Java Essentials

(including differences from C++)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Java Features

Platform independent

* “Write once, run anywhere”
Object-oriented
Safe references

 Class casting checked at run-time

* No dangerous pointer manipulations
Garbage collection
Built-in exception handling

Support for multi-threading, networking, security,
web applets, etc.

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Some Shortcomings

Rather slow compared to fully-compiled code
* Changing with on-the-fly compilation technology
Some unavoidable space inefficiencies
* No arrays of classes without references

Difficult to take advantage of platform-specific
features

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Sun’s Java Tools

javac : Java byte code compiler

» Compiles Java source to platform-independent byte
codes

java : Java run-time environment

* Verifies byte codes for security correctness and
executes on Java Virtual Machine

jdb : Java debugger

JSwat: Graphical debugging environment

* written in Java, for Java

|Available free from http://www.bluemarsh.com |

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Hello, World!

class HelloWorld {
public static void main(String[] args)

System.out.println("Hello, World!");

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Topics to Cover

Basic types
Operators
Flow Control
Classes
Inheritance
Interfaces

Error Handling

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

integer types

float

Primitive Types

boolean true or false

char 16-bit Unicode character
byte 8-bit signed integer
short 16-bit signed integer
int 32-bit signed integer
long 64-bit signed integer

. float 32-bit floating point

E& double 64-bit floating point

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Differences from C++

boolean true and false do not have integer
equivalents

char is not a byte, but a 16-bit Unicode

No unsigned integer types (so byte goes to 128, not
256)

All types have specified size

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Strings

Strings are special built-in class

<string> + <string> performs concatenation

« creates new string that combines the two
String a = “fo0”;
String b = “bar”;
Stringc=a+b +«!”

clength ==

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Variables

No global variables
May appear as Class fields or local
Appear as
[modifiers] <type> <variable-name> [= <val>]
Possible modifiers:
« final - unchangeable constant
« static - only one instance
* public, private, protected - access restrictions
« synchronized - for multithreading

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Operators and Precedence

[1 . (params)

expr++ expr-- ++expr --expr +expr -expr ~ !
new (type)expr

* | % (floats, integers)

+ - (integers, floats, strings)

<< >> >>> (integers only)

< > >= <= instanceof

===

&

A

Note: no operator

|
&& (booleans only) PV
overloading in Java

Il (booleans only)

2.
= 4= = *= [= U= S>= <<= >>>= = A= |=

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Precedence Example

Whatis: 5 + 21 /4 % 3
=(5+(21/4) % 3)
=5+((5) % 3)
=5+(2)
=7

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Explicit Casting

Explicit
* (type)expression
« Possible among all integer and floating types
* Possible among some class references

« int i = (int)((double)5 / (double)3)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Implicit Casting

Implicit
* Applied automatically when no information lost
—float —> double
—byte — short — int — long
—int — double
—doubled=6; d=7/2; d=7/2.0;

* Any type converted to String when involved in String
concatenation (+)

—String s = 8 + “ Days a Week”

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Control Flow - iflelse

if (boolean)
statementl;
else if (boolean)
statement2;
else
statement3;

Booleans only, not integers
«if (i > 0) legal
eif (i = x--) illegal

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Switch/case

switch (<integer>) {

case <const 1>:
statements;
break;

case <const 2>:
statements;
break;

default:
statements;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Switch/case Example

int i = 3; —
What is printed?

switch (i) {
case 3:
System.out.println(“3”);
case 6:
System.out.println(“6”) ;
default:

System.out.println(“Default”) ;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Loops

while (<boolean>)
statement;

do
statement;
while (<boolean>)

for (init-expr; <boolean>; incr-expr)
statement;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Loop Refresher

Which loops must execute their statements at least
once?

Which loops can choose to never execute their
statements?

Which value of the boolean indicates to do the
statements again?

Do you know a loop construct in C that is the
opposite of this?

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Labelled Break and Continue

Break jumps out of enclosing switch or loop
Continue jumps to increment section of loop

Labels may be placed before switch or loop to
determine which is indicated by break or continue

foo:
while (<boolean>)
while (<boolean>)

break foo;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Continue Example

To where does execution jump after the continue is
executed?

Zen:
for (int i=0; i<10; i++) {
for (int j=0; j<i; j++) {
if (i+j == 5)
continue Zen;

}

S

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Value vs. Reference Variables

Value Reference
i 3 new performs dynamic

i
é_, memory allocation

int i=10; int[] j = new int[1];
jro] = 10;

Or int[] j = {10};
Variables of primitive types are value variables
Variables of arrays and classes are reference variables

* Reference variables are a safer form of pointers

(In C++, you can choose)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Passing Parameters

All variables passed “by value”

« Contents of variable are copied to variable inside the
procedure

foo(int i, int[] ial, int[] ia2) {
i--;
ial[0] = 6;
ia2 = ial;

What are the values of i,
arrayl[0],and array2[0]
after returning from foo () ?

