
1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Java EssentialsJava Essentials

(including differences from C++)(including differences from C++)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Java FeaturesJava Features
Platform independentPlatform independent

•• “Write once, run anywhere”“Write once, run anywhere”

ObjectObject--orientedoriented
Safe referencesSafe references

•• Class casting checked at runClass casting checked at run--timetime
•• No dangerous pointer manipulationsNo dangerous pointer manipulations

Garbage collectionGarbage collection
BuiltBuilt--in exception handlingin exception handling
Support for multiSupport for multi--threading, networking, security, threading, networking, security,

web applets, etc.web applets, etc.

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Some ShortcomingsSome Shortcomings

Rather slow compared to fullyRather slow compared to fully--compiled codecompiled code
•• Changing with onChanging with on--thethe--fly compilation technologyfly compilation technology

Some unavoidable space inefficienciesSome unavoidable space inefficiencies
•• No arrays of classes without referencesNo arrays of classes without references

Difficult to take advantage of platformDifficult to take advantage of platform--specific specific
featuresfeatures

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sun’s Java ToolsSun’s Java Tools

javacjavac : Java byte code compiler: Java byte code compiler
•• Compiles Java source to platformCompiles Java source to platform--independent byte independent byte

codescodes

java : Java runjava : Java run--time environmenttime environment
•• Verifies byte codes for security correctness and Verifies byte codes for security correctness and

executes on Java Virtual Machineexecutes on Java Virtual Machine

jdbjdb : Java debugger: Java debugger

JSwatJSwat: Graphical debugging environment: Graphical debugging environment
•• written in Java, for Javawritten in Java, for Java

Available free from http://Available free from http://www.bluemarsh.comwww.bluemarsh.com

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Hello, World!Hello, World!

class class HelloWorldHelloWorld {{

public static void main(String[] public static void main(String[] argsargs))

System.out.println("HelloSystem.out.println("Hello, World!");, World!");

}}

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Topics to CoverTopics to Cover

Basic typesBasic types

OperatorsOperators

Flow ControlFlow Control

ClassesClasses

InheritanceInheritance

InterfacesInterfaces

Error HandlingError Handling

2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Primitive TypesPrimitive Types

booleanboolean true or falsetrue or false
charchar 1616--bit Unicode characterbit Unicode character
bytebyte 88--bit signed integerbit signed integer
shortshort 1616--bit signed integerbit signed integer
intint 3232--bit signed integerbit signed integer
longlong 6464--bit signed integerbit signed integer
floatfloat 3232--bit floating pointbit floating point
doubledouble 6464--bit floating pointbit floating point

in
te

ge
r

ty
pe

s
in

te
ge

r
ty

pe
s

flo
at

flo
at

ty
pe

s
ty

pe
s

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Differences from C++Differences from C++

booleanboolean true and false do not have integer true and false do not have integer
equivalentsequivalents

char is not a byte, but a 16char is not a byte, but a 16--bit Unicodebit Unicode

No unsigned integer types (so byte goes to 128, not No unsigned integer types (so byte goes to 128, not
256)256)

All types have specified sizeAll types have specified size

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

StringsStrings

Strings are special builtStrings are special built--in classin class

<string> + <string> performs concatenation<string> + <string> performs concatenation
•• creates new string that combines the twocreates new string that combines the two

String a = “String a = “foofoo”;”;

String b = “bar”;String b = “bar”;

String c = a + b + “!”String c = a + b + “!”

c.length == 7c.length == 7

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

VariablesVariables

No global variablesNo global variables
May appear as Class fields or localMay appear as Class fields or local
Appear as Appear as

[modifiers] <type> <variable[modifiers] <type> <variable--name> [= <name> [= <valval>]>]

Possible modifiers:Possible modifiers:
•• final final -- unchangeable constantunchangeable constant
•• static static -- only one instanceonly one instance
•• public, private, protected public, private, protected -- access restrictionsaccess restrictions
•• synchronized synchronized -- for multithreadingfor multithreading

