
1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Priority QueuesPriority Queues

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What is a Priority Queue?What is a Priority Queue?

Stores prioritized elementsStores prioritized elements

•• No notion of storing at particular positionNo notion of storing at particular position

Returns elements in priority orderReturns elements in priority order

•• Order determined by Order determined by keykey

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What’s so different?What’s so different?

Stacks and QueuesStacks and Queues
•• Removal order determined by order of Removal order determined by order of

insertinginserting

SequencesSequences
•• User chooses exact placement when inserting User chooses exact placement when inserting

and explicitly chooses removal orderand explicitly chooses removal order

Priority QueuePriority Queue
•• Order determined by keyOrder determined by key

•• Key may be part of element data or separate Key may be part of element data or separate
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

What’s it good for?What’s it good for?

Order of returned elements is not FIFO or Order of returned elements is not FIFO or
LIFO (as in queue or stack)LIFO (as in queue or stack)

Random access not necessary (as in Random access not necessary (as in
sequence) or desirablesequence) or desirable

ExamplesExamples
•• Plane landings managed by air traffic controlPlane landings managed by air traffic control

•• Processes scheduled by CPUProcesses scheduled by CPU

•• College admissions process for studentsCollege admissions process for students

——What are some of the criteria?What are some of the criteria?

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

College Admissions KeyCollege Admissions Key
Student submits:Student submits:

•• Personal data (geography, is parent alum?, Personal data (geography, is parent alum?,
activities?)activities?)

•• TranscriptTranscript
•• EssaysEssays
•• Standardized test scoresStandardized test scores
•• RecommendationsRecommendations

Admissions agent:Admissions agent:
•• Each datum converted to numberEach datum converted to number
•• Formula converts to single numeric keyFormula converts to single numeric key

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Student selection processStudent selection process

Simple schemeSimple scheme
•• Collect applications until due dateCollect applications until due date

•• Sort by keysSort by keys

•• Take top Take top kk studentsstudents

More realisticMore realistic
•• Prioritize applications as they come inPrioritize applications as they come in

•• Accept some top students ASAPAccept some top students ASAP

•• Maybe even change data/key as you goMaybe even change data/key as you go

2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Priority Queue ADTPriority Queue ADT

insertIteminsertItem(k,e): insert element e with key k(k,e): insert element e with key k

extractMinextractMin(): return element with minimum (): return element with minimum
key and remove from queuekey and remove from queue

minElementminElement(): return (look at) min element(): return (look at) min element

minKeyminKey(): return minimum key(): return minimum key

size(): return number of elementssize(): return number of elements

isEmptyisEmpty(): size == 0?(): size == 0?
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Keys, Keys, ComparitorsComparitors and Total Ordersand Total Orders

Key type needs comparison operator (returns Key type needs comparison operator (returns
booleanboolean) with following properties:) with following properties:

•• Reflexive: k Reflexive: k ≤≤ kk

•• AntisymmetricAntisymmetric: :
(k1 (k1 ≤≤ k2) && (k2 k2) && (k2 ≤≤ k1) k1) →→ k1 = k2k1 = k2

•• Transitive:Transitive:
((k1 ((k1 ≤≤ k2) && (k2 k2) && (k2 ≤≤ k3) k3) →→ k1 k1 ≤≤ k3k3

These properties guarantee consistent, These properties guarantee consistent, total total
orderingordering

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Abstracting Abstracting ComparitorsComparitors

Allows for different types of comparisonAllows for different types of comparison
•• e.g. Numeric e.g. Numeric vsvs. lexicographic (for strings). lexicographic (for strings)

Several approaches possibleSeveral approaches possible
•• Build PQ object to know about specific key Build PQ object to know about specific key

type and comparisontype and comparison
•• Build key object to know about comparisonBuild key object to know about comparison
•• Build separate Build separate comparitor comparitor object for each type object for each type

of comparisonof comparison

Book argues for #3, but I also recommend #2Book argues for #3, but I also recommend #2
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Implementing PQ withImplementing PQ with
Unsorted SequenceUnsorted Sequence