}

int i=1;

int[] arrayl={3}, array2={4};
foo (i, arrayl, array2?);

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Arrays

Refer to several values of same type
Example:
int[] myArray = new int[20];
Length field holds allocated number of elements
myArray.length == 20
Indexed from 0..length-1
* bounds checked dynamically
Initialized manually or in declaration
int[] myArray2 = {18, 36};
myArray2 [0] [1]

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

2D (and higher D) Arrays

May be allocated at once for rectangles
int[][] i = new int[12][15];
Or deal with 1 dimension at a time
int[][] i = new int[10][];
for (int j=0; j<10; j++)
i[j] = new int[2*j + 1];

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Non-rectangular 2D Array

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Classes

Combine fields (variables) and methods (procedures)
Fields and methods accessed by . (dot) operator

class MyClass {
static int numInstances=0;
protected int somethingImportant;
public int tellAll() {
return somethingImportant;
}
}

MyClass myVar = new MyClass;

System.out.println (MyClass.numInstances +
Y, N + myVar.tellAll())

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Fields

Modifiers
* public, protected, private : affect visibility
« static : affects instantiation
« final : makes field a constant

« synchronized : used for multithreading

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Field Instantiation

Class fields
« static - only one per class
* May be accessed without a class variable

—<classname>.<static field>

»e.g. Math.PI
Instance fields

* non-static - one per class instance

Field and Method Visibility

public, protected, private, or “package” (default)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Accessible to: m publicI protectedl package] private
same class yes yes yes yes
class in same package yes yes yes no
subclass in different package yes yes no no
bclass, different packag yes no no no

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Methods

Modifiers
* Same as fields, plus abstract
May be overloaded (methods with same name)

* Must have different signatures (defined by parameter
type sequence)

static methods cannot access instance variables
this provides reference to class instance
« Can be passed as parameter to another method

» Can disambiguate class fields from parameters

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Initialization/Constructors

Initialization performed when class is instantiated by:
new <class>[(params)]

« Fields initialized to specified values or to defaults according to
type

* Constructor called if there is one (params must match a
constructor signature)

« Constructors may be overloaded as well

MyClass() { numInstances++;
somethingImportant = numInstances*3; }

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

finalize () method

If defined, called during garbage collection
Not necessary for deallocating space

Sometimes useful for freeing up other resources

« closing files, etc.

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Inheritance

Enables class extensions with reuse of some fields
and methods
* All parent fields included in child instantiation

* Protected and public fields and methods directly
accessible to child

* Parent methods may be overridden
* New fields and methods may be added to child
* Only single inheritance (unlike C++)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Simple Inheritance Example

Class MyExtension extends MyClass {
float newField;
MyExtension () {
super () ; //call parent constructor
newField = super.tellAll()*3.14;}
int tellAll() {return (int)newField;}
}

MyClass foo = new MyExtension;
System.out.println(foo.tellAll())

Method accessed is that of actual instantiation type, not
variable type

* In C++ terminology, all functions are “virtual”

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Initialization of Derived Classes

super () : alias for constructor of parent class

« Constructor of derived class can explicitly call
super () (with or without arguments) to invoke
parent constructor

« If constructor does not call super () or this () at
start of constructor

— super () is automatically called (with no arguments)

« Inside super () function, this object has been cast
to parent class

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Casting of Class Variables

“upward” casting

« Casting derived class variable to ancestor class is
always safe (and may be done implicitly)

“downward” casting

 Casting class variable to derived class fails if variable is
not actually an instance of the derived class

—run-time error

* instanceof () operator can be used to test class type
before downward cast

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Class Casting Example

class Animal {...}
class Bear extends Animal {...}
class Monkey extends Animal {...}

Animal a;
Monkey m;
Bear b;

new Bear(); // legal
(Bear)a; // legal
(Monkey)a; // illegal
m = (Monkey)b; // illegal

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Abstract Classes

Include one or more unimplemented abstract
methods

Enable inheritance of methods that don’t make
sense at the parent level

abstract class Shape {
public int id;
abstract public draw(); }

class Circle extends Shape {
public draw() {...} }

class Rectangle extends Shape {
public draw() {...}

Shape s = new Circle();
s.draw() ;

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Interfaces

interface Printable {
print(); }

class Foo implements Printable {
print(){...}; }

Similar to abstract classes
* But no methods implemented or fields specified
Class can be defined to implement one or more
interfaces
* More general mechanism than just single inheritance
Variables may actually use interface as type

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Multiple Inheritance”

AN
X Y
\,/

Several ways to achieve in Java
* combinations of interfaces and classes
« Wand Y are interfaces, X and Z are classes

* W, X, and Y are interfaces, Z is class

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Exceptions

Language-level support for managing run-time
errors

You can define your own exception classes

Methods declare which exceptions they might
possibly throw

Calling methods either catch these exceptions or
pass them up the call stack

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Throw

public void myMethod () throws
BadThingHappened {

if.(someCondition)
throw new BadThingHappened;

}

try
myMethod ()

catch.kéadThingHappened BTH)
block

catch (exceptiontype id)
block

finally
block // ALWAYS executed!!

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