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Operators and PrecedenceOperators and Precedence
[] . ([] . (paramsparams))
exprexpr++ ++ exprexpr---- ++++exprexpr ----exprexpr ++exprexpr --exprexpr ~ !~ !
new (new (type)exprtype)expr
* / % * / % (floats, integers)(floats, integers)
+ + -- (integers, floats, strings)(integers, floats, strings)
<< >> >>> << >> >>> (integers only)(integers only)
< > >= <= < > >= <= instanceofinstanceof
== !=== !=
&&
^̂
||
&& && ((booleansbooleans only)only)
|| || ((booleansbooleans only)only)
?:?:
= += = += --= *= /= %= >>= <<= >>>= &= ^= |== *= /= %= >>= <<= >>>= &= ^= |=

Note: no operator
overloading in Java

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Precedence ExamplePrecedence Example

What is:What is: 5 + 21 / 4 % 35 + 21 / 4 % 3
= (5 + ((21 / 4) % 3))= (5 + ((21 / 4) % 3))

= 5 + ((5) % 3)= 5 + ((5) % 3)

= 5 + (2)= 5 + (2)

= 7= 7

3

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Explicit CastingExplicit Casting

ExplicitExplicit
•• (type)expression(type)expression

•• Possible among all integer and floating typesPossible among all integer and floating types

•• Possible among some class referencesPossible among some class references

•• intint i = (i = (intint)((double)5 / (double)3))((double)5 / (double)3)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implicit CastingImplicit Casting

ImplicitImplicit
•• Applied automatically when no information lostApplied automatically when no information lost

——float float →→ doubledouble

——byte byte →→ short short →→ intint →→ longlong

——intint →→ doubledouble

——double d = 6; d = 7 / 2; d = 7 / 2.0;double d = 6; d = 7 / 2; d = 7 / 2.0;

•• Any type converted to String when involved in String Any type converted to String when involved in String
concatenation (+)concatenation (+)

——String s = 8 + “ Days a Week”String s = 8 + “ Days a Week”

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Control Flow Control Flow -- if/elseif/else

if (if (booleanboolean))
statement1;statement1;

else if (else if (booleanboolean))
statement2;statement2;

elseelse
statement3;statement3;

Booleans only, not integersBooleans only, not integers
•• if (i > 0)if (i > 0) legallegal
•• if (i = xif (i = x----)) illegalillegal

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Switch/caseSwitch/case

switch (<integer>) {switch (<integer>) {
case <const 1>:case <const 1>:

statements;statements;
break;break;

case <const 2>:case <const 2>:
statements;statements;
break;break;

default:default:
statements;statements;

}}

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Switch/case ExampleSwitch/case Example

intint i = 3;i = 3;

switch (i) {switch (i) {

case 3:case 3:

System.out.println(“3”);System.out.println(“3”);

case 6:case 6:

System.out.println(“6”);System.out.println(“6”);

default:default:

System.out.println(“DefaultSystem.out.println(“Default”);”);

}}

What is printed?

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

LoopsLoops

while (<while (<booleanboolean>)>)
statement;statement;

dodo
statement;statement;

while (<while (<booleanboolean>)>)

for (initfor (init--exprexpr; <; <booleanboolean>; >; incrincr--exprexpr))
statement;statement;

4

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Loop RefresherLoop Refresher

Which loops must execute their statements at least Which loops must execute their statements at least
once?once?

Which loops can choose to never execute their Which loops can choose to never execute their
statements?statements?

Which value of the Which value of the booleanboolean indicates to do the indicates to do the
statements again?statements again?

Do you know a loop construct in C that is the Do you know a loop construct in C that is the
opposite of this?opposite of this?

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

LabelledLabelled Break and ContinueBreak and Continue

Break jumps out of enclosing switch or loopBreak jumps out of enclosing switch or loop
Continue jumps to increment section of loopContinue jumps to increment section of loop
Labels may be placed before switch or loop to Labels may be placed before switch or loop to

determine which is indicated by break or continuedetermine which is indicated by break or continue
foofoo::
while (<while (<booleanboolean>)>)
while (<while (<booleanboolean>)>)

......
break break foofoo;;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Continue ExampleContinue Example

To where does execution jump after the continue is To where does execution jump after the continue is
executed?executed?

