) + 20() = O(n) + O(n) + On?) = O(1)
i=0 i=0
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Heap

) Binary tree-based data structure

» Complete in the sense that it fills up levels as
completely as possible

» Height of tree is O(logn)
Stores elements with keys
All nodes satisfy the heap property:

* The key value at a node is less than or equal to
the key value of the node’s children

Allows insertltem( ) and extractMin( ) in

__O(logn) time
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Heap Example
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PQ Quiz Show!

Heap, or Not A Heap?

(no paper necessary)
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Heap, or Not a Heap?
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Inserting into Heap

Create new node as “last” element

Insert key/element into new node

Bubble node upward until heap property is
satisfied

while (!'isRoot(node) &&

(node.key < node.parent.key))

swap (node, parent)

(just pseudocode - can’t do it exactly like this in Java)
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Heap Insert Example
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Bubble Upward

S S DE e

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bubble Upward
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Bubble Upward
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Heap Insert Analysis

New node always inserted at lowest level

Node bubbles upward
* up to root in worst case

* path length to root is O(logn)

Total time for insert is O(logn)
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Extracting from Heap

Copy element from root node
Copy element/key from last node to root node
Delete last node

Bubble root node downward until heap
property satisfied

while (!isExternal (node) &&
(node.key > node.smallestChild.key))

swap (node, node.smallestChild)
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Heap Extract Example
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Copy Extracted Element
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Move last node to root
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Bubble Downward
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Bubble Downward
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Heap Extract Analysis

Again, each swap takes constant time

Maximum swaps is path length from root to
leaf

— Total work is logr * O(1) = O(logn)
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Sort Analysis

Heap Sort
foreach element, E,, in S O(n) )
PQ.insert (E;) IE):O(logz)
while !'PQ.empty () O(n)
PQ.extractMin () ijé;b(logi)

) +2i§;¢')(|og0 < 0@) +2 £0(ogn)
= 0(n) + 2n*0(logn) = O(nlogn)

(showing @ (nlogn) is a bit harder)
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In-class Exercise

What does the heap look like after the
following sequence of insertions:

5 30 2 15 7 45 20 6 18
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