Each call to Each call to insertIteminsertItem(k, e) uses (k, e) uses insertLastinsertLast() ()
to store in Sequenceto store in Sequence

•• OO(1) time(1) time

Each call to Each call to extractMinextractMin() traverses the entire () traverses the entire
sequence to find the minimum, then sequence to find the minimum, then
removes elementremoves element

•• OO((nn) time) time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implementing PQ withImplementing PQ with
Sorted SequenceSorted Sequence

Each call toEach call to insertIteminsertItem(k, e) traverses sorted (k, e) traverses sorted
sequence to find correct position, then does sequence to find correct position, then does
insertinsert

•• OO(n) worst case(n) worst case

Each call toEach call to extractMinextractMin() does () does removeFirstremoveFirst()()

•• OO((11) time) time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sorting Using a PQSorting Using a PQ

Elements begin in arbitrary order in a Elements begin in arbitrary order in a
sequencesequence

Move elements from sequence into PQMove elements from sequence into PQ

Extract elements from PQ and reinsert into Extract elements from PQ and reinsert into
sequence in priority ordersequence in priority order

Analysis depends on implementation choicesAnalysis depends on implementation choices

3

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analyzing Queue EfficiencyAnalyzing Queue Efficiency
for Sortingfor Sorting

N N insertElementinsertElement() operations followed by N () operations followed by N
extractMinextractMin() operations() operations

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Selection SortSelection Sort

PQ sorting using unsorted sequencePQ sorting using unsorted sequence

Insert all Insert all nn items in input orderitems in input order

Extract by Extract by selectingselecting min item min item nn timestimes

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insertion SortInsertion Sort

PQ sorting using sorted sequencePQ sorting using sorted sequence

Sequentially Sequentially insertinsert items into sequence in items into sequence in
sorted ordersorted order

Extract items easily from sorted sequenceExtract items easily from sorted sequence

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sort AnalysisSort Analysis

foreachforeach element, element, EEii, in S , in S
PQ.insert(PQ.insert(EEii))

while !PQ.empty()while !PQ.empty()
PQ.PQ.extractMinextractMin()()

OO((nn))

OO((nn))

SelSel. Sort. Sort

ΣΣ OO(1)(1)

ΣΣOO((ii))

i=0i=0

i=ni=n--11

i=0i=0

i=ni=n--11

Ins. SortIns. Sort

ΣΣ OO(1)(1)
i=0i=0

i=ni=n--11

ΣΣOO((ii))
i=0i=0

i=ni=n--11

OO((nn) +) + ΣΣOO(1) + (1) + ΣΣOO((ii) =) = OO((nn) +) + OO((nn) +) + OO((nn22) =) = OO((nn22))
i=0i=0

i=ni=n--11

i=0i=0

i=ni=n--11

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

HeapHeap
Binary treeBinary tree--based data structurebased data structure

•• CompleteComplete in the sense that it fills up levels as in the sense that it fills up levels as
completely as possiblecompletely as possible

•• Height of tree is Height of tree is OO((lognlogn))

Stores elements with keysStores elements with keys
All nodes satisfy the All nodes satisfy the heap propertyheap property::

•• The key value at a node is less than or equal to The key value at a node is less than or equal to
the key value of the node’s childrenthe key value of the node’s children

Allows Allows insertIteminsertItem() and () and extractMinextractMin() in () in
OO((lognlogn) time) time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap ExampleHeap Example

1010

1515

1717

212122223232

1919

3131 3535

30302525

2020

4

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

PQ Quiz Show!PQ Quiz Show!

Heap, or Not A Heap?Heap, or Not A Heap?

(no paper necessary)(no paper necessary)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap, or Not a Heap?Heap, or Not a Heap?

aa

gg

ii

wwqqnn

hh

pp kk ff

ee

cc

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap, or Not a Heap?Heap, or Not a Heap?

ff

jj

kk

mmppxx

nn

ss yy

zzww

vv

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap, or Not a Heap?Heap, or Not a Heap?

cc

kk

mm

vvpp

qq

ss

rrjj

ff

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap, or Not a Heap?Heap, or Not a Heap?