Zen:Zen:
for (for (intint i=0; i<10; i++) {i=0; i<10; i++) {

for (for (intint j=0; j<i; j++) {j=0; j<i; j++) {
if (i+j == 5)if (i+j == 5)

continue Zen;continue Zen;
}}

}}

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Value vs. Reference VariablesValue vs. Reference Variables

Variables of primitive types are value variablesVariables of primitive types are value variables
Variables of arrays and classes are reference variablesVariables of arrays and classes are reference variables

•• Reference variables are a safer form of pointersReference variables are a safer form of pointers

(In C++, you can choose)(In C++, you can choose)

10

intint i=10;i=10;

ii
Value

10

intint[] j = new int[1];[] j = new int[1];
j[0] = 10;j[0] = 10;

Or Or intint[] j = {10};[] j = {10};

newnew performs dynamicperforms dynamic
memory allocationmemory allocation

jj
Reference

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Passing ParametersPassing Parameters

All variables passed “by value”All variables passed “by value”
•• Contents of variable are copied to variable inside the Contents of variable are copied to variable inside the

procedureprocedure

foo(intfoo(int i, i, intint[] ia1, [] ia1, intint[] ia2) {[] ia2) {
ii----;;
ia1[0] = 6;ia1[0] = 6;
ia2 = ia1;ia2 = ia1;

}}
intint i=1; i=1;
intint[] array1={3}, array2={4};[] array1={3}, array2={4};
foo(ifoo(i, array1, array2);, array1, array2);

What are the values of What are the values of ii, ,
array1[0]array1[0], and , and array2[0]array2[0]
after returning from after returning from foofoo()()??

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

ArraysArrays

Refer to several values of same typeRefer to several values of same type
Example:Example:

intint[] [] myArraymyArray = new int[20];= new int[20];

Length field holds allocated number of elementsLength field holds allocated number of elements
myArray.lengthmyArray.length == 20== 20

Indexed from 0..lengthIndexed from 0..length--11
•• bounds checked dynamicallybounds checked dynamically

Initialized manually or in declarationInitialized manually or in declaration
intint[] myArray2 = {18, 36};[] myArray2 = {18, 36};

18 36
myArray2 [0] [1]

5

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

2D (and higher D) Arrays2D (and higher D) Arrays

May be allocated at once for rectanglesMay be allocated at once for rectangles
intint[][] i = new int[12][15];[][] i = new int[12][15];

Or deal with 1 dimension at a timeOr deal with 1 dimension at a time
intint[][] i = new int[10][];[][] i = new int[10][];

for (for (intint j=0; j<10; j++)j=0; j<10; j++)

i[j] = new int[2*j + 1];i[j] = new int[2*j + 1];

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

NonNon--rectangular 2D Arrayrectangular 2D Array

i

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

ClassesClasses

Combine Combine fieldsfields (variables) and (variables) and methodsmethods (procedures)(procedures)
Fields and methods accessed by . (dot) operatorFields and methods accessed by . (dot) operator

class class MyClassMyClass {{
static static intint numInstancesnumInstances=0;=0;
protected protected intint somethingImportantsomethingImportant;;
public public intint tellAlltellAll() {() {

return return somethingImportantsomethingImportant;;
}}

}}

MyClassMyClass myVarmyVar = new = new MyClassMyClass;;
System.out.println(MyClass.numInstancesSystem.out.println(MyClass.numInstances + +
“, “ + “, “ + myVar.tellAllmyVar.tellAll());());

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

FieldsFields

ModifiersModifiers
•• public, protected, private : affect visibilitypublic, protected, private : affect visibility

