Object-Oriented Design

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Goals of Object-Oriented Design

Robustness
* Complex programs should operation correctly

* Should deal with improper inputs and
conditions

Adaptability
* Software grows over a long lifetime

* May run on different generations and makes of
hardware

Reusability

* Building from reusable pieces avoids
“reinventing the wheel”

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Design Principles

Abstraction

* Intuitive, high-level interface promotes
understandable and correct implementations

Encapsulation
* Interface hides implementation details

* Allows designer more freedom and user does
not need to worry about low-level details

Modularity

* Organized functional units may be connected
together to build more complex software

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Polymorphism

Ability of variable to take on many forms

« Class variable may contain exact class or any
descendent

« Interface variable may contain any class
implementing the interface

Allows for greater modularity

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Using Inheritance

Specialization

* Handle differences in behavior between parent
and child for the same task

* Override some parent methods

—Refinement: call parent method and then
do something extra

—Replacement: just do something different
Extension

* Add to the functionality of parent by adding
new data and behaviors

(Real examples often do some of both)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Is a” and “Has a” Relationships

“Is a”
* One object is a specialized example of another
« Example: museum is a building
* Often implemented by inheritance
“Has a”
* One object is a component of another
* Example: building has a door

« Often implemented by one object having
another as a field

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




Adapter Pattern

Implements “Is a” relationship without
inheritance

* One class has another as a field

* “Forward” all methods of the field to the larger
class

« Useful for multiple inheritance and for
implementing interfaces

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Adapter Pattern Example

interface Driveable { drive() };

class Vehicle implements Driveable {
drive(){...complicated code...};

}

class Automobile implements Driveable {
Vehicle v;

drive() { ... v.drive() ... };

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

In-Class Exercise

Groups of 3 or 4 people

Specify some useful fields and methods for:
* Human, man, woman, parent, child

Organize using classes and interfaces

Then I’ll ask some of you to share with the
class

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




