
1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

ObjectObject--Oriented DesignOriented Design

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Goals of ObjectGoals of Object--Oriented DesignOriented Design

RobustnessRobustness
•• Complex programs should operation correctlyComplex programs should operation correctly
•• Should deal with improper inputs and Should deal with improper inputs and 

conditionsconditions
AdaptabilityAdaptability

•• Software grows over a long lifetimeSoftware grows over a long lifetime
•• May run on different generations and makes of May run on different generations and makes of 

hardwarehardware
ReusabilityReusability

•• Building from reusable pieces avoids Building from reusable pieces avoids 
“reinventing the wheel”“reinventing the wheel”

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Design Principles Design Principles 

AbstractionAbstraction
•• Intuitive, highIntuitive, high--level interface promotes level interface promotes 

understandable and correct implementationsunderstandable and correct implementations
EncapsulationEncapsulation

•• Interface hides implementation detailsInterface hides implementation details
•• Allows designer more freedom and user does Allows designer more freedom and user does 

not need to worry about lownot need to worry about low--level detailslevel details
ModularityModularity

•• Organized functional units may be connected Organized functional units may be connected 
together to build more complex softwaretogether to build more complex software

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

PolymorphismPolymorphism

Ability of variable to take on many formsAbility of variable to take on many forms

•• Class variable may contain exact class or any Class variable may contain exact class or any 
descendentdescendent

•• Interface variable may contain any class Interface variable may contain any class 
implementing the interfaceimplementing the interface

Allows for greater modularityAllows for greater modularity

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Using InheritanceUsing Inheritance

SpecializationSpecialization
•• Handle differences in behavior between parent Handle differences in behavior between parent 

and child for the same taskand child for the same task
•• Override some parent methodsOverride some parent methods

——Refinement: call parent method and then Refinement: call parent method and then 
do something extrado something extra

——Replacement: just do something differentReplacement: just do something different
ExtensionExtension

•• Add to the functionality of parent by adding Add to the functionality of parent by adding 
new data and behaviorsnew data and behaviors

(Real examples often do some of both)(Real examples often do some of both)
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

““Is a” and “Has a” RelationshipsIs a” and “Has a” Relationships

““Is a”Is a”
•• One object is a specialized example of anotherOne object is a specialized example of another
•• Example: museum is a buildingExample: museum is a building
•• Often implemented by inheritanceOften implemented by inheritance

“Has a”“Has a”
•• One object is a component of anotherOne object is a component of another
•• Example: building has a doorExample: building has a door
•• Often implemented by one object having Often implemented by one object having 

another as a fieldanother as a field



2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Adapter PatternAdapter Pattern

Implements “Is a” relationship without Implements “Is a” relationship without 
inheritanceinheritance

•• One class has another as a fieldOne class has another as a field

•• “Forward” all methods of the field to the larger “Forward” all methods of the field to the larger 
classclass

•• Useful for multiple inheritance and for Useful for multiple inheritance and for 
implementing interfacesimplementing interfaces

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Adapter Pattern ExampleAdapter Pattern Example
interface interface Driveable Driveable { drive() };{ drive() };
class Vehicle implements class Vehicle implements Driveable Driveable {{

drive(){...complicated code...};drive(){...complicated code...};
}}
class Automobile implements class Automobile implements Driveable Driveable {{

Vehicle v;Vehicle v;
drive() { ... v.drive() ... };drive() { ... v.drive() ... };

}}

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

InIn--Class ExerciseClass Exercise

Groups of 3 or 4 peopleGroups of 3 or 4 people

Specify some useful fields and methods for:Specify some useful fields and methods for:

•• Human, man, woman, parent, childHuman, man, woman, parent, child

Organize using classes and interfacesOrganize using classes and interfaces

Then I’ll ask some of you to share with the Then I’ll ask some of you to share with the 
classclass