•• static : affects instantiationstatic : affects instantiation

•• final : makes field a constantfinal : makes field a constant

•• synchronized : used for multithreadingsynchronized : used for multithreading

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Field InstantiationField Instantiation

Class fieldsClass fields
•• static static -- only one per classonly one per class

•• May be accessed without a class variableMay be accessed without a class variable

——<<classnameclassname>.<static field>>.<static field>

»» e.g. Math.PIe.g. Math.PI

Instance fieldsInstance fields
•• nonnon--static static -- one per class instanceone per class instance

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Field and Method VisibilityField and Method Visibility

public, protected, private, or “package” (default)public, protected, private, or “package” (default)

Accessible to:Accessible to: publicpublic protected package privateprotected package private

same classsame class yesyes yesyes yesyes yesyes

class in same packageclass in same package yesyes yesyes yesyes nono

subclass in different packagesubclass in different package yesyes yesyes no nono no

nonnon--subclass, different packagesubclass, different package yesyes nono no nono no

6

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

MethodsMethods
ModifiersModifiers

•• Same as fields, plus abstractSame as fields, plus abstract

May be overloaded (methods with same name)May be overloaded (methods with same name)
•• Must have different signatures (defined by parameter Must have different signatures (defined by parameter

type sequence)type sequence)

staticstatic methods cannot access instance variablesmethods cannot access instance variables

thisthis provides reference to class instanceprovides reference to class instance

•• Can be passed as parameter to another methodCan be passed as parameter to another method

•• Can disambiguate class fields from parametersCan disambiguate class fields from parameters
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Initialization/ConstructorsInitialization/Constructors

Initialization performed when class is Initialization performed when class is instantiatedinstantiated by: by:
new <class>[(new <class>[(paramsparams)])]

•• Fields initialized to specified values or to defaults according Fields initialized to specified values or to defaults according to to
typetype

•• Constructor called if there is one (Constructor called if there is one (paramsparams must match a must match a
constructor signature)constructor signature)

•• Constructors may be overloaded as wellConstructors may be overloaded as well
MyClassMyClass() { () { numInstancesnumInstances++; ++;
somethingImportantsomethingImportant = = numInstancesnumInstances*3; }*3; }

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

finalize()finalize() methodmethod

If defined, called during garbage collectionIf defined, called during garbage collection

Not necessary for Not necessary for deallocatingdeallocating spacespace

Sometimes useful for freeing up other resourcesSometimes useful for freeing up other resources
•• closing files, etc.closing files, etc.

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

InheritanceInheritance

Enables class extensions with reuse of some fields Enables class extensions with reuse of some fields
and methodsand methods

•• All parent fields included in child instantiationAll parent fields included in child instantiation
•• Protected and public fields and methods directly Protected and public fields and methods directly

accessible to childaccessible to child
•• Parent methods may be Parent methods may be overriddenoverridden
•• New fields and methods may be added to childNew fields and methods may be added to child
•• Only single inheritance (unlike C++)Only single inheritance (unlike C++)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Simple Inheritance ExampleSimple Inheritance Example

Class Class MyExtensionMyExtension extends extends MyClassMyClass {{
float float newFieldnewField;;
MyExtensionMyExtension() {() {

super(); //call parent constructorsuper(); //call parent constructor
newFieldnewField = = super.tellAllsuper.tellAll()*3.14;}()*3.14;}

intint tellAll(){returntellAll(){return ((int)newFieldint)newField;};}
}}

MyClassMyClass foofoo = new = new MyExtensionMyExtension;;
System.out.println(foo.tellAllSystem.out.println(foo.tellAll());());

Method accessed is that of actual instantiation type, not Method accessed is that of actual instantiation type, not
variable typevariable type

•• In C++ terminology, all functions are “virtual”In C++ terminology, all functions are “virtual”
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Initialization of Derived ClassesInitialization of Derived Classes

super()super(): alias for constructor of parent class: alias for constructor of parent class

•• Constructor of derived class can explicitly call Constructor of derived class can explicitly call
super()super() (with or without arguments) to invoke (with or without arguments) to invoke
parent constructorparent constructor