11

33

32322020 8866

55

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Inserting into HeapInserting into Heap

Create new node as “last” elementCreate new node as “last” element

Insert key/element into new nodeInsert key/element into new node

Bubble node upward until heap property is Bubble node upward until heap property is
satisfiedsatisfied
while (!while (!isRootisRoot(node) &&(node) &&
(node.key < node.parent.key))(node.key < node.parent.key))

swap(node, parent)swap(node, parent)
(just (just pseudocode pseudocode -- can’t do it exactly like this in Java)can’t do it exactly like this in Java)

5

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap Insert ExampleHeap Insert Example

1010

1515

1717

212122223232

1919

3131 3535

30302525

2020

77

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bubble UpwardBubble Upward

1010

1515

1717

212122223232

1919

3131 3535

3030

2525

2020

77

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bubble UpwardBubble Upward

1010

1515

1717

212122223232

1919

3131 3535

3030

2525

2020

77

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bubble UpwardBubble Upward

10101515

1717

212122223232

1919

3131 3535

3030

2525

2020

77

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap Insert AnalysisHeap Insert Analysis

New node always inserted at lowest levelNew node always inserted at lowest level

Node bubbles upwardNode bubbles upward

•• up to root in worst caseup to root in worst case

•• path length to root is path length to root is OO((loglognn))

Total time for insert is Total time for insert is OO((loglognn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Extracting from HeapExtracting from Heap

Copy element from root nodeCopy element from root node

Copy element/key from last node to root nodeCopy element/key from last node to root node

Delete last nodeDelete last node

Bubble root node downward until heap Bubble root node downward until heap
property satisfiedproperty satisfied
while (!while (!isExternalisExternal(node) &&(node) &&

(node.key > node.(node.key > node.smallestChildsmallestChild.key)).key))
swap(node, node.swap(node, node.smallestChildsmallestChild))

6

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap Extract ExampleHeap Extract Example

10101515

1717

212122223232

1919

3131 3535

3030

2525

2020

77

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Copy Extracted ElementCopy Extracted Element

10101515

1717

212122223232

1919

3131 3535

3030

2525

2020

77

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Move last node to rootMove last node to root

10101515

1717

212122223232

1919

3131 3535

3030

2525

2020

77

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bubble DownwardBubble Downward

1010

1515

1717

212122223232

1919

3131 3535

3030

2525

2020

77

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bubble DownwardBubble Downward

1010

1515

1717

212122223232

1919

3131 3535

30302525

2020

77

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

All doneAll done

1010

1515

1717

212122223232

1919

3131 3535

30302525

2020

77

7

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Heap Extract AnalysisHeap Extract Analysis

Again, each swap takes constant timeAgain, each swap takes constant time

Maximum swaps is path length from root to Maximum swaps is path length from root to
leafleaf

→→ Total work is Total work is loglognn * * OO(1) = (1) = OO((loglognn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sort AnalysisSort Analysis

foreachforeach element, element, EEii, in S , in S
PQ.insert(PQ.insert(EEii))

while !PQ.empty()while !PQ.empty()
PQ.PQ.extractMinextractMin()()

OO((nn))

OO((nn))

Heap SortHeap Sort

ΣΣ OO((loglogii))

ΣΣOO((loglogii))

i=0i=0

i=ni=n--11

i=0i=0

i=ni=n--11

OO((nn) +2) +2 ΣΣOO((loglogii) <) < OO((nn) + 2) + 2 ΣΣOO((loglognn))

= = OO((nn) + 2) + 2n*On*O((loglognn)) = O= O((nnloglognn))

(showing (showing θθ ((nnloglognn) is a bit harder)) is a bit harder)

i=0i=0

i=ni=n--11

i=0i=0

i=ni=n--11

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

InIn--class Exerciseclass Exercise

What does the heap look like after the What does the heap look like after the
following sequence of insertions:following sequence of insertions:

55 3030 22 1515 77 4545 2020 66 1818