•• If constructor does not call If constructor does not call super()super() or or this()this()at at
start of constructorstart of constructor

—— super()super() is automatically called (with no arguments)is automatically called (with no arguments)

•• Inside Inside super()super() function,function, thisthis object has been cast object has been cast
to parent classto parent class

7

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Casting of Class VariablesCasting of Class Variables

““upward” castingupward” casting
•• Casting derived class variable to ancestor class is Casting derived class variable to ancestor class is

always safe (and may be done implicitly)always safe (and may be done implicitly)

“downward” casting“downward” casting
•• Casting class variable to derived class fails if variable is Casting class variable to derived class fails if variable is

not actually an instance of the derived classnot actually an instance of the derived class

——runrun--time errortime error

•• instanceofinstanceof()() operator can be used to test class type operator can be used to test class type
before downward castbefore downward cast

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Class Casting ExampleClass Casting Example

a = new Bear();a = new Bear();
b = (Bear)a; b = (Bear)a;
m = (Monkey)a;m = (Monkey)a;
m = (Monkey)b;m = (Monkey)b;

AnimalAnimal

MonkeyMonkey BearBear

// legal
// legal
// illegal
// illegal

class Animal {...}class Animal {...}
class Bear extends Animal {...}class Bear extends Animal {...}
class Monkey extends Animal {...}class Monkey extends Animal {...}

Animal a;Animal a;
Monkey m;Monkey m;
Bear b;Bear b;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Abstract ClassesAbstract Classes
Include one or more unimplemented abstract Include one or more unimplemented abstract

methodsmethods
Enable inheritance of methods that don’t make Enable inheritance of methods that don’t make

sense at the parent levelsense at the parent level

abstract class Shape {abstract class Shape {
public public intint id;id;
abstract public draw(); }abstract public draw(); }

class Circle extends Shape {class Circle extends Shape {
public draw() {...} }public draw() {...} }

class Rectangle extends Shape {class Rectangle extends Shape {
public draw() {...} }public draw() {...} }

Shape s = new Circle();Shape s = new Circle();
s.draw();s.draw();

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

InterfacesInterfaces

interface Printable {interface Printable {
print(); }print(); }

class class FooFoo implements Printable {implements Printable {
print(){...}; }print(){...}; }

Similar to abstract classesSimilar to abstract classes
•• But But nono methods implemented or fields specifiedmethods implemented or fields specified

Class can be defined to Class can be defined to implementimplement one or more one or more
interfacesinterfaces

•• More general mechanism than just single inheritanceMore general mechanism than just single inheritance
Variables may actually use interface as typeVariables may actually use interface as type

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Multiple Inheritance”Multiple Inheritance”

Several ways to achieve in JavaSeveral ways to achieve in Java
•• combinations of interfaces and classescombinations of interfaces and classes

•• W and Y are interfaces, X and Z are classesW and Y are interfaces, X and Z are classes

•• W, X, and Y are interfaces, Z is classW, X, and Y are interfaces, Z is class

W
X Y

Z

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

ExceptionsExceptions

LanguageLanguage--level support for managing runlevel support for managing run--time time
errorserrors

You can define your own exception classesYou can define your own exception classes

Methods declare which exceptions they might Methods declare which exceptions they might
possibly possibly throwthrow

Calling methods either Calling methods either catchcatch these exceptions or these exceptions or
pass them up the call stackpass them up the call stack

8

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

ThrowThrow
public void public void myMethodmyMethod() throws () throws
BadThingHappenedBadThingHappened {{
......
if (if (someConditionsomeCondition))

throw new throw new BadThingHappenedBadThingHappened;;
......

}}

trytry
......
myMethodmyMethod()()
......

catch (catch (BadThingHappenedBadThingHappened BTH)BTH)
blockblock

catch (catch (exceptiontypeexceptiontype id)id)
blockblock

finallyfinally
block // ALWAYS executed!!block // ALWAYS executed!!

